Skip to content
2000
image of Signaling Dynamics in Osteogenesis: Unraveling Therapeutic Targets for Bone Generation

Abstract

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems. Consequently, the selection of an appropriate target is a complicated process despite the significant demand for novel medications to address bone diseases. Research has shown the role of various cell signaling pathways, including Wnt, PTHR1, CASR, BMPRs, OSCAR, and TWIST1, in the regulation of osteogenesis, bone remodeling, and homeostasis. Disruptions in bone homeostasis can result in decreased bone density and the onset of osteoporosis. There remains a need for the development of drugs that can enhance bone remodeling with improved side effects profiles. The exploration of promising targets to stimulate bone formation has the potential to significantly advance the field of bone-related medical care, thereby improving the quality of life for millions. Additionally, a deeper understanding of anabolic and catabolic pathway mechanisms could enable future studies to explore synergistic effects between unrelated pathways. Herein, we explore potential drug targets that may be exploited therapeutically using small molecule agonists or antagonists to promote bone remodeling and discuss their advantages and limitations.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501359782241216082049
2025-01-08
2025-02-28
Loading full text...

Full text loading...

References

  1. Santa Maria C. Cheng Z. Li A. Wang J. Shoback D. Tu C.L. Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin. Cell Dev. Biol. 2016 49 11 23 10.1016/j.semcdb.2015.12.004 26688334
    [Google Scholar]
  2. Almalki S.G. Agrawal D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016 92 1-2 41 51 10.1016/j.diff.2016.02.005 27012163
    [Google Scholar]
  3. Choi J.U.A. Kijas A.W. Lauko J. Rowan A.E. The mechanosensory role of osteocytes and implications for bone health and disease states. Front. Cell Dev. Biol. 2022 9 770143 10.3389/fcell.2021.770143 35265628
    [Google Scholar]
  4. Nakashima T. Hayashi M. Fukunaga T. Kurata K. Oh-hora M. Feng J.Q. Bonewald L.F. Kodama T. Wutz A. Wagner E.F. Penninger J.M. Takayanagi H. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011 17 10 1231 1234 10.1038/nm.2452 21909105
    [Google Scholar]
  5. Fu Q. Bustamante-Gomez N.C. Reyes-Pardo H. Gubrij I. Escalona-Vargas D. Thostenson J.D. Palmieri M. Goellner J.J. Nookaew I. Barnes C.L. Stambough J.B. Ambrogini E. O’Brien C.A. Reduced osteoprotegerin expression by osteocytes may contribute to rebound resorption after denosumab discontinuation. JCI Insight 2023 8 18 e167790 10.1172/jci.insight.167790 37581932
    [Google Scholar]
  6. Boyce B. Yao Z. Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr. 2009 19 3 171 180 10.1615/CritRevEukarGeneExpr.v19.i3.10 19883363
    [Google Scholar]
  7. Tresguerres F.G.F. Torres J. López-Quiles J. Hernández G. Vega J.A. Tresguerres I.F. The osteocyte: A multifunctional cell within the bone. Ann. Anat. 2020 227 151422 10.1016/j.aanat.2019.151422 31563568
    [Google Scholar]
  8. Zhang Y. Polman M. Mohammad A.F. Hermens I. Zhuang Z. Wang H. van den Beucken J.J.J.P. Species-independent stimulation of osteogenic differentiation induced by osteoclasts. Biochem. Biophys. Res. Commun. 2022 606 149 155 10.1016/j.bbrc.2022.03.115 35358839
    [Google Scholar]
  9. Chen X. Wang Z. Duan N. Zhu G. Schwarz E.M. Xie C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018 59 2 99 107 10.1080/03008207.2017.1290085 28324674
    [Google Scholar]
  10. Ikebuchi Y. Aoki S. Honma M. Hayashi M. Sugamori Y. Khan M. Kariya Y. Kato G. Tabata Y. Penninger J.M. Udagawa N. Aoki K. Suzuki H. Coupling of bone resorption and formation by RANKL reverse signalling. Nature 2018 561 7722 195 200 10.1038/s41586‑018‑0482‑7 30185903
    [Google Scholar]
  11. Eastell R. O’Neill T.W. Hofbauer L.C. Langdahl B. Reid I.R. Gold D.T. Cummings S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers 2016 2 1 16069 10.1038/nrdp.2016.69 27681935
    [Google Scholar]
  12. Ishtiaq S. Fogelman I. Hampson G. Treatment of post-menopausal osteoporosis: Beyond bisphosphonates. J. Endocrinol. Invest. 2015 38 1 13 29 10.1007/s40618‑014‑0152‑z 25194424
    [Google Scholar]
  13. Cheloha R.W. Gellman S.H. Vilardaga J.P. Gardella T.J. PTH receptor-1 signalling—mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 2015 11 12 712 724 10.1038/nrendo.2015.139 26303600
    [Google Scholar]
  14. Chen T. Wang Y. Hao Z. Hu Y. Li J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 2021 192 114669 10.1016/j.bcp.2021.114669 34224692
    [Google Scholar]
  15. Park D.R. Kim J. Kim G.M. Lee H. Kim M. Hwang D. Lee H. Kim H.S. Kim W. Park M.C. Shim H. Lee S.Y. Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation. Nat. Commun. 2020 11 1 4343 10.1038/s41467‑020‑18208‑y 32859940
    [Google Scholar]
  16. Singer F.R. Bone H.G. III Hosking D.J. Lyles K.W. Murad M.H. Reid I.R. Siris E.S. Endocrine Society Paget’s disease of bone: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014 99 12 4408 4422 10.1210/jc.2014‑2910 25406796
    [Google Scholar]
  17. Kang H. Park Y.C. Yang K.H. Paget’s disease: Skeletal manifestations and effect of bisphosphonates. J. Bone Metab. 2017 24 2 97 103 10.11005/jbm.2017.24.2.97 28642853
    [Google Scholar]
  18. Choi Y.J. Sohn Y.B. Chung Y.S. Updates on paget’s disease of bone. Endocrinol. Metab. 2022 37 5 732 743 10.3803/EnM.2022.1575 36327984
    [Google Scholar]
  19. Ralston S.H. Corral-Gudino L. Cooper C. Francis R.M. Fraser W.D. Gennari L. Guañabens N. Javaid M.K. Layfield R. O’Neill T.W. Russell R.G.G. Stone M.D. Simpson K. Wilkinson D. Wills R. Zillikens M.C. Tuck S.P. Diagnosis and management of paget’s disease of bone in adults: A clinical guideline. J. Bone Miner. Res. 2019 34 4 579 604 10.1002/jbmr.3657 30803025
    [Google Scholar]
  20. Muschitz C. Feichtinger X. Haschka J. Kocijan R. Diagnosis and treatment of Paget’s disease of bone. Wien. Med. Wochenschr. 2017 167 1-2 18 24 10.1007/s10354‑016‑0502‑x 27600563
    [Google Scholar]
  21. Black D.M. Delmas P.D. Eastell R. Reid I.R. Boonen S. Cauley J.A. Cosman F. Lakatos P. Leung P.C. Man Z. Mautalen C. Mesenbrink P. Hu H. Caminis J. Tong K. Rosario-Jansen T. Krasnow J. Hue T.F. Sellmeyer D. Eriksen E.F. Cummings S.R. HORIZON Pivotal Fracture Trial Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 2007 356 18 1809 1822 10.1056/NEJMoa067312 17476007
    [Google Scholar]
  22. Drake M.T. Clarke B.L. Khosla S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008 83 9 1032 1045 10.4065/83.9.1032 18775204
    [Google Scholar]
  23. Mejias Rivera L. Shore E.M. Mourkioti F. Cellular and molecular mechanisms of heterotopic ossification in fibrodysplasia ossificans progressiva. Biomedicines 2024 12 4 779 10.3390/biomedicines12040779 38672135
    [Google Scholar]
  24. Willey J.S. Lloyd S.A.J. Nelson G.A. Bateman T.A. Ionizing radiation and bone loss: Space exploration and clinical therapy applications. Clin. Rev. Bone Miner. Metab. 2011 9 1 54 62 10.1007/s12018‑011‑9092‑8 22826690
    [Google Scholar]
  25. Li D. Sun J. Zhong T.P. Wnt signaling in heart development and regeneration. Curr. Cardiol. Rep. 2022 24 10 1425 1438 10.1007/s11886‑022‑01756‑8 35925512
    [Google Scholar]
  26. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  27. Hu L. Chen W. Qian A. Li Y.P. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024 12 1 39 10.1038/s41413‑024‑00342‑8 38987555
    [Google Scholar]
  28. Marini F. Giusti F. Palmini G. Brandi M.L. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos. Int. 2023 34 2 213 238 10.1007/s00198‑022‑06523‑7 35982318
    [Google Scholar]
  29. Appelman-Dijkstra N.M. Papapoulos S.E. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat. Rev. Endocrinol. 2018 14 10 605 623 10.1038/s41574‑018‑0087‑0 30181608
    [Google Scholar]
  30. Weivoda M.M. Ruan M. Pederson L. Hachfeld C. Davey R.A. Zajac J.D. Westendorf J.J. Khosla S. Oursler M.J. Osteoclast TGF-β receptor signaling induces wnt1 secretion and couples bone resorption to bone formation. J. Bone Miner. Res. 2016 31 1 76 85 10.1002/jbmr.2586 26108893
    [Google Scholar]
  31. Glass D.A. II Bialek P. Ahn J.D. Starbuck M. Patel M.S. Clevers H. Taketo M.M. Long F. McMahon A.P. Lang R.A. Karsenty G. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 2005 8 5 751 764 10.1016/j.devcel.2005.02.017 15866165
    [Google Scholar]
  32. Song L. Liu M. Ono N. Bringhurst F.R. Kronenberg H.M. Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J. Bone Miner. Res. 2012 27 11 2344 2358 10.1002/jbmr.1694 22729939
    [Google Scholar]
  33. Wan Y. Lu C. Cao J. Zhou R. Yao Y. Yu J. Zhang L. Zhao H. Li H. Zhao J. Zhu X. He L. Liu Y. Yao Z. Yang X. Guo X. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone 2013 55 1 258 267 10.1016/j.bone.2012.12.052 23334081
    [Google Scholar]
  34. Little R.D. Folz C. Manning S.P. Swain P.M. Zhao S-C. Eustace B. Lappe M.M. Spitzer L. Zweier S. Braunschweiger K. Benchekroun Y. Hu X. Adair R. Chee L. FitzGerald M.G. Tulig C. Caruso A. Tzellas N. Bawa A. Franklin B. McGuire S. Nogues X. Gong G. Allen K.M. Anisowicz A. Morales A.J. Lomedico P.T. Recker S.M. Van Eerdewegh P. Recker R.R. Carulli J.P. Del Mastro R.G. Dupuis J. Osborne M. Johnson M.L. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 2002 70 1 11 19 10.1086/338450 11741193
    [Google Scholar]
  35. Matsushita Y. Nagata M. Kozloff K.M. Welch J.D. Mizuhashi K. Tokavanich N. Hallett S.A. Link D.C. Nagasawa T. Ono W. Ono N. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun. 2020 11 1 332 10.1038/s41467‑019‑14029‑w 31949165
    [Google Scholar]
  36. Ma G. He J. Yu Y. Xu Y. Yu X. Martinez J. Lonard D.M. Xu J. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation. Int. J. Biol. Sci. 2015 11 5 618 628 10.7150/ijbs.11380 25892968
    [Google Scholar]
  37. Quarto N. Senarath-Yapa K. Renda A. Longaker M.T. TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem Cells 2015 33 3 833 847 10.1002/stem.1907 25446627
    [Google Scholar]
  38. Minisola S. Romosozumab: From basic to clinical aspects. Expert Opin. Biol. Ther. 2014 14 9 1225 1228 10.1517/14712598.2014.920815 24835636
    [Google Scholar]
  39. Eriksen E.F. Chapurlat R. Boyce R.W. Shi Y. Brown J.P. Horlait S. Betah D. Libanati C. Chavassieux P. Modeling-based bone formation after 2 months of romosozumab treatment: Results from the FRAME clinical trial. J. Bone Miner. Res. 2020 37 1 36 40 10.1002/jbmr.4457 34633116
    [Google Scholar]
  40. Hong N. Shin S. Kim H. Cho S.J. Park J.A. Rhee Y. Romosozumab following denosumab improves lumbar spine bone mineral density and trabecular bone score greater than denosumab continuation in postmenopausal women. J. Bone Miner. Res. 2024 ••• zjae179 10.1093/jbmr/zjae179 39485918
    [Google Scholar]
  41. Stokar J. Szalat A. Cardiovascular safety of romosozumab vs PTH analogues for osteoporosis treatment: A propensity-score-matched cohort study. J. Clin. Endocrinol. Metab. 2024 ••• dgae173 10.1210/clinem/dgae173 38482603
    [Google Scholar]
  42. Eriksen E.F. Boyce R.W. Shi Y. Brown J.P. Betah D. Libanati C. Oates M. Chapurlat R. Chavassieux P. Reconstruction of remodeling units reveals positive effects after 2 and 12 months of romosozumab treatment. J. Bone Miner. Res. 2024 39 6 729 736 10.1093/jbmr/zjae055 38640512
    [Google Scholar]
  43. Cheng S.H. Chu W. Chou W.H. Chu W.C. Kang Y.N. Cardiovascular safety of romosozumab compared to commonly used anti-osteoporosis medications in postmenopausal osteoporosis: A systematic review and network meta-analysis of randomized controlled trials. Drug Saf. 2024 10.1007/s40264‑024‑01475‑9 39227560
    [Google Scholar]
  44. Markham A. Romosozumab: First global approval. Drugs 2019 79 4 471 476 10.1007/s40265‑019‑01072‑6 30805895
    [Google Scholar]
  45. Zhong Y. Li X. Zhu D. Zhao N. Yao H. Lin K. Characteristics of parathyroid hormone-1 receptor agonists and antagonists. Future Med. Chem. 2019 11 8 817 831 10.4155/fmc‑2018‑0508 30998079
    [Google Scholar]
  46. Liu H. Liu L. Rosen C.J. PTH and the regulation of mesenchymal cells within the bone marrow niche. Cells 2024 13 5 406 10.3390/cells13050406 38474370
    [Google Scholar]
  47. Yavropoulou M.P. Michopoulos A. Yovos J.G. PTH and PTHR1 in osteocytes. New insights into old partners. Hormones 2017 16 2 150 160 10.14310/horm.2002.1730 28742503
    [Google Scholar]
  48. Wu M. Deng L. Zhu G. Li Y.P.G. G Protein and its signaling pathway in bone development and disease. Front. Biosci. 2010 15 1 957 985 10.2741/3656 20515736
    [Google Scholar]
  49. Yang Y. Wang B. PTH1R-CaSR cross talk: New treatment options for breast cancer osteolytic bone metastases. Int. J. Endocrinol. 2018 2018 1 8 10.1155/2018/7120979 30151009
    [Google Scholar]
  50. Qin L. Raggatt L.J. Partridge N.C. Parathyroid hormone: A double-edged sword for bone metabolism. Trends Endocrinol. Metab. 2004 15 2 60 65 10.1016/j.tem.2004.01.006 15036251
    [Google Scholar]
  51. Rendina-Ruedy E. Rosen C.J. Parathyroid hormone (PTH) regulation of metabolic homeostasis: An old dog teaches us new tricks. Mol. Metab. 2022 60 101480 10.1016/j.molmet.2022.101480 35338013
    [Google Scholar]
  52. Hiremath M. Dann P. Fischer J. Butterworth D. Boras-Granic K. Hens J. Van Houten J. Shi W. Wysolmerski J. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 2012 139 22 4239 4249 10.1242/dev.080671 23034629
    [Google Scholar]
  53. Martin T.J. PTH1R actions on bone using the cAMP/protein kinase a pathway. Front. Endocrinol. 2022 12 833221 10.3389/fendo.2021.833221 35126319
    [Google Scholar]
  54. Sim I.W. Borromeo G.L. Tsao C. Hardiman R. Hofman M.S. Papatziamos Hjelle C. Siddique M. Cook G.J.R. Seymour J.F. Ebeling P.R. Teriparatide promotes bone healing in medication-related osteonecrosis of the jaw: A placebo-controlled, randomized trial. J. Clin. Oncol. 2020 38 26 2971 2980 10.1200/JCO.19.02192 32614699
    [Google Scholar]
  55. Tang Y. Xia H. Kang L. Sun Q. Su Z. Hao C. Xue Y. Effects of intermittent parathyroid hormone 1–34 administration on circulating mesenchymal stem cells in postmenopausal osteoporotic women. Med. Sci. Monit. 2019 25 259 268 10.12659/MSM.913752 30620727
    [Google Scholar]
  56. Neer R.M. Arnaud C.D. Zanchetta J.R. Prince R. Gaich G.A. Reginster J.Y. Hodsman A.B. Eriksen E.F. Ish-Shalom S. Genant H.K. Wang O. Mellström D. Oefjord E.S. Marcinowska-Suchowierska E. Salmi J. Mulder H. Halse J. Sawicki A.Z. Mitlak B.H. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 2001 344 19 1434 1441 10.1056/NEJM200105103441904 11346808
    [Google Scholar]
  57. Yamaguchi T. The calcium-sensing receptor in bone. J. Bone Miner. Metab. 2008 26 4 301 311 10.1007/s00774‑008‑0843‑7 18600395
    [Google Scholar]
  58. Zhang L.X. Zhang B. Liu X.Y. Wang Z.M. Qi P. Zhang T.Y. Zhang Q. Advances in the treatment of secondary and tertiary hyperparathyroidism. Front. Endocrinol. 2022 13 1059828 10.3389/fendo.2022.1059828 36561571
    [Google Scholar]
  59. Sarem M. Heizmann M. Barbero A. Martin I. Shastri V.P. Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proc. Natl. Acad. Sci. USA 2018 115 27 E6135 E6144 10.1073/pnas.1805159115 29915064
    [Google Scholar]
  60. Fukagawa M. Shimazaki R. Akizawa T. Evocalcet study group Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2018 94 4 818 825 10.1016/j.kint.2018.05.013 30049473
    [Google Scholar]
  61. Fang D. Chen H. Association between serum calcium level and in-hospital mortality in patients with acute myocardial infarction: A retrospective cohort study. Sci. Rep. 2022 12 1 19954 10.1038/s41598‑022‑24566‑y 36402887
    [Google Scholar]
  62. Dong B. Endo I. Ohnishi Y. Mitsui Y. Kurahashi K. Kanai M. Hiasa M. Teramachi J. Tenshin H. Fukumoto S. Abe M. Matsumoto T. Persistent activation of calcium-sensing receptor suppresses bone turnover, increases microcracks, and decreases bone strength. JBMR Plus 2019 3 7 e10182 10.1002/jbm4.10182 31372589
    [Google Scholar]
  63. Cosman F. Crittenden D.B. Adachi J.D. Binkley N. Czerwinski E. Ferrari S. Hofbauer L.C. Lau E. Lewiecki E.M. Miyauchi A. Zerbini C.A.F. Milmont C.E. Chen L. Maddox J. Meisner P.D. Libanati C. Grauer A. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 2016 375 16 1532 1543 10.1056/NEJMoa1607948 27641143
    [Google Scholar]
  64. Ogata M. Ushimaru S. Fujishima R. Sumi H. Shiizaki K. Tominaga N. Romosozumab improves low bone mineral density in a postmenopausal woman undergoing chronic hemodialysis and treated with a calcium-sensing receptor agonist. Bone Rep. 2022 17 101639 10.1016/j.bonr.2022.101639
    [Google Scholar]
  65. Valer J.A. Sánchez-de-Diego C. Pimenta-Lopes C. Rosa J.L. Ventura F. ACVR1 function in health and disease. Cells 2019 8 11 1366 10.3390/cells8111366 31683698
    [Google Scholar]
  66. Omi M. Kaartinen V. Mishina Y. Activin A receptor type 1–mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J. Biol. Chem. 2019 294 47 17818 17836 10.1074/jbc.RA119.009521 31619522
    [Google Scholar]
  67. Yadin D. Knaus P. Mueller T.D. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev. 2016 27 13 34 10.1016/j.cytogfr.2015.11.005 26690041
    [Google Scholar]
  68. Sanchez-Duffhues G. Williams E. Goumans M.J. Heldin C.H. ten Dijke P. Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone 2020 138 115472 10.1016/j.bone.2020.115472 32522605
    [Google Scholar]
  69. Chen D. Zhao M. Mundy G.R. Bone morphogenetic proteins. Growth Factors 2004 22 4 233 241 10.1080/08977190412331279890 15621726
    [Google Scholar]
  70. Chen G. Deng C. Li Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012 8 2 272 288 10.7150/ijbs.2929 22298955
    [Google Scholar]
  71. Zhang X. Liu Q. Zhao H. Hu Y. Liu C. Yan G. Li D. Mishina Y. Shi C. Sun H. ACVR1 is essential for periodontium development and promotes alveolar bone formation. Arch. Oral Biol. 2018 95 108 117 10.1016/j.archoralbio.2018.07.019 30098439
    [Google Scholar]
  72. Hu Y. Hao X. Liu C. Ren C. Wang S. Yan G. Meng Y. Mishina Y. Shi C. Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J. Cell. Physiol. 2021 236 6 4580 4591 10.1002/jcp.30183 33251612
    [Google Scholar]
  73. Luo J. Tang M. Huang J. He B.C. Gao J.L. Chen L. Zuo G.W. Zhang W. Luo Q. Shi Q. Zhang B.Q. Bi Y. Luo X. Jiang W. Su Y. Shen J. Kim S.H. Huang E. Gao Y. Zhou J.Z. Yang K. Luu H.H. Pan X. Haydon R.C. Deng Z.L. He T.C. TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. J. Biol. Chem. 2010 285 38 29588 29598 10.1074/jbc.M110.130518 20628059
    [Google Scholar]
  74. Kaplan F.S. Seemann P. Haupt J. Xu M. Lounev V.Y. Mullins M. Shore E.M. Investigations of activated ACVR1/ALK2, a bone morphogenetic protein type I receptor, that causes fibrodysplasia ossificans progressiva. Methods Enzymol. 2010 484 357 373 10.1016/B978‑0‑12‑381298‑8.00018‑6 21036241
    [Google Scholar]
  75. Yamamoto M. Stoessel S.J. Yamamoto S. Goldhamer D.J. Overexpression of Wild-Type ACVR1 in Fibrodysplasia Ossificans Progressiva Mice Rescues Perinatal Lethality and Inhibits Heterotopic Ossification. J. Bone Miner. Res. 2020 37 11 2077 2093 10.1002/jbmr.4617 35637634
    [Google Scholar]
  76. Agarwal S. Loder S.J. Brownley C. Eboda O. Peterson J.R. Hayano S. Wu B. Zhao B. Kaartinen V. Wong V.C. Mishina Y. Levi B. BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev. Biol. 2015 400 2 202 209 10.1016/j.ydbio.2015.02.011 25722188
    [Google Scholar]
  77. Pacifici M. Shore E.M. Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders. Cytokine Growth Factor Rev. 2016 27 93 104 10.1016/j.cytogfr.2015.12.007 26776312
    [Google Scholar]
  78. Hatsell S.J. Idone V. Wolken D.M.A. Huang L. Kim H.J. Wang L. Wen X. Nannuru K.C. Jimenez J. Xie L. Das N. Makhoul G. Chernomorsky R. D’Ambrosio D. Corpina R.A. Schoenherr C.J. Feeley K. Yu P.B. Yancopoulos G.D. Murphy A.J. Economides A.N. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl. Med. 2015 7 303 303ra137 10.1126/scitranslmed.aac4358 26333933
    [Google Scholar]
  79. Ramachandran A. Mehić M. Wasim L. Malinova D. Gori I. Blaszczyk B.K. Carvalho D.M. Shore E.M. Jones C. Hyvönen M. Tolar P. Hill C.S. Pathogenic ACVR1 R206H activation by Activin A-induced receptor clustering and autophosphorylation. EMBO J. 2021 40 14 e106317 10.15252/embj.2020106317 34003511
    [Google Scholar]
  80. Hino K. Horigome K. Nishio M. Komura S. Nagata S. Zhao C. Jin Y. Kawakami K. Yamada Y. Ohta A. Toguchida J. Ikeya M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J. Clin. Invest. 2017 127 9 3339 3352 10.1172/JCI93521 28758906
    [Google Scholar]
  81. Fukuda T. Kohda M. Kanomata K. Nojima J. Nakamura A. Kamizono J. Noguchi Y. Iwakiri K. Kondo T. Kurose J. Endo K. Awakura T. Fukushi J. Nakashima Y. Chiyonobu T. Kawara A. Nishida Y. Wada I. Akita M. Komori T. Nakayama K. Nanba A. Maruki Y. Yoda T. Tomoda H. Yu P.B. Shore E.M. Kaplan F.S. Miyazono K. Matsuoka M. Ikebuchi K. Ohtake A. Oda H. Jimi E. Owan I. Okazaki Y. Katagiri T. Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva. J. Biol. Chem. 2009 284 11 7149 7156 10.1074/jbc.M801681200 18684712
    [Google Scholar]
  82. Wang Y. Nguyen J.H. de Ruiter R.D. Mendell J. Srinivasan D. Davis J.D. Eekhoff E.M.W. Garetosmab in Fibrodysplasia ossificans progressiva: Clinical pharmacology results from the phase 2 LUMINA-1 trial. J. Clin. Pharmacol. 2024 64 2 264 274 10.1002/jcph.2344 37694449
    [Google Scholar]
  83. Kamiya N. Kaartinen V.M. Mishina Y. Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem. Biophys. Res. Commun. 2011 414 2 326 330 10.1016/j.bbrc.2011.09.060 21945937
    [Google Scholar]
  84. Wang Y. Sun J.C. Wang H.B. Xu X.M. Kong Q.J. Wang Y.J. Zheng B. Shi G.D. Shi J.G. ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice. J. Cell. Biochem. 2019 120 5 8185 8194 10.1002/jcb.28100 30556170
    [Google Scholar]
  85. Peterson J.R. Eboda O. Agarwal S. Ranganathan K. Buchman S.R. Lee M. Wang S.C. Mishina Y. Levi B. Targeting of ALK2, a receptor for bone morphogenetic proteins, using the Cre/lox system to enhance osseous regeneration by adipose-derived stem cells. Stem Cells Transl. Med. 2014 3 11 1375 1380 10.5966/sctm.2014‑0082 25232183
    [Google Scholar]
  86. Shi C. Mandair G.S. Zhang H. Vanrenterghem G.G. Ridella R. Takahashi A. Zhang Y. Kohn D.H. Morris M.D. Mishina Y. Sun H. Bone morphogenetic protein signaling through ACVR1 and BMPR1A negatively regulates bone mass along with alterations in bone composition. J. Struct. Biol. 2018 201 3 237 246 10.1016/j.jsb.2017.11.010 29175363
    [Google Scholar]
  87. Tobeiha M. Moghadasian M.H. Amin N. Jafarnejad S. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. BioMed Res. Int. 2020 2020 1 11 10.1155/2020/6910312 32149122
    [Google Scholar]
  88. Barrow A.D. Raynal N. Andersen T.L. Slatter D.A. Bihan D. Pugh N. Cella M. Kim T. Rho J. Negishi-Koga T. Delaisse J.M. Takayanagi H. Lorenzo J. Colonna M. Farndale R.W. Choi Y. Trowsdale J. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J. Clin. Invest. 2011 121 9 3505 3516 10.1172/JCI45913 21841309
    [Google Scholar]
  89. Vitale M. Ligorio C. Richardson S.M. Hoyland J.A. Bella J. Collagen-like osteoclast-associated receptor (OSCAR)-binding motifs show a co-stimulatory effect on osteoclastogenesis in a peptide hydrogel system. Int. J. Mol. Sci. 2023 25 1 445 10.3390/ijms25010445 38203618
    [Google Scholar]
  90. Nedeva I.R. Vitale M. Elson A. Hoyland J.A. Bella J. Role of OSCAR signaling in osteoclastogenesis and bone disease. Front. Cell Dev. Biol. 2021 9 641162 10.3389/fcell.2021.641162 33912557
    [Google Scholar]
  91. Daponte V. Henke K. Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast–osteoblast communication and potential clinical implications. eLife 2024 13 e95083 10.7554/eLife.95083 38591777
    [Google Scholar]
  92. Haywood J. Qi J. Chen C.C. Lu G. Liu Y. Yan J. Shi Y. Gao G.F. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors. Proc. Natl. Acad. Sci. USA 2016 113 4 1038 1043 10.1073/pnas.1522572113 26744311
    [Google Scholar]
  93. Kim G.M. Park D.R. Nguyen T.T.H. Kim J. Kim J. Sohn M.H. Lee W.K. Lee S.Y. Shim H. Development of anti-OSCAR antibodies for the treatment of osteoarthritis. Biomedicines 2023 11 10 2844 10.3390/biomedicines11102844 37893216
    [Google Scholar]
  94. Kim G.M. Park H. Lee S.Y. Roles of osteoclast-associated receptor in rheumatoid arthritis and osteoarthritis. Joint Bone Spine 2022 89 5 105400 10.1016/j.jbspin.2022.105400 35504517
    [Google Scholar]
  95. Kim J. Ryu G. Seo J. Go M. Kim G. Yi S. Kim S. Lee H. Lee J.Y. Kim H.S. Park M.C. Shin D.H. Shim H. Kim W. Lee S.Y. 5-aminosalicylic acid suppresses osteoarthritis through the OSCAR-PPARγ axis. Nat. Commun. 2024 15 1 1024 10.1038/s41467‑024‑45174‑6 38310093
    [Google Scholar]
  96. Goettsch C. Rauner M. Sinningen K. Helas S. Al-Fakhri N. Nemeth K. Hamann C. Kopprasch S. Aikawa E. Bornstein S.R. Schoppet M. Hofbauer L.C. The osteoclast-associated receptor (OSCAR) is a novel receptor regulated by oxidized low-density lipoprotein in human endothelial cells. Endocrinology 2011 152 12 4915 4926 10.1210/en.2011‑1282 22009730
    [Google Scholar]
  97. Merck E. Gaillard C. Scuiller M. Scapini P. Cassatella M.A. Trinchieri G. Bates E.E.M. Ligation of the FcR gamma chain-associated human osteoclast-associated receptor enhances the proinflammatory responses of human monocytes and neutrophils. J. Immunol. 2006 176 5 3149 3156 10.4049/jimmunol.176.5.3149 16493074
    [Google Scholar]
  98. Bialek P. Kern B. Yang X. Schrock M. Sosic D. Hong N. Wu H. Yu K. Ornitz D.M. Olson E.N. Justice M.J. Karsenty G. A twist code determines the onset of osteoblast differentiation. Dev. Cell 2004 6 3 423 435 10.1016/S1534‑5807(04)00058‑9 15030764
    [Google Scholar]
  99. Qin Q. Xu Y. He T. Qin C. Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012 22 1 90 106 10.1038/cr.2011.144 21876555
    [Google Scholar]
  100. Thisse B. Messal M.E. Perrin-Schmitt F. The twist gene: Isolation of a Drosophila zygotle gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res. 1987 15 8 3439 3453 10.1093/nar/15.8.3439 3106932
    [Google Scholar]
  101. Haga C.L. Booker C.N. Carvalho A. Boregowda S.V. Phinney D.G. Transcriptional targets of TWIST1 in human mesenchymal stem/stromal cells mechanistically link stem/progenitor and paracrine functions. Stem Cells 2023 41 12 1185 1200 10.1093/stmcls/sxad070 37665974
    [Google Scholar]
  102. Lee R.H. Boregowda S.V. Shigemoto-Kuroda T. Bae E. Haga C.L. Abbery C.A. Bayless K.J. Haskell A. Gregory C.A. Ortiz L.A. Phinney D.G. TWIST1 and TSG6 are coordinately regulated and function as potency biomarkers in human MSCs. Sci. Adv. 2023 9 45 eadi2387 10.1126/sciadv.adi2387 37948519
    [Google Scholar]
  103. Chang A.T. Liu Y. Ayyanathan K. Benner C. Jiang Y. Prokop J.W. Paz H. Wang D. Li H.R. Fu X.D. Rauscher F.J. III Yang J. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015 29 6 603 616 10.1101/gad.242842.114 25762439
    [Google Scholar]
  104. Zhang XW Zhang BY Wang SW Gong DJ Han L Xu ZY Liu XH Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J. Thorac. Cardiovasc. Surg. 2014 148 1700 1708 10.1016/j.jtcvs.2014.02.084
    [Google Scholar]
  105. Booker C.N. Haga C.L. Boregowda S.V. Strivelli J. Phinney D.G. Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021 7 1 49 10.1038/s41526‑021‑00178‑0 34836964
    [Google Scholar]
  106. Boregowda S.V. Krishnappa V. Haga C.L. Ortiz L.A. Phinney D.G. A clinical indications prediction scale based on TWIST1 for human mesenchymal stem cells. EBioMedicine 2016 4 62 73 10.1016/j.ebiom.2015.12.020 26981553
    [Google Scholar]
  107. Yang D.C. Yang M.H. Tsai C.C. Huang T.F. Chen Y.H. Hung S.C. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 2011 6 9 e23965 10.1371/journal.pone.0023965 21931630
    [Google Scholar]
  108. Hayashi M. Nimura K. Kashiwagi K. Harada T. Takaoka K. Kato H. Tamai K. Kaneda Y. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J. Cell Sci. 2007 120 8 1350 1357 10.1242/jcs.000067 17374642
    [Google Scholar]
  109. Shibata Y. Tsukazaki T. Hirata K. Xin C. Yamaguchi A. Role of a new member of IGFBP superfamily, IGFBP-rP10, in proliferation and differentiation of osteoblastic cells. Biochem. Biophys. Res. Commun. 2004 325 4 1194 1200 10.1016/j.bbrc.2004.10.157 15555553
    [Google Scholar]
  110. Patel K. Gadewar M. Tripathi R. Prasad S.K. Patel D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac. J. Trop. Biomed. 2012 2 8 660 664 10.1016/S2221‑1691(12)60116‑6 23569990
    [Google Scholar]
  111. Yochum Z.A. Cades J. Mazzacurati L. Neumann N.M. Khetarpal S.K. Chatterjee S. Wang H. Attar M.A. Huang E.H.B. Chatley S.N. Nugent K. Somasundaram A. Engh J.A. Ewald A.J. Cho Y.J. Rudin C.M. Tran P.T. Burns T.F. A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Mol. Cancer Res. 2017 15 12 1764 1776 10.1158/1541‑7786.MCR‑17‑0298 28851812
    [Google Scholar]
  112. Nafie E. Lolarga J. Lam B. Guo J. Abdollahzadeh E. Rodriguez S. Glackin C. Liu J. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PLoS One 2021 16 2 e0247652 10.1371/journal.pone.0247652 33626096
    [Google Scholar]
  113. Egusa H. Doi M. Saeki M. Fukuyasu S. Akashi Y. Yokota Y. Yatani H. Kamisaki Y. The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells. Bone 2011 49 2 264 274 10.1016/j.bone.2011.04.003 21504804
    [Google Scholar]
  114. Huang J. Yin H. Rao S.S. Xie P.L. Cao X. Rao T. Liu S.Y. Wang Z.X. Cao J. Hu Y. Zhang Y. Luo J. Tan Y.J. Liu Z.Z. Wu B. Hu X.K. Chen T.H. Chen C.Y. Xie H. Harmine enhances type H vessel formation and prevents bone loss in ovariectomized mice. Theranostics 2018 8 9 2435 2446 10.7150/thno.22144 29721090
    [Google Scholar]
  115. Yonezawa T. Hasegawa S. Asai M. Ninomiya T. Sasaki T. Cha B.Y. Teruya T. Ozawa H. Yagasaki K. Nagai K. Woo J.T. Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. Eur. J. Pharmacol. 2011 650 2-3 511 518 10.1016/j.ejphar.2010.10.048 21047508
    [Google Scholar]
  116. Yonezawa T. Lee J.W. Hibino A. Asai M. Hojo H. Cha B.Y. Teruya T. Nagai K. Chung U.I. Yagasaki K. Woo J.T. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling. Biochem. Biophys. Res. Commun. 2011 409 2 260 265 10.1016/j.bbrc.2011.05.001 21570953
    [Google Scholar]
  117. Fujiwara N. Lee J.W. Kumakami-Sakano M. Otsu K. Woo J.T. Iseki S. Ota M.S. Harmine promotes molar root development via SMAD1/5/8 phosphorylation. Biochem. Biophys. Res. Commun. 2018 497 3 924 929 10.1016/j.bbrc.2017.12.062 29253570
    [Google Scholar]
  118. Xu Y. Qin W. Guo D. Liu J. Zhang M. Jin Z. LncRNA-TWIST1 promoted osteogenic differentiation both in PPDLSCs and in HPDLSCs by inhibiting TWIST1 expression. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/8735952 31341908
    [Google Scholar]
  119. Haga C.L. Phinney D.G. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J. Biol. Chem. 2012 287 51 42695 42707 10.1074/jbc.M112.387761 23105110
    [Google Scholar]
  120. Zhang M. Meng M. Liu Y. Qi J. Zhao Z. Qiao Y. Hu Y. Lu W. Zhou Z. Xu P. Zhou Q. Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Res. 2021 23 1 116 10.1186/s13058‑021‑01488‑7 34922602
    [Google Scholar]
  121. Cui J. Li X. Wang S. Su Y. Chen X. Cao L. Zhi X. Qiu Z. Wang Y. Jiang H. Huang B. Ji F. Su J. Triptolide prevents bone loss via suppressing osteoclastogenesis through inhibiting PI3K-AKT-NFATc1 pathway. J. Cell. Mol. Med. 2020 24 11 6149 6161 10.1111/jcmm.15229 32347017
    [Google Scholar]
  122. Luo D. Ren H. Zhang H. Zhang P. Huang Z. Xian H. Lian K. Lin D. The protective effects of triptolide on age-related bone loss in old male rats. Biomed. Pharmacother. 2018 98 280 285 10.1016/j.biopha.2017.12.072 29274584
    [Google Scholar]
  123. Zullo A.R. Lee Y. Lary C. Daiello L.A. Kiel D.P. Berry S.D. Comparative effectiveness of denosumab, teriparatide, and zoledronic acid among frail older adults: A retrospective cohort study. Osteoporos. Int. 2021 32 3 565 573 10.1007/s00198‑020‑05732‑2 33411003
    [Google Scholar]
  124. Dharmapatni A.A.S.S.K. Algate K. Coleman R. Lorimer M. Cantley M.D. Smith M.D. Wechalekar M.D. Crotti T.N. Osteoclast-associated receptor (OSCAR) distribution in the synovial tissues of patients with active RA and TNF-α and RANKL regulation of expression by osteoclasts in vitro. Inflammation 2017 40 5 1566 1575 10.1007/s10753‑017‑0597‑2 28555364
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501359782241216082049
Loading
/content/journals/cdt/10.2174/0113894501359782241216082049
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: osteoblast ; PTHR1 ; Osteogenesis ; bone remodeling ; OSCAR ; TWIST1 ; CASR ; ACVR1 ; bone homeostasis ; osteoclast
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test