Skip to content
2000
image of Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review

Abstract

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies distinct mechanisms of action. Increasingly, the use of phytoconstituents alongside chemotherapeutic agents has shown promise in enhancing treatment outcomes. This combination therapy acts on key signaling pathways such as Hedgehog, Notch, Wnt/β- catenin, tyrosine kinases, and phosphatidylinositol 3-kinase (PI3K), which play critical roles in cellular proliferation, apoptosis, angiogenesis, differentiation, invasion, and metastasis. This review explores various signaling pathways involved in breast cancer progression, discusses conventional treatment methods like surgery, adjuvant radiotherapy, hormonal therapy, and chemotherapy, and highlights emerging nanocarrier-based drug delivery systems (DDS). Liposomes, dendrimers, exosomes, polymeric micelles, and nanoparticles (organic, inorganic, gold, magnetic, carbon-based, and quantum dots) are examined as innovative strategies for enhancing drug delivery efficacy. Furthermore, stimuli-responsive DDSs, including reactive oxygen species (ROS), enzyme-, and hypoxia-responsive systems, are presented as cutting-edge approaches to overcoming drug resistance. Special emphasis is placed on the co-delivery of chemotherapeutic agents and plant-based compounds, particularly in estrogen receptor-positive (ER+) breast cancer. This review aims to provide a comprehensive overview of novel combinatorial strategies and advanced nanocarriers for the effective and targeted treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501352081241211090911
2025-01-08
2025-02-28
Loading full text...

Full text loading...

References

  1. Giaquinto A.N. Miller K.D. Tossas K.Y. Winn R.A. Jemal A. Siegel R.L. Cancer statistics for African American/black people 2022. CA Cancer J. Clin. 2022 72 3 202 229 10.3322/caac.21718 35143040
    [Google Scholar]
  2. Israel B. Tilghman S. Parker-Lemieux K. Payton-Stewart F. Phytochemicals: Current strategies for treating breast cancer (Review). Oncol. Lett. 2018 15 5 7471 7478 10.3892/ol.2018.8304 29755596
    [Google Scholar]
  3. Sathishkumar K. Sankarapillai J. Mathew A. Nair R.A. Gangane N. Khuraijam S. Barmon D. Pandya S. Majumdar G. Deshmane V. Zomawia E. Bhutia T.W. Jerang K. George P.S. Maliye S. Laishram R. Das G. Shah A. Debbarma S. Koyande S. Pachuau L. Sherpa A. Jongkey G. Chaturvedi M. Das P. Santhappan S. Mathur P. Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme. Cancer 2024 130 10 1816 1825 10.1002/cncr.35188 38183671
    [Google Scholar]
  4. Li Y. Lu A. Long M. Cui L. Chen Z. Zhu L. Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater. 2019 83 334 348 10.1016/j.actbio.2018.10.029 30366135
    [Google Scholar]
  5. Meirelles L.E.F. Souza M.V.F. Carobeli L.R. Morelli F. Mari N.L. Damke E. Shinobu Mesquita C.S. Teixeira J.J.V. Consolaro M.E.L. Silva V.R.S. Combination of conventional drugs with biocompounds derived from cinnamic acid: A promising option for breast cancer therapy. Biomedicines 2023 11 2 275 10.3390/biomedicines11020275 36830811
    [Google Scholar]
  6. Chatterjee N. Bivona T.G. Polytherapy and targeted cancer drug resistance. Trends Cancer 2019 5 3 170 182 10.1016/j.trecan.2019.02.003 30898264
    [Google Scholar]
  7. Nagarajan D. McArdle S. Immune landscape of breast cancers. Biomedicines 2018 6 1 20 10.3390/biomedicines6010020 29439457
    [Google Scholar]
  8. Sharma D. Kumar S. Narasimhan B. Estrogen alpha receptor antagonists for the treatment of breast cancer: A review. Chem. Cent. J. 2018 12 1 107 10.1186/s13065‑018‑0472‑8 30361894
    [Google Scholar]
  9. Alharbi K.S. Almalki W.H. Makeen H.A. Albratty M. Meraya A.M. Nagraik R. Sharma A. Kumar D. Chellappan D.K. Singh S.K. Dua K. Gupta G. Role of Medicinal plant-derived Nutraceuticals as a potential target for the treatment of breast cancer. J. Food Biochem. 2022 46 12 e14387 10.1111/jfbc.14387 36121313
    [Google Scholar]
  10. Zeng Y.A. Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 2010 6 6 568 577 10.1016/j.stem.2010.03.020 20569694
    [Google Scholar]
  11. Wang L. Jin Z. Master R.P. Maharjan C.K. Carelock M.E. Reccoppa T.B.A. Kim M.C. Kolb R. Zhang W. Breast cancer stem cells: Signaling pathways, cellular interactions, and therapeutic implications. Cancers (Basel) 2022 14 13 3287 10.3390/cancers14133287 35805056
    [Google Scholar]
  12. Newton E.E. Mueller L.E. Treadwell S.M. Morris C.A. Machado H.L. Molecular targets of triple-negative breast cancer: where do we stand? Cancers (Basel) 2022 14 3 482 10.3390/cancers14030482 35158750
    [Google Scholar]
  13. Sales-Dias J. Ferreira A. Lamy M. Domenici G. Monteiro S.M.S. Pires A. Lemos A.R. Kucheryava K. Nobre L.S. Sousa P.M.F. Bandeiras T.M. Silva G. Barbas A. Development of antibodies against the notch ligand Delta-Like-1 by phage display with activity against breast cancer cells. N. Biotechnol. 2021 64 17 26 10.1016/j.nbt.2021.05.003 33992842
    [Google Scholar]
  14. Song K. Farzaneh M. Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res. Ther. 2021 12 1 245 10.1186/s13287‑021‑02321‑w 33863385
    [Google Scholar]
  15. Riobo-Del Galdo N. Lara Montero Á. Wertheimer E. Role of Hedgehog signaling in breast cancer: pathogenesis and therapeutics. Cells 2019 8 4 375 10.3390/cells8040375 31027259
    [Google Scholar]
  16. Hunt B.G. Fox L.H. Davis J.C. Jones A. Lu Z. Waltz S.E. An introduction and overview of RON receptor tyrosine kinase signaling. Genes (Basel) 2023 14 2 517 10.3390/genes14020517 36833444
    [Google Scholar]
  17. Alanazi I.O. Khan Z. Endocrine and cell surface receptor signaling in breast carcinogenesis. Breast Cancer and Surgery Intech Open 2018 10.5772/intechopen.74679
    [Google Scholar]
  18. Cerma K. Piacentini F. Moscetti L. Barbolini M. Canino F. Tornincasa A. Caggia F. Cerri S. Molinaro A. Dominici M. Omarini C. Targeting pi3k/akt/mtor pathway in breast cancer: From biology to clinical challenges. Biomedicines 2023 11 1 109 10.3390/biomedicines11010109 36672617
    [Google Scholar]
  19. Yang S.X. Polley E. Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat. Rev. 2016 45 87 96 10.1016/j.ctrv.2016.03.004 26995633
    [Google Scholar]
  20. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  21. Waks A.G. Winer E.P. Breast cancer treatment: a review. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  22. Kuhl C.K. What the future holds for the screening, diagnosis, and treatment of breast cancer. Radiology. 2023 306 3 e223338
    [Google Scholar]
  23. Iacopetta D. Ceramella J. Baldino N. Sinicropi M. Catalano A. Targeting breast cancer: An overlook on current strategies. Int. J. Mol. Sci. 2023 24 4 3643 10.3390/ijms24043643 36835056
    [Google Scholar]
  24. Guney Eskiler G. Ozman Z. Haciefendi A. Cansaran-Duman D. Novel combination treatment of CDK 4/6 inhibitors with PARP inhibitors in triple negative breast cancer cells. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 5 1031 1041 10.1007/s00210‑022‑02375‑4 36598514
    [Google Scholar]
  25. Carels N. Spinassé L.B. Tilli T.M. Tuszynski J.A. Toward precision medicine of breast cancer. Theor. Biol. Med. Model. 2016 13 1 7 10.1186/s12976‑016‑0035‑4 26925829
    [Google Scholar]
  26. Li Z. Li J. Mo B. Hu C. Liu H. Qi H. Wang X. Xu J. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol. in vitro 2008 22 7 1749 1753 10.1016/j.tiv.2008.08.001 18761399
    [Google Scholar]
  27. Singh S. Singh S. Lillard J.W. Jr Singh R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine 2017 12 6205 6218 10.2147/IJN.S140325 28883730
    [Google Scholar]
  28. Nel J. Elkhoury K. Velot É. Bianchi A. Acherar S. Francius G. Tamayol A. Grandemange S. Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater. 2023 24 401 437 10.1016/j.bioactmat.2022.12.027 36632508
    [Google Scholar]
  29. Al-Sadi A.M. Al-Oweisi F.A. Edwards S.G. Al-Nadabi H. Al-Fahdi A.M. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil. BMC Microbiol. 2015 15 1 147 10.1186/s12866‑015‑0483‑8 26215423
    [Google Scholar]
  30. Dubey S.K. Kali M. Hejmady S. Saha R.N. Alexander A. Kesharwani P. Recent advances of dendrimers as multifunctional nano- carriers to combat breast cancer. Eur. J. Pharm. Sci. 2021 164 105890 10.1016/j.ejps.2021.105890 34087355
    [Google Scholar]
  31. Liu G. Yang L. Chen G. Xu F. Yang F. Yu H. Li L. Dong X. Han J. Cao C. Qi J. Su J. Xu X. Li X. Li B. A Review on drug delivery system for tumor therapy. Front. Pharmacol. 2021 12 735446 10.3389/fphar.2021.735446 34675807
    [Google Scholar]
  32. Bober Z. Bartusik-Aebisher D. Aebisher D. Application of dendrimers in anticancer diagnostics and therapy. Molecules 2022 27 10 3237 10.3390/molecules27103237 35630713
    [Google Scholar]
  33. Kapustin A.N. Chatrou M.L.L. Drozdov I. Zheng Y. Davidson S.M. Soong D. Furmanik M. Sanchis P. De Rosales R.T.M. Alvarez-Hernandez D. Shroff R. Yin X. Muller K. Skepper J.N. Mayr M. Reutelingsperger C.P. Chester A. Bertazzo S. Schurgers L.J. Shanahan C.M. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ. Res. 2015 116 8 1312 1323 10.1161/CIRCRESAHA.116.305012 25711438
    [Google Scholar]
  34. Zou J. Yang W. Cui W. Li C. Ma C. Ji X. Hong J. Qu Z. Chen J. Liu A. Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. J. Nanobiotechnology 2023 21 1 14 10.1186/s12951‑023‑01778‑6 36642728
    [Google Scholar]
  35. Hwang D. Ramsey J.D. Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020 156 80 118 10.1016/j.addr.2020.09.009 32980449
    [Google Scholar]
  36. Kafle U. Agrawal S. Dash A.K. Injectable nano drug delivery systems for the treatment of breast cancer. Pharmaceutics 2022 14 12 2783 10.3390/pharmaceutics14122783 36559276
    [Google Scholar]
  37. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  38. Núñez C. Estévez S.V. del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J. Biol. Inorg. Chem. 2018 23 3 331 345 10.1007/s00775‑018‑1542‑z 29453558
    [Google Scholar]
  39. Shinde V.R. Khatun S. Thanekar A.M. Hak A. Rengan A.K. Lipid- coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer. Photodiagn. Photodyn. Ther. 2023 41 103314 10.1016/j.pdpdt.2023.103314 36736548
    [Google Scholar]
  40. Qaddoori M.H. Al-Shmgani H.S. Galangin-loaded gold nanoparticles: Molecular mechanisms of antiangiogenesis properties in breast cancer. Int. J. Breast Cancer. 2023 2023 3251211
    [Google Scholar]
  41. Lee J. Chatterjee D.K. Lee M.H. Krishnan S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett. 2014 347 1 46 53 10.1016/j.canlet.2014.02.006 24556077
    [Google Scholar]
  42. Aillon K.L. Xie Y. El-Gendy N. Berkland C.J. Forrest M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009 61 6 457 466 10.1016/j.addr.2009.03.010 19386275
    [Google Scholar]
  43. Yezhelyev M. Yacoub R. O’Regan R. Inorganic nanoparticles for predictive oncology of breast cancer. Nanomedicine 2009 4 1 83 103 10.2217/17435889.4.1.83
    [Google Scholar]
  44. Marcu A. Pop S. Dumitrache F. Mocanu M. Niculite C.M. Gherghiceanu M. Lungu C.P. Fleaca C. Ianchis R. Barbut A. Grigoriu C. Morjan I. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl. Surf. Sci. 2013 281 60 65 10.1016/j.apsusc.2013.02.072
    [Google Scholar]
  45. Liyanage P.Y. Hettiarachchi S.D. Zhou Y. Ouhtit A. Seven E.S. Oztan C.Y. Celik E. Leblanc R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2019 1871 2 419 433 10.1016/j.bbcan.2019.04.006 31034927
    [Google Scholar]
  46. Alaghmandfard A. Sedighi O. Tabatabaei Rezaei N. Abedini A.A. Malek Khachatourian A. Toprak M.S. Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C 2021 120 111756 10.1016/j.msec.2020.111756 33545897
    [Google Scholar]
  47. Ko N.R. Nafiujjaman M. Lee J.S. Lim H-N. Lee Y. Kwon I.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Advances 2017 7 19 11420 11427 10.1039/C6RA25949A
    [Google Scholar]
  48. Raut J. Sarkar O. Das T. Mandal S.M. Chattopadhyay A. Sahoo P. Efficient delivery of methotrexate to MDA-MB-231 breast cancer cells by a pH-responsive ZnO nanocarrier. Sci. Rep. 2023 13 1 21899 10.1038/s41598‑023‑49464‑9 38081993
    [Google Scholar]
  49. Pradhan R. Dey A. Taliyan R. Puri A. Kharavtekar S. Dubey S.K. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023 15 1 246 10.3390/pharmaceutics15010246 36678877
    [Google Scholar]
  50. Li M. Zhao G. Su W.K. Shuai Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front Chem. 2020 8 647 10.3389/fchem.2020.00647 32850662
    [Google Scholar]
  51. Shim M.S. Xia Y. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem. Int. Ed. 2013 52 27 6926 6929 10.1002/anie.201209633 23716349
    [Google Scholar]
  52. Chen Y. Gao D.Y. Huang L. in vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015 81 128 141 10.1016/j.addr.2014.05.009 24859533
    [Google Scholar]
  53. Hoekstra D.C. Nickmans K. Lub J. Debije M.G. Schenning A.P.H.J. Air-curable, high-resolution patternable oxetane-based liquid crystalline photonic films via flexographic printing. ACS Appl. Mater. Interfaces 2019 11 7 7423 7430 10.1021/acsami.8b21464 30688061
    [Google Scholar]
  54. Zhang J. Zuo T. Liang X. Xu Y. Yang Y. Fang T. Li J. Chen D. Shen Q. Fenton-reaction-stimulative nanoparticles decorated with a reactive-oxygen-species (ROS)-responsive molecular switch for ROS amplification and triple negative breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2019 7 45 7141 7151 10.1039/C9TB01702J 31663577
    [Google Scholar]
  55. Aslzad S. Heydari P. Abdolahinia E.D. Amiryaghoubi N. Safary A. Fathi M. Erfan-Niya H. Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment. Colloid Polym. Sci. 2023 301 3 273 281 10.1007/s00396‑023‑05066‑5
    [Google Scholar]
  56. Franco M.S. Gomes E.R. Roque M.C. Oliveira M.C. Triggered drug release from liposomes: exploiting the outer and inner tumor environment. Front. Oncol. 2021 11 623760 10.3389/fonc.2021.623760 33796461
    [Google Scholar]
  57. Storjohann A. The shifted number system for fast linear algebra on integer matrices. J. Complexity 2005 21 4 609 650 10.1016/j.jco.2005.04.002
    [Google Scholar]
  58. Joshi U. Filipczak N. Khan M.M. Attia S.A. Torchilin V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int. J. Pharm. 2020 590 119915 10.1016/j.ijpharm.2020.119915 32980506
    [Google Scholar]
  59. Paliwal S.R. Paliwal R. Pal H.C. Saxena A.K. Sharma P.R. Gupta P.N. Agrawal G.P. Vyas S.P. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol. Pharm. 2012 9 1 176 186 10.1021/mp200439z 22091702
    [Google Scholar]
  60. Jose A. Ninave K.M. Karnam S. Venuganti V.V.K. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J. Liposome Res. 2019 29 2 153 162 10.1080/08982104.2018.1502315 30022700
    [Google Scholar]
  61. Ahmed A.E.E. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep. 2018 11 1 7545
    [Google Scholar]
  62. Bayat F. Pourmadadi M. Eshaghi M.M. Yazdian F. Rashedi H. Improving release profile and anticancer activity of 5-fluorouracil for breast cancer therapy using a double drug delivery system: chitosan/agarose/γ-alumina nanocomposite@ double emulsion. J. Cluster Sci. 2023 34 5 2565 2577 10.1007/s10876‑023‑02405‑y
    [Google Scholar]
  63. Zhang H. Gao H. Zhang Y. Han Y. Lin Q. Gong T. Sun X. Zhang Z. Zhang L. Huang S. Enzyme-activatable disk-shaped nanocarriers augment tumor permeability for breast cancer combination therapy. Nano Res. 2024 17 7 6400 6410 10.1007/s12274‑024‑6608‑3
    [Google Scholar]
  64. Núñez C. Capelo J.L. Igrejas G. Alfonso A. Botana L.M. Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials 2016 97 34 50 10.1016/j.biomaterials.2016.04.027 27162073
    [Google Scholar]
  65. Li K. Teng C. Min Q. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem. 2020 8 573297 10.3389/fchem.2020.573297 33195062
    [Google Scholar]
  66. Fisher B. Redmond C. Fisher E.R. Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J. Clin. Oncol. 1988 6 7 1076 1087 10.1200/JCO.1988.6.7.1076 2856862
    [Google Scholar]
  67. Fan L. Li F. Zhang H. Wang Y. Cheng C. Li X. Gu C. Yang Q. Wu H. Zhang S. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 2010 31 21 5634 5642 10.1016/j.biomaterials.2010.03.066 20430433
    [Google Scholar]
  68. Miles D. Minckwitz G. Seidman A.D. Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist 2002 7 S6 Suppl. 6 13 19 10.1634/theoncologist.2002‑0013 12454315
    [Google Scholar]
  69. Tahir N. Madni A. Correia A. Rehman M. Balasubramanian V. Khan M.M. Santos H.A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine 2019 14 4961 4974 10.2147/IJN.S209325 31308666
    [Google Scholar]
  70. Palvai S. Anandi L. Sarkar S. Augustus M. Roy S. Lahiri M. Basu S. Drug-triggered self-assembly of linear polymer into nanoparticles for simultaneous delivery of hydrophobic and hydrophilic drugs in breast cancer cells. ACS Omega 2017 2 12 8730 8740 10.1021/acsomega.7b01400 30023590
    [Google Scholar]
  71. Liang J. Guo S. Bai M. Huang M. Qu Y. Zhao Y. Song Y. Stimulus-responsive hybrid nanoparticles based on multiple lipids for the co-delivery of doxorubicin and Sphk2-siRNA and breast cancer therapy. Food Chem. Toxicol. 2023 171 113532 10.1016/j.fct.2022.113532 36455683
    [Google Scholar]
  72. Yang J. Li X. Tong Y. Yang Y. Zhao L. Zhou Q. Xu J. Dong L. Jiang Y. Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy. Colloids Surf. B Biointerfaces 2022 217 112608 10.1016/j.colsurfb.2022.112608 35679735
    [Google Scholar]
  73. Wang Z. Li X. Wang D. Zou Y. Qu X. He C. Deng Y. Jin Y. Zhou Y. Zhou Y. Liu Y. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017 62 144 156 10.1016/j.actbio.2017.08.027 28842335
    [Google Scholar]
  74. Calixto J.B. Twenty-five years of research on medicinal plants in Latin America. J. Ethnopharmacol. 2005 100 1-2 131 134 10.1016/j.jep.2005.06.004 16006081
    [Google Scholar]
  75. Kim K.C. Kim J.S. Son J.K. Kim I.G. Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells by the Ganoderma lucidum and Duchesnea chrysantha extracts. Cancer Lett. 2007 246 1-2 210 217 10.1016/j.canlet.2006.02.014 16574319
    [Google Scholar]
  76. Tsouris V. Joo M.K. Kim S.H. Kwon I.C. Won Y.Y. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol. Adv. 2014 32 5 1037 1050 10.1016/j.biotechadv.2014.05.006 24924617
    [Google Scholar]
  77. Xie Y. Yang L. Wu Y. Zheng H. Gou Q. Adjuvant endocrine therapy in patients with estrogen receptor-low positive breast cancer: A prospective cohort study. Breast 2022 66 89 96 10.1016/j.breast.2022.09.008 36209701
    [Google Scholar]
  78. Li Y. Upadhyay S. Bhuiyan M. Sarkar F.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 1999 18 20 3166 3172 10.1038/sj.onc.1202650 10340389
    [Google Scholar]
  79. Cvejić J. Bursać M. Atanacković M. Phytoestrogens: “Estrogene- Like” phytochemicals. Stud. Nat. Prod. Chem. 2012 38 1 35 10.1016/B978‑0‑444‑59530‑0.00001‑0
    [Google Scholar]
  80. Markovits J. Linassier C. Fossé P. Couprie J. Pierre J. Jacquemin-Sablon A. Saucier J.M. Le Pecq J.B. Larsen A.K. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 1989 49 18 5111 5117 2548712
    [Google Scholar]
  81. Mai Z. Blackburn G.L. Zhou J.R. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells. Mol. Carcinog. 2007 46 7 534 542 10.1002/mc.20300
    [Google Scholar]
  82. Choi E.J. Kim G.H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 2008 15 9 683 690 10.1016/j.phymed.2008.04.006 18541420
    [Google Scholar]
  83. Hooshmand S. Khalil D.A. Murillo G. Singletary K. Kamath S.K. Arjmandi B.H. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates lipid profile. Clin. Nutr. 2008 27 4 643 648 10.1016/j.clnu.2008.04.012 18571816
    [Google Scholar]
  84. Albert Yen Y. Herenyiova M. Weber G. Quercetin: Synergistic action with carboxyamidotriazole in human breast carcinoma cells. Life Sci. 1995 57 13 1285 1292 10.1016/0024‑3205(95)02085‑W 7674820
    [Google Scholar]
  85. Papoutsi Z. Kassi E. Tsiapara A. Fokialakis N. Chrousos G.P. Moutsatsou P. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta. J. Agric. Food Chem. 2005 53 20 7715 7720 10.1021/jf0510539 16190622
    [Google Scholar]
  86. Sharma R.A. Euden S.A. Platton S.L. Cooke D.N. Shafayat A. Hewitt H.R. Marczylo T.H. Morgan B. Hemingway D. Plummer S.M. Pirmohamed M. Gescher A.J. Steward W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004 10 20 6847 6854 10.1158/1078‑0432.CCR‑04‑0744 15501961
    [Google Scholar]
  87. Martin T.A. Jiang W.G. Anti-Cancer agents in medicinal chemistry (Formerly current medicinal chemistry - Anti-cancer agents). Anti-Cancer Agent. Med. Chem. 2010 10 1 1
    [Google Scholar]
  88. Zheng M. Synergistic role of thymoquinone on anticancer activity of 5-fluorouracil in triple negative breast cancer cells. Anticancer Agents Med. Chem. 2022 22 6 1111 1118
    [Google Scholar]
  89. Bashmail H.A. Alamoudi A.A. Noorwali A. Hegazy G.A. AJabnoor G. Choudhry H. Al-Abd A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep. 2018 8 1 11674 10.1038/s41598‑018‑30046‑z 30076320
    [Google Scholar]
  90. Zhou J. Azrad M. Kong L. Effect of limonene on cancer development in rodent models: A systematic review. Front. Sustain. Food Syst. 2021 5 725077 10.3389/fsufs.2021.725077
    [Google Scholar]
  91. Miller J.A. Thompson P.A. Hakim I.A. Chow H-H.S. Thomson C.A. d-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev. 2011 5 1 31 42 10.1007/s12156‑010‑0066‑8
    [Google Scholar]
  92. Assali M. Jaradat N. Maqboul L. The Formation of self-assembled nanoparticles loaded with doxorubicin and D-Limonene for cancer therapy. ACS Omega 2022 7 46 42096 42104 10.1021/acsomega.2c04238 36440142
    [Google Scholar]
  93. Gu J.W. Makey K.L. Tucker K.B. Chinchar E. Mao X. Pei I. Thomas E.Y. Miele L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013 5 1 9 10.1186/2045‑824X‑5‑9 23638734
    [Google Scholar]
  94. Sen T. Dutta A. Chatterjee A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFκB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs 2010 21 6 632 644 10.1097/CAD.0b013e32833a4385 20527725
    [Google Scholar]
  95. Ramadon D. Wirarti G.A. Anwar E. Novel transdermal ethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract: formulation and in vitro penetration study. J. Young Pharm. 2017 9 3 336 340 10.5530/jyp.2017.9.67
    [Google Scholar]
  96. Yao Y.F. Liu X. Li W.J. Shi Z.W. Yan Y.X. Wang L.F. Chen M. Xie M.Y. (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci. 2017 180 151 159 10.1016/j.lfs.2016.12.004 27956351
    [Google Scholar]
  97. Ko J.H. Sethi G. Um J.Y. Shanmugam M.K. Arfuso F. Kumar A.P. Bishayee A. Ahn K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017 18 12 2589 10.3390/ijms18122589 29194365
    [Google Scholar]
  98. Alavi M. Farkhondeh T. Aschner M. Samarghandian S. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell Int. 2021 21 1 579 10.1186/s12935‑021‑02280‑5 34717625
    [Google Scholar]
  99. Soleas G.J. Diamandis E.P. Goldberg D.M. Resveratrol: A molecule whose time has come? And gone? Clin. Biochem. 1997 30 2 91 113 10.1016/S0009‑9120(96)00155‑5 9127691
    [Google Scholar]
  100. Rauf A. Imran M. Butt M.S. Nadeem M. Peters D.G. Mubarak M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018 58 9 1428 1447 10.1080/10408398.2016.1263597 28001084
    [Google Scholar]
  101. Alhalmi A. Amin S. Khan Z. Beg S. Al kamaly O. Saleh A. Kohli K. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex-vivo, in vivo assessment, and acute toxicity studies. Pharmaceutics 2022 14 9 1771 10.3390/pharmaceutics14091771 36145519
    [Google Scholar]
  102. Amjadi S. Hamishehkar H. Ghorbani M. A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy. Mater. Sci. Eng. C 2019 97 833 841 10.1016/j.msec.2018.12.104 30678974
    [Google Scholar]
  103. Hu H. Liao Z. Xu M. Wan S. Wu Y. Zou W. Wu J. Fan Q. Fabrication, optimization, and evaluation of paclitaxel and curcumin coloaded PLGA nanoparticles for improved antitumor activity. ACS Omega 2023 8 1 976 986 10.1021/acsomega.2c06359 36643566
    [Google Scholar]
  104. Gao Y. Shelling A.N. Nolan E. Porter D. Leung E. Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J. Liposome Res. 2024 34 3 489 506 10.1080/08982104.2024.2305866
    [Google Scholar]
  105. Nakagawa T. Hayashi K. Ogawa A. Oda G. Onishi I. Yamamoto M. Mori M. Fujioka T. Ishikawa T. Okamoto K. Uetake H. Bone marrow carcinomatosis in a stage IV breast cancer patient treated by letrozole as first-line endocrine therapy. Case Rep. Oncol. 2022 15 1 436 441 10.1159/000524152 35702555
    [Google Scholar]
  106. Singhai H. Rathee S. Jain S.K. Patil U.K. The potential of natural products in the management of cardiovascular disease. Curr. Pharm. Des. 2024 30 8 624 638 10.2174/0113816128295053240207090928 38477208
    [Google Scholar]
  107. Sen D. Rathee S. Pandey V. Jain S.K. Patil U.K. Comprehensive insights into pathophysiology of Alzheimer’s Disease: Herbal approaches for mitigating neurodegeneration. Curr. Alzheimer Res. 2024 2024 5003 10.2174/0115672050309057240404075003 38623983
    [Google Scholar]
  108. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  109. Manikishore M. Maurya S.K. Rathee S. Patil U.K. Genome editing approaches Using Zinc Finger Nucleases (ZFNs) for the treatment of motor neuron Diseases. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010307288240526071810 38847163
    [Google Scholar]
  110. Rathee S. Patil U.K. Jain S.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review. J. Explorat. Res. Pharmacol. 2024 9 1 51 64 10.14218/JERP.2023.00050
    [Google Scholar]
  111. Yadav D.K. Rathee S. Sharma V. Patil U.K. A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds. Anti-Inflamm. Anti-Allergy Agent. Med. Chem. 2024 Online ahead of print. 10.2174/0118715230322355240903072704
    [Google Scholar]
  112. Pandey V. Sen D. Rathee S. Soni S. Mishra S. Jain S.K. Patil U.K. Unlocking toll-like receptors: targeting therapeutics for respiratory tract infections and inflammatory disorders. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 3013 10.2174/0127722708329138240926073013
    [Google Scholar]
  113. Rathee S. Sen D. Pandey V. Jain S.K. Advances in understanding and managing Alzheimer’s Disease: From pathophysiology to innovative therapeutic strategies. Curr. Drug Targets 2024 25 11 752 774 10.2174/0113894501320096240627071400 39039673
    [Google Scholar]
  114. Pandey V. Rathee S. Sen D. Jain S.K. Patil U.K. Phytovesicular nanoconstructs for advanced delivery of medicinal metabolites: An in-depth review. Curr. Drug Targets. 2024 25 13 847 865
    [Google Scholar]
  115. Jain S.K. Molecular docking analysis of d-glucosamine and rivastigmine tartrate targeting alzheimer’s disease-associated proteins: An in silico approach. Asian J. Pharm. 2024 18 2 10.22377/ajp.v18i02.5458
    [Google Scholar]
  116. Sahu A. Rathee S. Saraf S. Jain S.K. A review on the recent advancements and artificial intelligence in tablet technology. Curr. Drug Targets 2024 25 6 416 430 10.2174/0113894501281290231221053939 38213164
    [Google Scholar]
  117. Sen D. Rathee S. Pandey V. Jain S.K. Exploring Saffron's therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications. Curr. Pharm. Des. 2024 Epub ahead of print.
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501352081241211090911
Loading
/content/journals/cdt/10.2174/0113894501352081241211090911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test