Skip to content
2000
image of Synthetic Overview of FDA-Approved Dipeptidyl Peptidase-4 Inhibitors (DPP-4I)

Abstract

Diabetes mellitus continues to be a major health concern worldwide, contributing significantly to annual mortality and morbidity. Among all types of diabetes mellitus, type 2 diabetes mellitus is a pervasive health condition that affects people worldwide. Recently, various classes of drugs have been proposed for the management of T2DM. Dipeptidyl peptidase-4 inhibitors or gliptins are a class of oral medications for T2DM that target the incretin hormones GLP-1 and GIP. By increasing insulin production and decreasing glucagon release, DPP-4 inhibitors maintain glucose homeostasis. DPP-4 inhibitors provide a number of advantages over conventional antidiabetic medications, including a reduced risk of hypoglycaemic episodes, an extensive safety profile, and no weight gain. Consequently, gliptins have been a focus of study. This paper provides an overview of diabetes mellitus, focusing on its types, prevalence, and therapeutic approaches, particularly in the context of type 2 diabetes mellitus (T2DM). The synthesis of key DPP-4 inhibitors, including sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin is discussed, showcasing various synthetic strategies employed by different researchers to produce these drugs.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080339904250219061503
2025-02-25
2025-05-19
Loading full text...

Full text loading...

References

  1. Chawla G. Pradhan T. Gupta O. An insight into the combat strategies for the treatment of type 2 diabetes mellitus. Mini Rev. Med. Chem. 2024 24 4 403 430 10.2174/1389557523666230517113936 37198989
    [Google Scholar]
  2. Rahman M.S. Hossain K.S. Das S. Kundu S. Adegoke E.O. Rahman M.A. Hannan M.A. Uddin M.J. Pang M.G. Role of insulin in health and disease: An update. Int. J. Mol. Sci. 2021 22 12 6403 10.3390/ijms22126403 34203830
    [Google Scholar]
  3. Alam S. Hasan M.K. Neaz S. Hussain N. Hossain M.F. Rahman T. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology 2021 2 2 36 50 10.3390/diabetology2020004
    [Google Scholar]
  4. Kumar A. Mazumder R. Rani A. Pandey P. Khurana N. Novel approaches for the management of type 2 diabetes mellitus: An update. Curr. Diabetes Rev. 2024 20 4 e051023221768 10.2174/0115733998261903230921102620 37888820
    [Google Scholar]
  5. Ferreira M.K.L. Sweet tears and bitter pills: The politics of health among the Yuroks of Northern California. Berkeley with the University of California, San Francisco ProQuest Dissertations & Thesis University of California 1996 9723498
    [Google Scholar]
  6. Katsarou A. Gudbjörnsdottir S. Rawshani A. Dabelea D. Bonifacio E. Anderson B.J. Jacobsen L.M. Schatz D.A. Lernmark Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017 3 1 17016 10.1038/nrdp.2017.16 28358037
    [Google Scholar]
  7. Gollapalli M. Alansari A. Alkhorasani H. Alsubaii M. Sakloua R. Alzahrani R. Hariri A.M. Alfares M. AlKhafaji D. Argan A.R. Albaker W. A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM. Comput. Biol. Med. 2022 147 105757 10.1016/j.compbiomed.2022.105757 35777087
    [Google Scholar]
  8. Naidu S. Late stage complications of diabetes and insulin resistance. J. Diabetes. Metab. 2011 2 9 1000167 10.4172/2155‑6156.1000167
    [Google Scholar]
  9. Rachdaoui N. Insulin: The friend and the foe in the development of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 5 1770 10.3390/ijms21051770 32150819
    [Google Scholar]
  10. Faselis C. Katsimardou A. Imprialos K. Deligkaris P. Kallistratos M. Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 2020 18 2 117 124 10.2174/1570161117666190502103733 31057114
    [Google Scholar]
  11. Poirier C. Desgagné V. Guérin R. Bouchard L. MicroRNAs in pregnancy and gestational diabetes mellitus: Emerging role in maternal metabolic regulation. Curr. Diab. Rep. 2017 17 5 35 10.1007/s11892‑017‑0856‑5 28378294
    [Google Scholar]
  12. Florentin M. Kostapanos M.S. Papazafiropoulou A.K. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World J. Diabetes 2022 13 2 85 96 10.4239/wjd.v13.i2.85 35211246
    [Google Scholar]
  13. Wu Y. Ding Y. Tanaka Y. Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014 11 11 1185 1200 10.7150/ijms.10001 25249787
    [Google Scholar]
  14. Prajapati A. Rana D. Rangra S. Jindal A.B. Benival D. Current status of therapeutic peptides for the management of diabetes mellitus. Int. J. Pept. Res. Ther. 2024 30 2 13 10.1007/s10989‑024‑10590‑1
    [Google Scholar]
  15. Huysman F. Mathieu C. Diabetes and peripheral vascular disease. Acta Chir. Belg. 2009 109 5 587 594 10.1080/00015458.2009.11680493 19994800
    [Google Scholar]
  16. Sagandira C.R. Khasipo A.Z. Sagandira M.B. Watts P. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron 2021 96 132378 10.1016/j.tet.2021.132378
    [Google Scholar]
  17. Kumar A. Gangwar R. Zargar A.A. Kumar R. Sharma A. Prevalence of diabetes in india: A review of idf diabetes atlas. Curr. Diab. Rev. 2024 20 1 105 114 10.2174/1573399819666230413094200
    [Google Scholar]
  18. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  19. Saini K. Sharma S. Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front. Mol. Biosci. 2023 10 1130625 10.3389/fmolb.2023.1130625 37287751
    [Google Scholar]
  20. Seino S. Zhang C.L. Shibasaki T. Sulfonylurea action re‐revisited. J. Diabetes Investig. 2010 1 1-2 37 39 10.1111/j.2040‑1124.2010.00014.x 24843406
    [Google Scholar]
  21. Wang G.S. Hoyte C. Review of biguanide (metformin) toxicity. J. Intensive Care Med. 2019 34 11-12 863 876 10.1177/0885066618793385 30126348
    [Google Scholar]
  22. Sfairopoulos D. Liatis S. Tigas S. Liberopoulos E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones 2018 17 3 333 350 10.1007/s42000‑018‑0038‑0 29949126
    [Google Scholar]
  23. Deacon C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020 16 11 642 653 10.1038/s41574‑020‑0399‑8 32929230
    [Google Scholar]
  24. Takada I. Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-present)." Exp. Opinion Therap. Pat. 2020 1 2020 1 13 10.1080/13543776.2020.1703952
    [Google Scholar]
  25. Dabhi A.S. Bhatt N.R. Shah M.J. Voglibose: An alpha glucosidase inhibitor. J. Clin. Diagn. Res. 2013 7 12 3023 3027 10.7860/JCDR/2013/6373.3838 24551718
    [Google Scholar]
  26. Peacock S.C. Lovshin J.A. Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) in the perioperative setting. Can. J. Anaesth. 2018 65 2 143 147 10.1007/s12630‑017‑1019‑5 29159514
    [Google Scholar]
  27. Blicklé J.F. Meglitinide analogues: A review of clinical data focused on recent trials. Diabetes Metab. 2006 32 2 113 120 10.1016/S1262‑3636(07)70257‑4 16735959
    [Google Scholar]
  28. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev. 2002 18 S2 Suppl. 2 S10 S15 10.1002/dmrr.249 11921433
    [Google Scholar]
  29. Peñalver M.J.J. Timón M.I. Collantes S.C. Gómez C.F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016 7 17 354 395 10.4239/wjd.v7.i17.354 27660695
    [Google Scholar]
  30. Green B. Flatt P. Bailey C. Gliptins: DPP‐4 inhibitors to treat type 2 diabetes. Future Prescr. 2007 8 3 6 12 10.1002/fps.33
    [Google Scholar]
  31. Patel B.D. Ghate M.D. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur. J. Med. Chem. 2014 74 574 605 10.1016/j.ejmech.2013.12.038 24531198
    [Google Scholar]
  32. Thornberry N.A. Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009 23 4 479 486 10.1016/j.beem.2009.03.004 19748065
    [Google Scholar]
  33. Kushwaha R. Haq W. Katti S. Discovery of 17 gliptins in 17-years of research for the treatment of type 2 diabetes: A synthetic overview. Chem. Biol. Interact. 2014 4 137 162
    [Google Scholar]
  34. Gilbert M.P. Pratley R.E. GLP-1 analogs and dpp-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front. Endocrinol. 2020 11 178 10.3389/fendo.2020.00178 32308645
    [Google Scholar]
  35. Ambhore J.P. Laddha P.R. Nandedkar A. Ajmire P.V. Chumbhale D.S. Navghare A.B. Kuchake V.G. Chaudhari P.J. Adhao V.S. Medicinal chemistry of non-peptidomimetic dipeptidyl peptidase IV (DPP IV) inhibitors for treatment of Type-2 diabetes mellitus: Insights on recent development. J. Mol. Struct. 2023 1284 135249 10.1016/j.molstruc.2023.135249
    [Google Scholar]
  36. Scheen A.J. The safety of gliptins : Updated data in 2018. Expert Opin. Drug Saf. 2018 17 4 387 405 10.1080/14740338.2018.1444027 29468916
    [Google Scholar]
  37. Scott L.J. Sitagliptin: A review in type 2 diabetes. Drugs 2017 77 2 209 224 10.1007/s40265‑016‑0686‑9 28078647
    [Google Scholar]
  38. He Y.L. Clinical pharmacokinetics and pharmacodynamics of vildagliptin. Clin. Pharmacokinet. 2012 51 3 147 162 10.2165/11598080‑000000000‑00000 22339447
    [Google Scholar]
  39. Tahrani A.A. Piya M.K. Barnett A.H. Saxagliptin: A new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Adv. Ther. 2009 26 3 249 262 10.1007/s12325‑009‑0014‑9 19330494
    [Google Scholar]
  40. Scott L.J. Linagliptin. Drugs 2011 71 5 611 624 10.2165/11207400‑000000000‑00000 21443284
    [Google Scholar]
  41. Keating G.M. Alogliptin: A review of its use in patients with type 2 diabetes mellitus. Drugs 2015 75 7 777 796 10.1007/s40265‑015‑0385‑y 25855222
    [Google Scholar]
  42. Tieger E. Kiss V. Pokol G. Finta Z. Dušek M. Rohlíček J. Skořepová E. Brázda P. Studies on the crystal structure and arrangement of water in sitagliptin l -tartrate hydrates. CrystEngComm 2016 18 21 3819 3831 10.1039/C6CE00322B
    [Google Scholar]
  43. Gao H. Yu J. Ge C. Jiang Q. Practical asymmetric synthesis of sitagliptin phosphate monohydrate. Molecules 2018 23 6 1440 10.3390/molecules23061440 29899310
    [Google Scholar]
  44. Biftu T. Feng D. Qian X. Liang G.B. Kieczykowski G. Eiermann G. He H. Leiting B. Lyons K. Petrov A. Roy S.R. Zhang B. Scapin G. Patel S. Gao Y.D. Singh S. Wu J. Zhang X. Thornberry N.A. Weber A.E. (3R)-4-[(3R)-3-Amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 2007 17 1 49 52 10.1016/j.bmcl.2006.09.099 17055272
    [Google Scholar]
  45. Hansen K.B. Hsiao Y. Xu F. Rivera N. Clausen A. Kubryk M. Krska S. Rosner T. Simmons B. Balsells J. Ikemoto N. Sun Y. Spindler F. Malan C. Grabowski E.J.J. Armstrong J.D. Iii Highly efficient asymmetric synthesis of sitagliptin. J. Am. Chem. Soc. 2009 131 25 8798 8804 10.1021/ja902462q 19507853
    [Google Scholar]
  46. Balsells J. Hsiao Y. Hansen K.B. Xu F. Ikemoto N. Clausen A. Armstrong J.D. III Synthesis of Sitagliptin, the Active Ingredient in Januvia® and Janumet. Green Chem. Pharm. Ind. New York John Wiley & Sons, Ltd 2010 101 126 10.1002/9783527629688.ch5
    [Google Scholar]
  47. Ramachandra R.D. Narayanrao K.R. Maruti G. Atul K.S. Atul, Process for the preparation of sitagliptin and intermediate compounds. WO2014023930AI, 2014
  48. Oh D. Lee J. Yang S. Jung S.H. Kim M. Lee G. Park H. Enantioselective Synthesis of ( R )-Sitagliptin via Phase-Transfer Catalytic aza-Michael Addition. ACS Omega 2024 9 13 15328 15338 10.1021/acsomega.3c10080 38585066
    [Google Scholar]
  49. Polyakova E.B. Sabirzyanov D.R. Prozorova N.A. Foteeva A.V. Physicochemical properties and methods of analysis of vildagliptin (review). Pharm. Chem. J. 2022 56 1 110 117 10.1007/s11094‑022‑02606‑1 35370321
    [Google Scholar]
  50. Rathod V. Saini P. Kaur R. Marimganti S. Ranbhan K.J. A critical account of synthetic approaches toward vildagliptin, an antidiabetic drug. Org. Process Res. Dev. 2023 27 11 1880 1899 10.1021/acs.oprd.3c00048
    [Google Scholar]
  51. Alcántara C.M. Alcántara A.R. Biocatalyzed synthesis of antidiabetic drugs: A review. Biocatal. Biotransform. 2018 36 1 12 46 10.1080/10242422.2017.1323887
    [Google Scholar]
  52. Villhauer E.B. Brinkman J.A. Naderi G.B. Burkey B.F. Dunning B.E. Prasad K. Mangold B.L. Russell M.E. Hughes T.E. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: A potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. 2003 46 13 2774 2789 10.1021/jm030091l 12801240
    [Google Scholar]
  53. Singh S.K. Manne N. Pal M. Synthesis of ( S )-1-(2-chloroacetyl)pyrrolidine-2-carbonitrile: A key intermediate for dipeptidyl peptidase IV inhibitors. Beilstein J. Org. Chem. 2008 4 20 10.3762/bjoc.4.20 18941490
    [Google Scholar]
  54. A kind of preparation method of vildagliptin. CN105712920A 2016
  55. Xue Z.K. Chen S.X. Lutao X.W. Efficient synthesis of vildagliptin by Xue. CN106966947A, 2017
  56. Hu X. Li Y. Zhang L. Wang J. Xiang P. Pan J. Jiang L. An efficient synthesis of Vildagliptin intermediates. Indian J. Chem. 2021 60 2021 1128 1131 10.56042/ijcb.v60i8.30478
    [Google Scholar]
  57. Boulton D.W. Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin. Pharmacokinet. 2017 56 1 11 24 10.1007/s40262‑016‑0421‑4 27282159
    [Google Scholar]
  58. Thareja S. Aggarwal S. Malla P. Haksar D. Bhardwaj R.T. Kumar M. Saxagliptin: A new drug for the treatment of type 2 diabetes. Mini Rev. Med. Chem. 2010 10 8 759 765 10.2174/138955710791572424 20402634
    [Google Scholar]
  59. Cernea S. Cahn A. Raz I. Saxagliptin for the treatment of diabetes - a focus on safety. Expert Opin. Drug Saf. 2016 15 5 697 707 10.1517/14740338.2016.1159675 26923222
    [Google Scholar]
  60. Augeri D.J. Robl J.A. Betebenner D.A. Magnin D.R. Khanna A. Robertson J.G. Wang A. Simpkins L.M. Taunk P. Huang Q. Han S.P. Offei A.B. Cap M. Xin L. Tao L. Tozzo E. Welzel G.E. Egan D.M. Marcinkeviciene J. Chang S.Y. Biller S.A. Kirby M.S. Parker R.A. Hamann L.G. Discovery and preclinical profile of Saxagliptin (BMS-477118): A highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2005 48 15 5025 5037 10.1021/jm050261p 16033281
    [Google Scholar]
  61. Savage S.A. Jones G.S. Kolotuchin S. Ramrattan S.A. Vu T. Waltermire R.E. Preparation of Saxagliptin, a Novel DPP-IV Inhibitor. Org. Process Res. Dev. 2009 13 6 1169 1176 10.1021/op900226j
    [Google Scholar]
  62. Mody G.U. Retlich S. Friedrich C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin. Pharmacokinet. 2012 51 7 411 427 10.2165/11630900‑000000000‑00000 22568694
    [Google Scholar]
  63. McKeage K. Linagliptin: An update of its use in patients with type 2 diabetes mellitus. Drugs 2014 74 16 1927 1946 10.1007/s40265‑014‑0308‑3 25297911
    [Google Scholar]
  64. Ding H.X. Liu K.K.C. Sakya S.M. Flick A.C. O’Donnell C.J. Synthetic approaches to the 2011 new drugs. Bioorg. Med. Chem. 2013 21 11 2795 2825 10.1016/j.bmc.2013.02.061 23623674
    [Google Scholar]
  65. Eckhardt M. Langkopf E. Mark M. Tadayyon M. Thomas L. Nar H. Pfrengle W. Guth B. Lotz R. Sieger P. Fuchs H. Himmelsbach F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2007 50 26 6450 6453 10.1021/jm701280z 18052023
    [Google Scholar]
  66. Huang Y. He X. Wu T. Zhang F. Synthesis and Characterization of Process-Related Impurities of Antidiabetic Drug Linagliptin 2016 Molecules 21(8): 1041. 10.3390/molecules21081041 27983593
    [Google Scholar]
  67. Divis Laboratories Limited, Divis’s approach towards Linagliptin. IN201302189, 2013
  68. Agrawal R. Bahare S.R. Jain P. Dikshit N.S. Ganguly S. Novel serine protease dipeptidyl peptidase IV inhibitor: Alogliptin. Mini Rev. Med. Chem. 2012 12 13 1345 1358 10.2174/138955712804586684 22512582
    [Google Scholar]
  69. Trailokya AA Zargar AH Tiwaskar M Kale S Shirsat A Commentary on cardiovascular safety of DPP4Is: Focus on Alogliptin. Indian J. Pharm and Pharmacol 2023 10 1 50 53 10.18231/j.ijpp.2023.013.
    [Google Scholar]
  70. Feng J Zhang Z Wallace MB Discovery of alogliptin: A potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase iv. J Med Chem 2008 51 14 4357 7 10.1021/jm8006799 17441705
    [Google Scholar]
  71. Jeanneret JL. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J Med Chem 2014 57 6 2197 212 10.1021/jm400658e 24099035
    [Google Scholar]
  72. Huan Y. Jiang Q. Liu J. Shen Z. Establishment of a dipeptidyl peptidases (DPP) 8/9 expressing cell model for evaluating the selectivity of DPP4 inhibitors. J. Pharmacol. Toxicol. Methods 2015 71 8 12 10.1016/j.vascn.2014.11.002 25464020
    [Google Scholar]
  73. Vasen H.F.A. Möslein G. Alonso A. Aretz S. Bernstein I. Bertario L. Blanco I. Bülow S. Burn J. Capella G. Colas C. Engel C. Frayling I. Friedl W. Hes F.J. Hodgson S. Järvinen H. Mecklin J.P. Møller P. Myrhøi T. Nagengast F.M. Parc Y. Phillips R. Clark S.K. Leon d.M.P. Sinisalo R.L. Sampson J.R. Stormorken A. Tejpar S. Thomas H.J.W. Wijnen J. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut 2008 57 5 704 713 10.1136/gut.2007.136127 18194984
    [Google Scholar]
  74. Marom E. Mizhiritskii M. Rubnov S. Patent and Trademark Office. Washington, DC: U.S. U.S. Patent No. 8,841,447, 2014
  75. Jiatong Z. Hanyue Y. Chao C.X. D. Simei Z. Synthesis method of Alogliptin benzoate. CN104193726A, 2014
  76. Yamada M. Hirano S. Tsuruoka R. Takasuga M. Uno K. Yamaguchi K. Yamano M. Development and scale-up of an asymmetric synthesis process for alogliptin. Org. Process Res. Dev. 2021 25 2 327 336 10.1021/acs.oprd.0c00544
    [Google Scholar]
/content/journals/cei/10.2174/0115734080339904250219061503
Loading
/content/journals/cei/10.2174/0115734080339904250219061503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test