Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies distinct mechanisms of action. Increasingly, the use of phytoconstituents alongside chemotherapeutic agents has shown promise in enhancing treatment outcomes. This combination therapy acts on key signaling pathways such as Hedgehog, Notch, Wnt/β- catenin, tyrosine kinases, and phosphatidylinositol 3-kinase (PI3K), which play critical roles in cellular proliferation, apoptosis, angiogenesis, differentiation, invasion, and metastasis. This review explores various signaling pathways involved in breast cancer progression, discusses conventional treatment methods like surgery, adjuvant radiotherapy, hormonal therapy, and chemotherapy, and highlights emerging nanocarrier-based drug delivery systems (DDS). Liposomes, dendrimers, exosomes, polymeric micelles, and nanoparticles (organic, inorganic, gold, magnetic, carbon-based, and quantum dots) are examined as innovative strategies for enhancing drug delivery efficacy. Furthermore, stimuli-responsive DDSs, including reactive oxygen species (ROS), enzyme-, and hypoxia-responsive systems, are presented as cutting-edge approaches to overcoming drug resistance. Special emphasis is placed on the co-delivery of chemotherapeutic agents and plant-based compounds, particularly in estrogen receptor-positive (ER+) breast cancer. This review aims to provide a comprehensive overview of novel combinatorial strategies and advanced nanocarriers for the effective and targeted treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501352081241211090911
2025-01-08
2025-05-04
Loading full text...

Full text loading...

References

  1. GiaquintoA.N. MillerK.D. TossasK.Y. WinnR.A. JemalA. SiegelR.L. Cancer statistics for African American/black people 2022.CA Cancer J. Clin.202272320222910.3322/caac.2171835143040
    [Google Scholar]
  2. IsraelB. TilghmanS. Parker-LemieuxK. Payton-StewartF. Phytochemicals: Current strategies for treating breast cancer (Review).Oncol. Lett.20181557471747810.3892/ol.2018.830429755596
    [Google Scholar]
  3. SathishkumarK. SankarapillaiJ. MathewA. NairR.A. GanganeN. KhuraijamS. BarmonD. PandyaS. MajumdarG. DeshmaneV. ZomawiaE. BhutiaT.W. JerangK. GeorgeP.S. MaliyeS. LaishramR. DasG. ShahA. DebbarmaS. KoyandeS. PachuauL. SherpaA. JongkeyG. ChaturvediM. DasP. SanthappanS. MathurP. Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme.Cancer2024130101816182510.1002/cncr.3518838183671
    [Google Scholar]
  4. LiY. LuA. LongM. CuiL. ChenZ. ZhuL. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts.Acta Biomater.20198333434810.1016/j.actbio.2018.10.02930366135
    [Google Scholar]
  5. MeirellesL.E.F. SouzaM.V.F. CarobeliL.R. MorelliF. MariN.L. DamkeE. Shinobu MesquitaC.S. TeixeiraJ.J.V. ConsolaroM.E.L. SilvaV.R.S. Combination of conventional drugs with biocompounds derived from cinnamic acid: A promising option for breast cancer therapy.Biomedicines202311227510.3390/biomedicines1102027536830811
    [Google Scholar]
  6. ChatterjeeN. BivonaT.G. Polytherapy and targeted cancer drug resistance.Trends Cancer20195317018210.1016/j.trecan.2019.02.00330898264
    [Google Scholar]
  7. NagarajanD. McArdleS. Immune landscape of breast cancers.Biomedicines2018612010.3390/biomedicines601002029439457
    [Google Scholar]
  8. SharmaD. KumarS. NarasimhanB. Estrogen alpha receptor antagonists for the treatment of breast cancer: A review.Chem. Cent. J.201812110710.1186/s13065‑018‑0472‑830361894
    [Google Scholar]
  9. AlharbiK.S. AlmalkiW.H. MakeenH.A. AlbrattyM. MerayaA.M. NagraikR. SharmaA. KumarD. ChellappanD.K. SinghS.K. DuaK. GuptaG. Role of medicinal plant-derived nutraceuticals as a potential target for the treatment of breast cancer.J. Food Biochem.20224612e1438710.1111/jfbc.1438736121313
    [Google Scholar]
  10. ZengY.A. NusseR. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture.Cell Stem Cell20106656857710.1016/j.stem.2010.03.02020569694
    [Google Scholar]
  11. WangL. JinZ. MasterR.P. MaharjanC.K. CarelockM.E. ReccoppaT.B.A. KimM.C. KolbR. ZhangW. Breast cancer stem cells: Signaling pathways, cellular interactions, and therapeutic implications.Cancers (Basel)20221413328710.3390/cancers1413328735805056
    [Google Scholar]
  12. NewtonE.E. MuellerL.E. TreadwellS.M. MorrisC.A. MachadoH.L. Molecular targets of triple-negative breast cancer: where do we stand?Cancers (Basel)202214348210.3390/cancers1403048235158750
    [Google Scholar]
  13. Sales-DiasJ. FerreiraA. LamyM. DomeniciG. MonteiroS.M.S. PiresA. LemosA.R. KucheryavaK. NobreL.S. SousaP.M.F. BandeirasT.M. SilvaG. BarbasA. Development of antibodies against the notch ligand Delta-Like-1 by phage display with activity against breast cancer cells.N. Biotechnol.202164172610.1016/j.nbt.2021.05.00333992842
    [Google Scholar]
  14. SongK. FarzanehM. Signaling pathways governing breast cancer stem cells behavior.Stem Cell Res. Ther.202112124510.1186/s13287‑021‑02321‑w33863385
    [Google Scholar]
  15. Riobo-Del GaldoN. Lara MonteroÁ. WertheimerE. Role of Hedgehog signaling in breast cancer: Pathogenesis and therapeutics.Cells20198437510.3390/cells804037531027259
    [Google Scholar]
  16. HuntB.G. FoxL.H. DavisJ.C. JonesA. LuZ. WaltzS.E. An introduction and overview of RON receptor tyrosine kinase signaling.Genes (Basel)202314251710.3390/genes1402051736833444
    [Google Scholar]
  17. AlanaziI.O. KhanZ. Endocrine and cell surface receptor signaling in breast carcinogenesis.Breast Cancer and SurgeryIntech Open201810.5772/intechopen.74679
    [Google Scholar]
  18. CermaK. PiacentiniF. MoscettiL. BarboliniM. CaninoF. TornincasaA. CaggiaF. CerriS. MolinaroA. DominiciM. OmariniC. Targeting pi3k/akt/mtor pathway in breast cancer: From biology to clinical challenges.Biomedicines202311110910.3390/biomedicines1101010936672617
    [Google Scholar]
  19. YangS.X. PolleyE. LipkowitzS. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer.Cancer Treat. Rev.201645879610.1016/j.ctrv.2016.03.00426995633
    [Google Scholar]
  20. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  21. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  22. KuhlC.K. What the future holds for the screening, diagnosis, and treatment of breast cancer.Radiology.20233063e223338
    [Google Scholar]
  23. IacopettaD. CeramellaJ. BaldinoN. SinicropiM. CatalanoA. Targeting breast cancer: An overlook on current strategies.Int. J. Mol. Sci.2023244364310.3390/ijms2404364336835056
    [Google Scholar]
  24. Guney EskilerG. OzmanZ. HaciefendiA. Cansaran-DumanD. Novel combination treatment of CDK 4/6 inhibitors with PARP inhibitors in triple negative breast cancer cells.Naunyn Schmiedebergs Arch. Pharmacol.202339651031104110.1007/s00210‑022‑02375‑436598514
    [Google Scholar]
  25. CarelsN. SpinasséL.B. TilliT.M. TuszynskiJ.A. Toward precision medicine of breast cancer.Theor. Biol. Med. Model.2016131710.1186/s12976‑016‑0035‑426925829
    [Google Scholar]
  26. LiZ. LiJ. MoB. HuC. LiuH. QiH. WangX. XuJ. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol in vitro 20082271749175310.1016/j.tiv.2008.08.00118761399
    [Google Scholar]
  27. SinghS. SinghS. LillardJ.W.Jr SinghR. Drug delivery approaches for breast cancer.Int. J. Nanomedicine2017126205621810.2147/IJN.S14032528883730
    [Google Scholar]
  28. NelJ. ElkhouryK. VelotÉ. BianchiA. AcherarS. FranciusG. TamayolA. GrandemangeS. Arab-TehranyE. Functionalized liposomes for targeted breast cancer drug delivery.Bioact. Mater.20232440143710.1016/j.bioactmat.2022.12.02736632508
    [Google Scholar]
  29. Al-SadiA.M. Al-OweisiF.A. EdwardsS.G. Al-NadabiH. Al-FahdiA.M. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.BMC Microbiol.201515114710.1186/s12866‑015‑0483‑826215423
    [Google Scholar]
  30. DubeyS.K. KaliM. HejmadyS. SahaR.N. AlexanderA. KesharwaniP. Recent advances of dendrimers as multifunctional nano- carriers to combat breast cancer.Eur. J. Pharm. Sci.202116410589010.1016/j.ejps.2021.10589034087355
    [Google Scholar]
  31. LiuG. YangL. ChenG. XuF. YangF. YuH. LiL. DongX. HanJ. CaoC. QiJ. SuJ. XuX. LiX. LiB. A review on drug delivery system for tumor therapy.Front. Pharmacol.20211273544610.3389/fphar.2021.73544634675807
    [Google Scholar]
  32. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  33. KapustinA.N. ChatrouM.L.L. DrozdovI. ZhengY. DavidsonS.M. SoongD. FurmanikM. SanchisP. De RosalesR.T.M. Alvarez-HernandezD. ShroffR. YinX. MullerK. SkepperJ.N. MayrM. ReutelingspergerC.P. ChesterA. BertazzoS. SchurgersL.J. ShanahanC.M. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion.Circ. Res.201511681312132310.1161/CIRCRESAHA.116.30501225711438
    [Google Scholar]
  34. ZouJ. YangW. CuiW. LiC. MaC. JiX. HongJ. QuZ. ChenJ. LiuA. WuH. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing.J. Nanobiotechnol20232111410.1186/s12951‑023‑01778‑636642728
    [Google Scholar]
  35. HwangD. RamseyJ.D. KabanovA.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval.Adv. Drug Deliv. Rev.20201568011810.1016/j.addr.2020.09.00932980449
    [Google Scholar]
  36. KafleU. AgrawalS. DashA.K. Injectable nano drug delivery systems for the treatment of breast cancer.Pharmaceutics20221412278310.3390/pharmaceutics1412278336559276
    [Google Scholar]
  37. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  38. NúñezC. EstévezS.V. del Pilar ChantadaM. Inorganic nanoparticles in diagnosis and treatment of breast cancer.J. Biol. Inorg. Chem.201823333134510.1007/s00775‑018‑1542‑z29453558
    [Google Scholar]
  39. ShindeV.R. KhatunS. ThanekarA.M. HakA. RenganA.K. Lipid- coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer.Photodiagn. Photodyn. Ther.20234110331410.1016/j.pdpdt.2023.10331436736548
    [Google Scholar]
  40. QaddooriM.H. Al-ShmganiH.S. Galangin-loaded gold nanoparticles: Molecular mechanisms of antiangiogenesis properties in breast cancer.Int. J. Breast Cancer.202320233251211
    [Google Scholar]
  41. LeeJ. ChatterjeeD.K. LeeM.H. KrishnanS. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls.Cancer Lett.20143471465310.1016/j.canlet.2014.02.00624556077
    [Google Scholar]
  42. AillonK.L. XieY. El-GendyN. BerklandC.J. ForrestM.L. Effects of nanomaterial physicochemical properties on in vivo toxicity.Adv. Drug Deliv. Rev.200961645746610.1016/j.addr.2009.03.01019386275
    [Google Scholar]
  43. YezhelyevM. YacoubR. O’ReganR. Inorganic nanoparticles for predictive oncology of breast cancer.Nanomedicine2009418310310.2217/17435889.4.1.83
    [Google Scholar]
  44. MarcuA. PopS. DumitracheF. MocanuM. NiculiteC.M. GherghiceanuM. LunguC.P. FleacaC. IanchisR. BarbutA. GrigoriuC. MorjanI. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer.Appl. Surf. Sci.2013281606510.1016/j.apsusc.2013.02.072
    [Google Scholar]
  45. LiyanageP.Y. HettiarachchiS.D. ZhouY. OuhtitA. SevenE.S. OztanC.Y. CelikE. LeblancR.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment.Biochim. Biophys. Acta Rev. Cancer20191871241943310.1016/j.bbcan.2019.04.00631034927
    [Google Scholar]
  46. AlaghmandfardA. SedighiO. Tabatabaei RezaeiN. AbediniA.A. Malek KhachatourianA. ToprakM.S. SeifalianA. Recent advances in the modification of carbon-based quantum dots for biomedical applications.Mater. Sci. Eng. C202112011175610.1016/j.msec.2020.11175633545897
    [Google Scholar]
  47. KoN.R. NafiujjamanM. LeeJ.S. LimH-N. LeeY. KwonI.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer.RSC Advances2017719114201142710.1039/C6RA25949A
    [Google Scholar]
  48. RautJ. SarkarO. DasT. MandalS.M. ChattopadhyayA. SahooP. Efficient delivery of methotrexate to MDA-MB-231 breast cancer cells by a pH-responsive ZnO nanocarrier.Sci. Rep.20231312189910.1038/s41598‑023‑49464‑938081993
    [Google Scholar]
  49. PradhanR. DeyA. TaliyanR. PuriA. KharavtekarS. DubeyS.K. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer.Pharmaceutics202315124610.3390/pharmaceutics1501024636678877
    [Google Scholar]
  50. LiM. ZhaoG. SuW.K. ShuaiQ. Enzyme-responsive nanoparticles for anti-tumor drug delivery.Front Chem.2020864710.3389/fchem.2020.0064732850662
    [Google Scholar]
  51. ShimM.S. XiaY. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells.Angew. Chem. Int. Ed.201352276926692910.1002/anie.20120963323716349
    [Google Scholar]
  52. ChenY. GaoD.Y. HuangL. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies.Adv. Drug Deliv. Rev.20158112814110.1016/j.addr.2014.05.00924859533
    [Google Scholar]
  53. HoekstraD.C. NickmansK. LubJ. DebijeM.G. SchenningA.P.H.J. Air-curable, high-resolution patternable oxetane-based liquid crystalline photonic films via flexographic printing.ACS Appl. Mater. Interfaces20191177423743010.1021/acsami.8b2146430688061
    [Google Scholar]
  54. ZhangJ. ZuoT. LiangX. XuY. YangY. FangT. LiJ. ChenD. ShenQ. Fenton-reaction-stimulative nanoparticles decorated with a reactive-oxygen-species (ROS)-responsive molecular switch for ROS amplification and triple negative breast cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20197457141715110.1039/C9TB01702J31663577
    [Google Scholar]
  55. AslzadS. HeydariP. AbdolahiniaE.D. AmiryaghoubiN. SafaryA. FathiM. Erfan-NiyaH. Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment.Colloid Polym. Sci.2023301327328110.1007/s00396‑023‑05066‑5
    [Google Scholar]
  56. FrancoM.S. GomesE.R. RoqueM.C. OliveiraM.C. Triggered drug release from liposomes: Exploiting the outer and inner tumor environment.Front. Oncol.20211162376010.3389/fonc.2021.62376033796461
    [Google Scholar]
  57. StorjohannA. The shifted number system for fast linear algebra on integer matrices.J. Complexity200521460965010.1016/j.jco.2005.04.002
    [Google Scholar]
  58. JoshiU. FilipczakN. KhanM.M. AttiaS.A. TorchilinV. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells.Int. J. Pharm.202059011991510.1016/j.ijpharm.2020.11991532980506
    [Google Scholar]
  59. PaliwalS.R. PaliwalR. PalH.C. SaxenaA.K. SharmaP.R. GuptaP.N. AgrawalG.P. VyasS.P. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.Mol. Pharm.20129117618610.1021/mp200439z22091702
    [Google Scholar]
  60. JoseA. NinaveK.M. KarnamS. VenugantiV.V.K. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment.J. Liposome Res.201929215316210.1080/08982104.2018.150231530022700
    [Google Scholar]
  61. AhmedA.E.E. Ultrasound-triggered herceptin liposomes for breast cancer therapy.Sci Rep.20181117545
    [Google Scholar]
  62. BayatF. PourmadadiM. EshaghiM.M. YazdianF. RashediH. Improving release profile and anticancer activity of 5-fluorouracil for breast cancer therapy using a double drug delivery system: Chitosan/agarose/γ-alumina nanocomposite@ double emulsion.J. Cluster Sci.20233452565257710.1007/s10876‑023‑02405‑y
    [Google Scholar]
  63. ZhangH. GaoH. ZhangY. HanY. LinQ. GongT. SunX. ZhangZ. ZhangL. HuangS. Enzyme-activatable disk-shaped nanocarriers augment tumor permeability for breast cancer combination therapy.Nano Res.20241776400641010.1007/s12274‑024‑6608‑3
    [Google Scholar]
  64. NúñezC. CapeloJ.L. IgrejasG. AlfonsoA. BotanaL.M. LodeiroC. An overview of the effective combination therapies for the treatment of breast cancer.Biomaterials201697345010.1016/j.biomaterials.2016.04.02727162073
    [Google Scholar]
  65. LiK. TengC. MinQ. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy.Front Chem.2020857329710.3389/fchem.2020.57329733195062
    [Google Scholar]
  66. FisherB. RedmondC. FisherE.R. CaplanR. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06.J. Clin. Oncol.1988671076108710.1200/JCO.1988.6.7.10762856862
    [Google Scholar]
  67. FanL. LiF. ZhangH. WangY. ChengC. LiX. GuC. YangQ. WuH. ZhangS. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance.Biomaterials201031215634564210.1016/j.biomaterials.2010.03.06620430433
    [Google Scholar]
  68. MilesD. MinckwitzG. SeidmanA.D. Combination versus sequential single-agent therapy in metastatic breast cancer.Oncologist20027S6Suppl. 6131910.1634/theoncologist.2002‑001312454315
    [Google Scholar]
  69. TahirN. MadniA. CorreiaA. RehmanM. BalasubramanianV. KhanM.M. SantosH.A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy.Int. J. Nanomedicine2019144961497410.2147/IJN.S20932531308666
    [Google Scholar]
  70. PalvaiS. AnandiL. SarkarS. AugustusM. RoyS. LahiriM. BasuS. Drug-triggered self-assembly of linear polymer into nanoparticles for simultaneous delivery of hydrophobic and hydrophilic drugs in breast cancer cells.ACS Omega20172128730874010.1021/acsomega.7b0140030023590
    [Google Scholar]
  71. LiangJ. GuoS. BaiM. HuangM. QuY. ZhaoY. SongY. Stimulus-responsive hybrid nanoparticles based on multiple lipids for the co-delivery of doxorubicin and Sphk2-siRNA and breast cancer therapy.Food Chem. Toxicol.202317111353210.1016/j.fct.2022.11353236455683
    [Google Scholar]
  72. YangJ. LiX. TongY. YangY. ZhaoL. ZhouQ. XuJ. DongL. JiangY. Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy.Colloids Surf. B Biointerfaces202221711260810.1016/j.colsurfb.2022.11260835679735
    [Google Scholar]
  73. WangZ. LiX. WangD. ZouY. QuX. HeC. DengY. JinY. ZhouY. ZhouY. LiuY. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles.Acta Biomater.20176214415610.1016/j.actbio.2017.08.02728842335
    [Google Scholar]
  74. CalixtoJ.B. Twenty-five years of research on medicinal plants in Latin America.J. Ethnopharmacol.20051001-213113410.1016/j.jep.2005.06.00416006081
    [Google Scholar]
  75. KimK.C. KimJ.S. SonJ.K. KimI.G. Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells by the Ganoderma lucidum and Duchesnea chrysantha extracts.Cancer Lett.20072461-221021710.1016/j.canlet.2006.02.01416574319
    [Google Scholar]
  76. TsourisV. JooM.K. KimS.H. KwonI.C. WonY.Y. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers.Biotechnol. Adv.20143251037105010.1016/j.biotechadv.2014.05.00624924617
    [Google Scholar]
  77. XieY. YangL. WuY. ZhengH. GouQ. Adjuvant endocrine therapy in patients with estrogen receptor-low positive breast cancer: A prospective cohort study.Breast202266899610.1016/j.breast.2022.09.00836209701
    [Google Scholar]
  78. LiY. UpadhyayS. BhuiyanM. SarkarF.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein.Oncogene199918203166317210.1038/sj.onc.120265010340389
    [Google Scholar]
  79. CvejićJ. BursaćM. AtanackovićM. Phytoestrogens: “Estrogene- Like” phytochemicals.Stud. Nat. Prod. Chem.20123813510.1016/B978‑0‑444‑59530‑0.00001‑0
    [Google Scholar]
  80. MarkovitsJ. LinassierC. FosséP. CouprieJ. PierreJ. Jacquemin-SablonA. SaucierJ.M. Le PecqJ.B. LarsenA.K. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II.Cancer Res.19894918511151172548712
    [Google Scholar]
  81. MaiZ. BlackburnG.L. ZhouJ.R. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells.Mol. Carcinog.200746753454210.1002/mc.20300
    [Google Scholar]
  82. ChoiE.J. KimG.H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells.Phytomedicine200815968369010.1016/j.phymed.2008.04.00618541420
    [Google Scholar]
  83. HooshmandS. KhalilD.A. MurilloG. SingletaryK. KamathS.K. ArjmandiB.H. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile.Clin. Nutr.200827464364810.1016/j.clnu.2008.04.01218571816
    [Google Scholar]
  84. Albert YenY. HerenyiovaM. WeberG. Quercetin: Synergistic action with carboxyamidotriazole in human breast carcinoma cells.Life Sci.199557131285129210.1016/0024‑3205(95)02085‑W7674820
    [Google Scholar]
  85. PapoutsiZ. KassiE. TsiaparaA. FokialakisN. ChrousosG.P. MoutsatsouP. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta.J. Agric. Food Chem.200553207715772010.1021/jf051053916190622
    [Google Scholar]
  86. SharmaR.A. EudenS.A. PlattonS.L. CookeD.N. ShafayatA. HewittH.R. MarczyloT.H. MorganB. HemingwayD. PlummerS.M. PirmohamedM. GescherA.J. StewardW.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance.Clin. Cancer Res.200410206847685410.1158/1078‑0432.CCR‑04‑074415501961
    [Google Scholar]
  87. MartinT.A. JiangW.G. Anti-Cancer agents in medicinal chemistry (Formerly current medicinal chemistry - Anti-cancer agents).Anti-Cancer Agent. Med. Chem.20101011
    [Google Scholar]
  88. ZhengM. Synergistic role of thymoquinone on anticancer activity of 5-fluorouracil in triple negative breast cancer cells.Anticancer Agents Med. Chem.202222611111118
    [Google Scholar]
  89. BashmailH.A. AlamoudiA.A. NoorwaliA. HegazyG.A. AJabnoorG. ChoudhryH. Al-AbdA.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities.Sci. Rep.2018811167410.1038/s41598‑018‑30046‑z30076320
    [Google Scholar]
  90. ZhouJ. AzradM. KongL. Effect of limonene on cancer development in rodent models: A systematic review.Front. Sustain. Food Syst.2021572507710.3389/fsufs.2021.725077
    [Google Scholar]
  91. MillerJ.A. ThompsonP.A. HakimI.A. ChowH-H.S. ThomsonC.A. d-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment.Oncol. Rev.201151314210.1007/s12156‑010‑0066‑8
    [Google Scholar]
  92. AssaliM. JaradatN. MaqboulL. The Formation of self-assembled nanoparticles loaded with doxorubicin and D-Limonene for cancer therapy.ACS Omega2022746420964210410.1021/acsomega.2c0423836440142
    [Google Scholar]
  93. GuJ.W. MakeyK.L. TuckerK.B. ChincharE. MaoX. PeiI. ThomasE.Y. MieleL. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.Vasc. Cell201351910.1186/2045‑824X‑5‑923638734
    [Google Scholar]
  94. SenT. DuttaA. ChatterjeeA. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFκB and AP-1 in the human breast cancer cell line MDA-MB-231.Anticancer Drugs201021663264410.1097/CAD.0b013e32833a438520527725
    [Google Scholar]
  95. RamadonD. WirartiG.A. AnwarE. Novel transdermal ethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract: Formulation and in vitro penetration study.J. Young Pharm.20179333634010.5530/jyp.2017.9.67
    [Google Scholar]
  96. YaoY.F. LiuX. LiW.J. ShiZ.W. YanY.X. WangL.F. ChenM. XieM.Y. (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice.Life Sci.201718015115910.1016/j.lfs.2016.12.00427956351
    [Google Scholar]
  97. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms1812258929194365
    [Google Scholar]
  98. AlaviM. FarkhondehT. AschnerM. SamarghandianS. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation.Cancer Cell Int.202121157910.1186/s12935‑021‑02280‑534717625
    [Google Scholar]
  99. SoleasG.J. DiamandisE.P. GoldbergD.M. Resveratrol: A molecule whose time has come? And gone?Clin. Biochem.19973029111310.1016/S0009‑9120(96)00155‑59127691
    [Google Scholar]
  100. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  101. AlhalmiA. AminS. KhanZ. BegS. Al kamalyO. SalehA. KohliK. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex-vivo, in vivo assessment, and acute toxicity studies.Pharmaceutics2022149177110.3390/pharmaceutics1409177136145519
    [Google Scholar]
  102. AmjadiS. HamishehkarH. GhorbaniM. A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy.Mater. Sci. Eng. C20199783384110.1016/j.msec.2018.12.10430678974
    [Google Scholar]
  103. HuH. LiaoZ. XuM. WanS. WuY. ZouW. WuJ. FanQ. Fabrication, optimization, and evaluation of paclitaxel and curcumin coloaded PLGA nanoparticles for improved antitumor activity.ACS Omega20238197698610.1021/acsomega.2c0635936643566
    [Google Scholar]
  104. GaoY. ShellingA.N. NolanE. PorterD. LeungE. WuZ. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells.J. Liposome Res.202434348950610.1080/08982104.2024.2305866
    [Google Scholar]
  105. NakagawaT. HayashiK. OgawaA. OdaG. OnishiI. YamamotoM. MoriM. FujiokaT. IshikawaT. OkamotoK. UetakeH. Bone marrow carcinomatosis in a stage IV breast cancer patient treated by letrozole as first-line endocrine therapy.Case Rep. Oncol.202215143644110.1159/00052415235702555
    [Google Scholar]
  106. SinghaiH. RatheeS. JainS.K. PatilU.K. The potential of natural products in the management of cardiovascular disease.Curr. Pharm. Des.202430862463810.2174/011381612829505324020709092838477208
    [Google Scholar]
  107. SenD. RatheeS. PandeyV. JainS.K. PatilU.K. Comprehensive insights into pathophysiology of Alzheimer’s Disease: Herbal approaches for mitigating neurodegeneration.Curr. Alzheimer Res.20242024500310.2174/011567205030905724040407500338623983
    [Google Scholar]
  108. SahuA. RatheeS. JainS.K. PatilU.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis.Curr. Rheumatol. Rev.202420546948710.2174/011573397128098424010111520338284718
    [Google Scholar]
  109. ManikishoreM. MauryaS.K. RatheeS. PatilU.K. Genome editing approaches Using Zinc Finger Nucleases (ZFNs) for the treatment of motor neuron Diseases.Curr. Pharm. Biotechnol.20242510.2174/011389201030728824052607181038847163
    [Google Scholar]
  110. RatheeS. PatilU.K. JainS.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review.J. Explorat. Res. Pharmacol.202491516410.14218/JERP.2023.00050
    [Google Scholar]
  111. YadavD.K. RatheeS. SharmaV. PatilU.K. A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds.Anti-Inflamm. Anti-Allergy Agent. Med. Chem.2024Online ahead of print.10.2174/0118715230322355240903072704
    [Google Scholar]
  112. PandeyV. SenD. RatheeS. SoniS. MishraS. JainS.K. PatilU.K. Unlocking toll-like receptors: Targeting therapeutics for respiratory tract infections and inflammatory disorders.Recent Adv. Inflamm. Allergy Drug Discov.202418301310.2174/0127722708329138240926073013
    [Google Scholar]
  113. RatheeS. SenD. PandeyV. JainS.K. Advances in understanding and managing Alzheimer’s Disease: From pathophysiology to innovative therapeutic strategies.Curr. Drug Targets2024251175277410.2174/011389450132009624062707140039039673
    [Google Scholar]
  114. PandeyV. RatheeS. SenD. JainS.K. PatilU.K. Phytovesicular nanoconstructs for advanced delivery of medicinal metabolites: An in-depth review.Curr. Drug Targets.20242513847865
    [Google Scholar]
  115. JainS.K. Molecular docking analysis of d-glucosamine and rivastigmine tartrate targeting Alzheimer’s disease-associated proteins: An in silico approach.Asian J. Pharm.202418210.22377/ajp.v18i02.5458
    [Google Scholar]
  116. SahuA. RatheeS. SarafS. JainS.K. A review on the recent advancements and artificial intelligence in tablet technology.Curr. Drug Targets202425641643010.2174/011389450128129023122105393938213164
    [Google Scholar]
  117. SenD. RatheeS. PandeyV. JainS.K. Exploring Saffron's therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications.Curr. Pharm. Des.2024Epub ahead of print.
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501352081241211090911
Loading
/content/journals/cdt/10.2174/0113894501352081241211090911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test