Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-4844
  • E-ISSN: 2666-4852

Abstract

Next-generation sequencing methods have advanced greatly since Sanger sequencing, allowing for increased data yield, productivity, and utility. Read time can be used to categorize the upcoming technological generations. This article summarizes the differences between the two technological paradigms, the second-generation (short-read) kind, and the third-generation (long-read) variety. Popular technologies such as Ion Torrent and Illumina stand in for short-read sequencing methods, whereas Oxford Nanopore and Pacific Biosciences are used to represent long-read sequencing approaches. The introduction of the first next-generation sequencing (NGS) technology about ten years ago completely transformed the study of genetics. Whole genomes are now mapped and published practically weekly as a result of speed and cost advances. The number of scholarly papers and conference presentations highlighting the forensic uses of NGS in multiple forensic genetic laboratories has somewhat increased from the previous year. These results show that NGS provides new opportunities for forensic genomic investigation. To gather more information from multiple specimens in a single experiment, combinations of different markers, such as Short Tandem Repeats (STRs), Single Nucleotide Polymorphisms (SNPs), insertion/deletions, and mRNA, can be used instead of the usual Polymerase Chain Reactions-CE techniques. The most significant forensic STR loci's true spectrum of variation and hitherto unknown STR alleles have been discovered. We will address the possible use of single-molecule sequencing and NGS in forensic science.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/0126664844274727231218061037
2024-01-01
2025-02-28
Loading full text...

Full text loading...

References

  1. ChurchG.M. GilbertW. Genomic sequencing.Proc. Natl. Acad. Sci.19848171991199510.1073/pnas.81.7.1991 6326095
    [Google Scholar]
  2. LealS.M. SpeerM.C. Genetic linkage analysis in human disease.The Genetics of Osteoporosis and Metabolic Bone Disease. EconsM.J. Totowa, NJHumana Press200037741310.1007/978‑1‑59259‑033‑9_20
    [Google Scholar]
  3. Dawn TeareM. BarrettJ.H. Genetic linkage studies.Lancet200536694901036104410.1016/S0140‑6736(05)67382‑5 16168786
    [Google Scholar]
  4. EngbersH.M. BergerR. van HasseltP. Yield of additional metabolic studies in neurodevelopmental disorders.Ann. Neurol.200864221221710.1002/ana.21435 18570304
    [Google Scholar]
  5. SangerF. NicklenS. CoulsonA.R. DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci.197774125463546710.1073/pnas.74.12.5463 271968
    [Google Scholar]
  6. MoreyM. Fernández-MarmiesseA. CastiñeirasD. FragaJ.M. CouceM.L. CochoJ.A. A glimpse into past, present, and future DNA sequencing.Mol. Genet. Metab.20131101-232410.1016/j.ymgme.2013.04.024 23742747
    [Google Scholar]
  7. HeatherJ.M. ChainB. The sequence of sequencers: The history of sequencing DNA.Genomics201610711810.1016/j.ygeno.2015.11.003 26554401
    [Google Scholar]
  8. DNA sequencing.Available from: http://en.wikipedia.org/wiki/DNA sequencing/
  9. CollinsF.S. MorganM. PatrinosA. The Human Genome Project: Lessons from large-scale biology.Science2003300561728629010.1126/science.1084564 12690187
    [Google Scholar]
  10. Available from:http://genomics.xprize.org/
  11. Available from:http://my454.com/products/technology.asp
  12. FreedmanM.L. ReichD. PenneyK.L. Assessing the impact of population stratification on genetic association studies.Nat. Genet.200436438839310.1038/ng1333 15052270
    [Google Scholar]
  13. ThomasD.C. WitteJ.S. Point: population stratification: A problem for case-control studies of candidate-gene associations?Cancer Epidemiol. Biomarkers Prev.2002116505512 12050090
    [Google Scholar]
  14. HortonR.H. LucassenA.M. Recent developments in genetic/genomic medicine.Clin. Sci.2019133569770810.1042/CS20180436 30837331
    [Google Scholar]
  15. PoseyJ.E. O’Donnell-LuriaA.H. ChongJ.X. Insights into genetics, human biology and disease gleaned from family based genomic studies.Genet. Med.201921479881210.1038/s41436‑018‑0408‑7 30655598
    [Google Scholar]
  16. TuckerT. MarraM. FriedmanJ.M. Massively parallel sequencing: The next big thing in genetic medicine.Am. J. Hum. Genet.200985214215410.1016/j.ajhg.2009.06.022 19679224
    [Google Scholar]
  17. HeadSR KomoriHK LaMereSA Library construction for next-generation sequencing: Overviews and challenges.Biotechniques2014562617766, 68 passim.10.2144/000114133 24502796
    [Google Scholar]
  18. Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus Reference Guide.Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/RNA/illumina-stranded-total-rna-prep-reference-guide-1000000124514-02.pdf
  19. Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus Reference Guide.Available from:RNA/illumina-stranded-total- RNA-reference-1000000124514-01.pdf
  20. Illumina. TruSeq Stranded mRNA Reference Guide.Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseq-stranded-mrna-workflow/truseq-stranded-mrna-workflow-reference-1000000040498-00.pdf
  21. Illumina. TruSeq_ Small RNA Library Prep Reference Guide.Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqsmallrna/truseq-small-rna-library-prep-kit-reference-guide-15004197-02.pdf
  22. MardisE.R. Next-generation sequencing platforms.Annu. Rev. Anal. Chem.20136128730310.1146/annurev‑anchem‑062012‑092628 23560931
    [Google Scholar]
  23. van DijkE.L. AugerH. JaszczyszynY. ThermesC. Ten years of next-generation sequencing technology.Trends Genet.201430941842610.1016/j.tig.2014.07.001 25108476
    [Google Scholar]
  24. FordyceS.L. MogensenH.S. BørstingC. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™.Forensic Sci. Int. Genet.20151413214010.1016/j.fsigen.2014.09.020 25450784
    [Google Scholar]
  25. LevyS.E. MyersR.M. Advancements in next-generation sequencing.Annu. Rev. Genomics Hum. Genet.20161719511510.1146/annurev‑genom‑083115‑022413 27362342
    [Google Scholar]
  26. GoodwinS. McPhersonJ.D. McCombieW.R. Coming of age: Ten years of next-generation sequencing technologies.Nat. Rev. Genet.201617633335110.1038/nrg.2016.49 27184599
    [Google Scholar]
  27. BerkaJ ChenYJ LeamonJH Bead emulsion nucleic acid amplification. U.S. Patnet 20050079510A12005
  28. FroehlichT. Miniaturized, high-throughput nucleic acid analysis.U.S. Patnet 20100248237A12010
  29. Pyrosequencing.Available from: http://www.pyrosequencing.com/DynPage.aspx
  30. Roche Applied Science.Available from: http://www.roche-applied-science.com/
  31. MardisE.R. The impact of next-generation sequencing technology on genetics.Trends Genet.200824313314110.1016/j.tig.2007.12.007 18262675
    [Google Scholar]
  32. HuseS.M. HuberJ.A. MorrisonH.G. SoginM.L. WelchD. Accuracy and quality of massively parallel DNA pyrosequencing.Genome Biol.200787R14310.1186/gb‑2007‑8‑7‑r143 17659080
    [Google Scholar]
  33. The new GS junior sequencer.Available from: http://www.gsjunior.com/instrument-workflow.php
  34. Available form:http://www.tecan.com/platform/apps/product/index.asp?MenuID=3465&ID=7191&Menu=1&Item=33.52.2
  35. ThermoFisher. Ion Torrent Next-Generation Sequencing Instruments.Available from: https://www.thermofisher.com/us/en/home/life-science/sequencing/
  36. FlusbergB.A. WebsterD.R. LeeJ.H. Direct detection of DNA methylation during single-molecule, real-time sequencing.Nat. Methods20107646146510.1038/nmeth.1459 20453866
    [Google Scholar]
  37. GrabherrM.G. HaasB.J. YassourM. Full-length transcriptome assembly from RNA-Seq data without a reference genome.Nat. Biotechnol.201129764465210.1038/nbt.1883 21572440
    [Google Scholar]
  38. TrapnellC. RobertsA. GoffL. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nat. Protoc.20127356257810.1038/nprot.2012.016 22383036
    [Google Scholar]
  39. LiB. DeweyC.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.BMC Bioinformatics201112132310.1186/1471‑2105‑12‑323 21816040
    [Google Scholar]
  40. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  41. BahassiE.M. StambrookP.J. Next-generation sequencing technologies: Breaking the sound barrier of human genetics.Mutagenesis201429530331010.1093/mutage/geu031 25150023
    [Google Scholar]
  42. van DijkE.L. JaszczyszynY. NaquinD. ThermesC. The third revolution in sequencing technology.Trends Genet.201834666
    [Google Scholar]
  43. LogsdonG.A. VollgerM.R. EichlerE.E. Long-read human genome sequencing and its applications.Nat. Rev. Genet.2020211059761410.1038/s41576‑020‑0236‑x 32504078
    [Google Scholar]
  44. PacBio-Introducing the Sequel System: The Scalable Platform for SMRT Sequencing.Available from: https://www.pacb.com/blog/introducing-the-sequel-systemthe scalable-platform-for-smrt-sequencing/
  45. PacBio-Sequence with Confidence.Available from: https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Delivering-highly-accurate-long-reads to- drive-discovery-in-life-science.pdf
  46. PacBio RSII Sequencing System.Available from: https://www.mscience.com.au/upload/pages/pacbio/pacbio_rs_ii_brochure.pdf
  47. RhoadsA. AuK.F. PacBio sequencing and its applications.Genomics Proteomics Bioinformatics201513527828910.1016/j.gpb.2015.08.002 26542840
    [Google Scholar]
  48. PacBio.SMRT Sequencing.Available from: https://www.pacb.com/smr science/smrtsequencing/
    [Google Scholar]
  49. WengerA.M. PelusoP. RowellW.J. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.Nat. Biotechnol.201937101155116210.1038/s41587‑019‑0217‑9 31406327
    [Google Scholar]
  50. PACBIO PACBIOSequel IIe System Sequencing evolved.Available from: https://www.pacb.com/wpcontent/uploads/Product-Brochure-Sequel-IIe-System-Sequencing-evolved.pdf
    [Google Scholar]
  51. Software packages are compatible with PacBio_ data. 2012Available from: https://github.com/PacificBiosciences/DevNet/wiki/Compatible-Software#denovo%20accessed
  52. PacBio PacBio. Sequel II System v8.0 & SMRT Link v8.0 Technical Overview.Available from: https://www.pacb.com/wp-content/uploads/Sequel-II-System-v8.0-and-SMRT-Linkv8.0 Technical-Overview-Customer-Training.pdf
  53. BerbersB. SaltykovaA. Garcia-GraellsC. Combining short and long read sequencing to characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically modified Bacillus.Sci. Rep.2020101431010.1038/s41598‑020‑61158‑0 32152350
    [Google Scholar]
  54. KarstS.M. ZielsR.M. KirkegaardR.H. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing.Nat. Methods202118216516910.1038/s41592‑020‑01041‑y 33432244
    [Google Scholar]
  55. MigaK.H. KorenS. RhieA. Telomere-to-telomere assembly of a complete human X chromosome.bioRxiv2019201973592810.1101/735928
    [Google Scholar]
  56. PayneA. HolmesN. RakyanV. LooseM. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.Bioinformatics201935132193219810.1093/bioinformatics/bty841 30462145
    [Google Scholar]
  57. ClarkeJ. WuH.C. JayasingheL. PatelA. ReidS. BayleyH. Continuous base identification for single-molecule nanopore DNA sequencing.Nat. Nanotechnol.20094426527010.1038/nnano.2009.12 19350039
    [Google Scholar]
  58. Nanopore. Nanopore Media Resources.Available from: https://nanoporetech.com/aboutus/
  59. ShafinK. PesoutT. Lorig-RoachR. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes.Nat. Biotechnol.20203891044105310.1038/s41587‑020‑0503‑6 32686750
    [Google Scholar]
  60. IpC.L.C. LooseM. TysonJ.R. MinION analysis and reference consortium: Phase 1 data release and analysis.F1000 Res.20154107510.12688/f1000research.7201.1 26834992
    [Google Scholar]
  61. De SantisD. TruongL. MartinezP. D’OrsognaL. Rapid high‐resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation.HLA202096214116210.1111/tan.13901 32274854
    [Google Scholar]
  62. MosbrugerT.L. DinouA. DukeJ.L. Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing.Hum. Immunol.202081841342210.1016/j.humimm.2020.06.004 32595056
    [Google Scholar]
  63. JainM. OlsenH.E. PatenB. AkesonM. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community.Genome Biol.201617123910.1186/s13059‑016‑1103‑0 27887629
    [Google Scholar]
  64. BarzonL. LavezzoE. MilitelloV. ToppoS. PalùG. Applications of next-generation sequencing technologies to diagnostic virology.Int. J. Mol. Sci.201112117861788410.3390/ijms12117861 22174638
    [Google Scholar]
  65. ZhangJ. ChiodiniR. BadrA. ZhangG. The impact of next-generation sequencing on genomics.J. Genet. Genomics20113839510910.1016/j.jgg.2011.02.003
    [Google Scholar]
  66. OikonomopoulosS. WangY.C. DjambazianH. BadescuD. RagoussisJ. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.Sci. Rep.2016613160210.1038/srep31602 27554526
    [Google Scholar]
  67. ByrneA. BeaudinA.E. OlsenH.E. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells.Nat. Commun.2017811602710.1038/ncomms16027 28722025
    [Google Scholar]
  68. KovakaS. FanY. NiB. TimpW. SchatzM.C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UN-CALLED.Nat. Biotechnol.2020
    [Google Scholar]
  69. QuickJ. LomanN.J. DuraffourS. Real-time, portable genome sequencing for Ebola surveillance.Nature2016530758922823210.1038/nature16996 26840485
    [Google Scholar]
  70. McCombieW.R. McPhersonJ.D. MardisE.R. Next-generation sequencing technologies.Cold Spring Harb. Perspect. Med.2019911a03679810.1101/cshperspect.a036798 30478097
    [Google Scholar]
  71. Van NesteC. VandewoestyneM. Van CriekingeW. DeforceD. Van NieuwerburghF. My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing.Forensic Sci. Int. Genet.201491810.1016/j.fsigen.2013.10.012 24528572
    [Google Scholar]
  72. YamadaT. IwaiT. TakahashiG. Utility of KRAS mutation detection using circulating cell‐free DNA from patients with colorectal cancer.Cancer Sci.2016107793694310.1111/cas.12959 27116474
    [Google Scholar]
  73. GuoK. ZhangZ. HanL. Detection of epidermal growth factor receptor mutation in plasma as a biomarker in Chinese patients with early-stage non-small cell lung cancer.OncoTargets Ther.201583289329610.2147/OTT.S94297 26609241
    [Google Scholar]
  74. StutzW.E. BolnickD.I. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.PLoS One201497e10058710.1371/journal.pone.0100587 25036866
    [Google Scholar]
  75. HofmanP. Liquid biopsy for early detection of lung cancer.Curr. Opin. Oncol.2017291737810.1097/CCO.0000000000000343 27906860
    [Google Scholar]
  76. Fernandez-CuestaL. PerdomoS. AvogbeP.H. Identification of circulating tumor DNA for the early detection of small-cell lung cancer.EBioMedicine20161011712310.1016/j.ebiom.2016.06.032 27377626
    [Google Scholar]
  77. BettegowdaC. SausenM. LearyR.J. Detection of circulating tumor DNA in early- and late-stage human malignancies.Sci. Transl. Med.20146224224ra2410.1126/scitranslmed.3007094 24553385
    [Google Scholar]
  78. WeimerE.T. MontgomeryM. PetraroiaR. CrawfordJ. SchmitzJ.L. Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing.J. Mol. Diagn.201618566867510.1016/j.jmoldx.2016.03.009 27376474
    [Google Scholar]
  79. AiB. LiuH. HuangY. PengP. Circulating cell-free DNA as a prognostic and predictive biomarker in non-small cell lung cancer.Oncotarget2016728445834459510.18632/oncotarget.10069 27323821
    [Google Scholar]
  80. ChanK.C.A. JiangP. ZhengY.W.L. Cancer genome scanning in plasma: Detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing.Clin. Chem.201359121122410.1373/clinchem.2012.196014 23065472
    [Google Scholar]
  81. AnvarS.Y. van der GaagK.J. van der HeijdenJ.W.F. TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes.Bioinformatics201430121651165910.1093/bioinformatics/btu068 24532718
    [Google Scholar]
  82. WarshauerD.H. LinD. HariK. STRait Razor: A length-based forensic STR allele-calling tool for use with second generation sequencing data.Forensic Sci. Int. Genet.20137440941710.1016/j.fsigen.2013.04.005 23768312
    [Google Scholar]
  83. ShendureJ. BalasubramanianS. ChurchG.M. DNA sequencing at 40: Past, present and future.Nature2017550767634535310.1038/nature24286 29019985
    [Google Scholar]
  84. IrwinJ. JustR. ScheibleM. LoreilleO. Assessing the potential of next generation sequencing technologies for missing persons identification efforts.Forensic Sci. International. Genet. Suppl. Ser.201131e447e448a10.1016/j.fsigss.2011.09.085
    [Google Scholar]
  85. GonzálezB. MercadoM. SalasO. Biological evidence analysis in cases of sexual assault.In: Biochemical Analysis Tools.IntechOpen2020
    [Google Scholar]
  86. TridicoS.R. MurrayD.C. AddisonJ. KirkbrideK.P. BunceM. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science.Investig. Genet.2014511610.1186/s13323‑014‑0016‑5 25516795
    [Google Scholar]
  87. YaoY. YangQ. ShaoC. Null alleles and sequence variations at primer binding sites of STR loci within multiplex typing systems.Leg. Med.201830101310.1016/j.legalmed.2017.10.007 29125964
    [Google Scholar]
  88. ChurchillJ.D. StoljarovaM. KingJ.L. BudowleB. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples.Int. J. Legal Med.201813251263127210.1007/s00414‑018‑1799‑3 29468381
    [Google Scholar]
  89. NaueA. HoefslootH.C.J. KloostermanA.D. VerschureP.J. Forensic DNA methylation profiling from minimal traces: How low can we go?Forensic Sci. Int. Genet.201833172310.1016/j.fsigen.2017.11.004
    [Google Scholar]
  90. YangY. XieB. YanJ. Application of next-generation sequencing technology in forensic science.Genomics Proteomics Bioinformatics201412519019710.1016/j.gpb.2014.09.001
    [Google Scholar]
  91. BørstingC. MorlingN. Next generation sequencing and its applications in forensic genetics.Forensic Sci. Int. Genet.201518788910.1016/j.fsigen.2015.02.002
    [Google Scholar]
  92. GroßT.E. Development of novel SNP panels for the application of massively parallel sequencing to forensic genetics.Doctoral dissertation, Dissertation, Köln, Universität zu Köln, 20172017
    [Google Scholar]
  93. LiR. LiY. FangX. SNP detection for massively parallel whole-genome resequencing.Genome Res.20091961124113210.1101/gr.088013.108 19420381
    [Google Scholar]
  94. GrossT.E. FleckhausJ. SchneiderP.M. Progress in the implementation of massively parallel sequencing for forensic genetics: results of a European-wide survey among professional users.Int. J. Legal Med.202113541425143210.1007/s00414‑021‑02569‑0 33847802
    [Google Scholar]
  95. PattersonN. PetersenD.C. van der RossR.E. Genetic structure of a unique admixed population: implications for medical research.Hum. Mol. Genet.201019341141910.1093/hmg/ddp505 19892779
    [Google Scholar]
  96. LuX. WangL. LinX. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension.Hum. Mol. Genet.201524386587410.1093/hmg/ddu478 25249183
    [Google Scholar]
  97. ElwickK.E. Enhanced sample preparation and data interpretation strategies using massively parallel sequencing for human identification in missing persons’ and DVI Casework.Doctoral dissertation, Sam Houston State University2018
    [Google Scholar]
  98. HollardC. KeyserC. DelabardeT. Case report: on the use of the HID-Ion AmpliSeq™ Ancestry Panel in a real forensic case.Int. J. Legal Med.2017131235135810.1007/s00414‑016‑1425‑1 27470319
    [Google Scholar]
  99. KulskiJ.K. Next-generation sequencing an overview of the history, tools, and “Omic” applications.In: Next Gene Seq.InTech 201610.5772/61964
    [Google Scholar]
  100. MillerA.D. GoodR.T. ColemanR.A. LancasterM.L. WeeksA.R. Microsatellite loci and the complete mitochondrial DNA sequence characterized through next generation sequencing and de novo genome assembly for the critically endangered orange-bellied parrot, Neophema chrysogaster.Mol. Biol. Rep.2013401354210.1007/s11033‑012‑1950‑z 23114913
    [Google Scholar]
  101. SatotT.B.T. Cryptic Species Within Anopheles Barbirostris van der Wulp, 1884 Inferred from Nuclear and Mitochondrial Gene Sequence Variation.United KingdomThe University of Liverpool2001
    [Google Scholar]
  102. SmithD.R. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?Brief. Funct. Genomics20161514754 26117139
    [Google Scholar]
  103. ZhangA.M. BandeltH.J. JiaX. Is mitochondrial tRNA(phe) variant m.593T>C a synergistically pathogenic mutation in Chinese LHON families with m.11778G>A?PLoS One2011610e2651110.1371/journal.pone.0026511 22039503
    [Google Scholar]
  104. PalaiokostasC. BekaertM. KhanM.G.Q. Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) Using RAD sequencing.PLoS One201387e6838910.1371/journal.pone.0068389 23874606
    [Google Scholar]
  105. CihlarJ.C. AmoryC. LagacéR. RothC. ParsonW. BudowleB. Developmental validation of a MPS workflow with a PCR-based short am-plicon whole mitochondrial genome panel.Genes20201111134510.3390/genes11111345 33202822
    [Google Scholar]
  106. MaK. ZhaoX. LiH. Massive parallel sequencing of mitochondrial DNA genomes from mother-child pairs using the ion torrent personal genome machine (PGM).Forensic Sci. Int. Genet.201832889310.1016/j.fsigen.2017.11.001 29128545
    [Google Scholar]
  107. GouveiaN. BritoP. BogasV. Massively parallel sequencing of forensic samples using precision ID mtDNA whole genome panel on the ion S5™ system.Forensic Sci. International. Genet. Suppl. Ser.20176e167e16810.1016/j.fsigss.2017.09.057
    [Google Scholar]
  108. GallimoreJ.M. McElhoeJ.A. HollandM.M. Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach.Forensic Sci. Int. Genet.20183271710.1016/j.fsigen.2017.09.013 29024924
    [Google Scholar]
  109. RoyD. TomoS. PurohitP. SetiaP. Microbiome in death and beyond current vistas and future trends.Front. Ecol. Evol.2021963039710.3389/fevo.2021.630397
    [Google Scholar]
  110. DashH.R. DasS. Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver.Appl. Microbiol. Biotechnol.2020104229497951210.1007/s00253‑020‑10922‑3 33001249
    [Google Scholar]
  111. GoelN. KarirP. GargV.K. Role of DNA methylation in human age prediction.Mech. Ageing Dev.2017166334110.1016/j.mad.2017.08.012 28844970
    [Google Scholar]
  112. CaiN. ChangS. LiY. Molecular signatures of major depression.Curr. Biol.20152591146115610.1016/j.cub.2015.03.008 25913401
    [Google Scholar]
  113. De SchutterK. LinY.C. TielsP. Genome sequence of the recombinant protein production host Pichia pastoris.Nat. Biotechnol.200927656156610.1038/nbt.1544 19465926
    [Google Scholar]
  114. ZaaijerS GordonA SpeyerD PicconeR GroenS C ErlichY Rapid re-identification of human samples using portable DNA sequencing.elife 20176e27798
    [Google Scholar]
  115. ScudderN. McNevinD. KeltyS.F. WalshS.J. RobertsonJ. Forensic DNA phenotyping: Developing a model privacy impact assessment.Forensic Sci. Int. Genet.20183422223010.1016/j.fsigen.2018.03.005 29554642
    [Google Scholar]
  116. de KnijffP. From next generation sequencing to now generation sequencing in forensics.Forensic Sci. Int. Genet.20193817518010.1016/j.fsigen.2018.10.017 30419516
    [Google Scholar]
  117. ZascavageR.R. ShewaleS.J. PlanzJ.V. Deep-sequencing technologies and potential applications in forensic DNA testing.Forensic Sci. Rev.2013251-279105
    [Google Scholar]
  118. GlynnC.L. Bridging disciplines to form a new one: The emergence of forensic genetic genealogy.Genes2022138138110.3390/genes13081381 36011291
    [Google Scholar]
  119. WuY. ChenH. ChenZ. NieL. LiuB. HeN. Multifunctional device for nucleic acid extraction based on magnetic separation and its co-working with liquid handling system for high throughput sample preparation.J. Nanosci. Nanotechnol.20161676919692410.1166/jnn.2016.12583
    [Google Scholar]
/content/journals/cfs/10.2174/0126664844274727231218061037
Loading
/content/journals/cfs/10.2174/0126664844274727231218061037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test