Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Emerging challenges to human health necessitate a coordinated effort to find both preventative and therapeutic techniques, with natural products at the forefront of attempts to gain novel medicines and minimize disease transmission and related death. The medicinal potential of chemicals contained in plants has been known for centuries, leading to its use in homes and clinics for the treatment of numerous disorders. Despite global advancements, plant-based medicines continue to be utilized to treat various pathological illnesses or as alternatives to contemporary pharmaceuticals. The safety and low toxicity of natural products have led to their increasing acceptability for the prevention or treatment of many ailments. Flavonoids are biologically active compounds that are classified as polyphenols, which are a type of secondary metabolite found in all plants. Icariside II (ICA-II) is one of the secondary metabolites that belong to the flavonoid category of phytochemicals and is present in Maxim. In recent years, ICA-II has been discovered to show anti-inflammatory, antioxidant, anticancer, renal protecting, and cardiac protective effects, as well as several other biological characteristics. This review is focused on the exploration of the pharmacological activities of ICA-II. ICA-II is considered a prospective candidate for future clinical investigations due to a number of therapeutic properties.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501329810241117231839
2025-01-02
2025-05-04
Loading full text...

Full text loading...

References

  1. AhmadB. RehmanM.U. AminI. ArifA. RasoolS. BhatS.A. AfzalI. HussainI. BilalS. MirM.R. A review on pharmacological properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2- butanone).ScientificWorldJournal20152015181636410.1155/2015/81636426106644
    [Google Scholar]
  2. DuaK. SheshalaR. Al-WaeliH. GuptaG. ChellappanD. Antimicrobial efficacy of extemporaneously prepared herbal mouthwashes.Recent Pat. Drug Deliv. Formul.20159320120510.2174/187221130966615060809510626051152
    [Google Scholar]
  3. HongJ. Role of natural product diversity in chemical biology.Curr. Opin. Chem. Biol.201115335035410.1016/j.cbpa.2011.03.00421489856
    [Google Scholar]
  4. GuJ. GuiY. ChenL. YuanG. LuH.Z. XuX. Use of natural products as chemical library for drug discovery and network pharmacology.PLoS One201384e6283910.1371/journal.pone.006283923638153
    [Google Scholar]
  5. HavsteenB.H. The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.2002962-36720210.1016/S0163‑7258(02)00298‑X12453566
    [Google Scholar]
  6. Rice-EvansC. PackerL. Flavonoids in health and diseaseCRC Press2nd ed200310.1201/9780367803681
    [Google Scholar]
  7. HavsteenB. Flavonoids, a class of natural products of high pharmacological potency.Biochem. Pharmacol.19833271141114810.1016/0006‑2952(83)90262‑96342623
    [Google Scholar]
  8. RobakJ. GryglewskiR.J. Flavonoids are scavengers of superoxide anions.Biochem. Pharmacol.198837583784110.1016/0006‑2952(88)90169‑42830882
    [Google Scholar]
  9. MorelI. LescoatG. CogrelP. SergentO. PasdeloupN. BrissotP. CillardP. CillardJ. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures.Biochem. Pharmacol.1993451131910.1016/0006‑2952(93)90371‑38424806
    [Google Scholar]
  10. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.00216323269
    [Google Scholar]
  11. MiddletonE.Jr KandaswamiC. TheoharidesT.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer.Pharmacol. Rev.200052467375111121513
    [Google Scholar]
  12. MarderM. PaladiniA. GABA(A)-receptor ligands of flavonoid structure.Curr. Top. Med. Chem.20022885386710.2174/156802602339346212171576
    [Google Scholar]
  13. GalatiG. O’BrienP.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties.Free Radic. Biol. Med.200437328730310.1016/j.freeradbiomed.2004.04.03415223063
    [Google Scholar]
  14. ShamsudinN.F. AhmedQ.U. MahmoodS. Ali ShahS.A. KhatibA. MukhtarS. AlsharifM.A. ParveenH. ZakariaZ.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules2022274114910.3390/molecules2704114935208939
    [Google Scholar]
  15. AkhavanO. GhaderiE. AboueiE. HatamieS. GhasemiE. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets.Carbon20146639540610.1016/j.carbon.2013.09.015
    [Google Scholar]
  16. AiS. LiY. ZhengH. ZhangM. TaoJ. LiuW. PengL. WangZ. WangY. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023.J. Nanobiotechnol202422114010.1186/s12951‑024‑02426‑338556857
    [Google Scholar]
  17. TejaP.K. MithiyaJ. KateA.S. BairwaK. ChautheS.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview.Phytomedicine20229615389010.1016/j.phymed.2021.15389035026510
    [Google Scholar]
  18. AkhavanO. KalaeeM. AlaviZ.S. GhiasiS.M.A. EsfandiarA. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide.Carbon20125083015302510.1016/j.carbon.2012.02.087
    [Google Scholar]
  19. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A32264560
    [Google Scholar]
  20. Ramezani FaraniM. FarsadroohM. ZareI. GholamiA. AkhavanO. Green synthesis of magnesium oxide nanoparticles and nanocomposites for photocatalytic antimicrobial, antibiofilm and antifungal applications.Catalysts202313464210.3390/catal13040642
    [Google Scholar]
  21. JannatK. PaulA.K. BondhonT.A. HasanA. NawazM. JahanR. MahboobT. NissapatornV. WilairatanaP. PereiraM.L. RahmatullahM. Nanotechnology applications of flavonoids for viral diseases.Pharmaceutics20211311189510.3390/pharmaceutics1311189534834309
    [Google Scholar]
  22. GuoL. LiY. MaoX. TaoR. TaoB. ZhouZ. Antifungal activity of polymethoxylated flavonoids (PMFs)-loaded citral nanoemulsion against Penicillium italicum by causing cell membrane damage.J. Fungi (Basel)20228438810.3390/jof804038835448619
    [Google Scholar]
  23. HatamieS. AkhavanO. SadrnezhaadS.K. AhadianM.M. ShirolkarM.M. WangH.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells.Mater. Sci. Eng. C20155548248910.1016/j.msec.2015.05.07726117780
    [Google Scholar]
  24. AbdolahadM. JanmalekiM. MohajerzadehS. AkhavanO. AbbasiS. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.Mater. Sci. Eng. C20133331498150510.1016/j.msec.2012.12.05223827601
    [Google Scholar]
  25. XiaoP.G. XingS.T. WangL.W. Immunological aspects of Chinese medicinal plants as antiageing drugs.J. Ethnopharmacol.1993382-315916510.1016/0378‑8741(93)90012‑T8510465
    [Google Scholar]
  26. MengF.H. LiY.B. XiongZ.L. JiangZ.M. LiF.M. Osteoblastic proliferative activity of Epimedium brevicornum Maxim.Phytomedicine200512318919310.1016/j.phymed.2004.03.00715830840
    [Google Scholar]
  27. SzeS.C.W. TongY. NgT.B. ChengC.L.Y. CheungH.P. Herba Epimedii: Anti-oxidative properties and its medical implications.Molecules201015117861787010.3390/molecules1511786121060294
    [Google Scholar]
  28. LeeK.S. LeeH.J. AhnK.S. KimS.H. NamD. KimD.K. ChoiD.Y. AhnK.S. LuJ. KimS.H. Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells.Cancer Lett.200928019310010.1016/j.canlet.2009.02.02419289254
    [Google Scholar]
  29. GuJ. SunX. WangG. LiM. ChiM. IcarisideI.I. Icariside II enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression coupled with the ERK, Akt and JNK signaling pathways.Molecules201116119234924410.3390/molecules1611923422051934
    [Google Scholar]
  30. GengY. ZhangC. ShiY. XiaY. GuoC. YangL. KongL. Icariside II-induced mitochondrion and lysosome mediated apoptosis is counterbalanced by an autophagic salvage response in hepatoblastoma.Cancer Lett.20153661193110.1016/j.canlet.2015.05.03226118776
    [Google Scholar]
  31. LuoG. GuF. ZhangY. LiuT. GuoP. HuangY. Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine.Int. J. Clin. Exp. Pathol.2015854367437726191128
    [Google Scholar]
  32. CaiW.J. HuangJ.H. ZhangS.Q. WuB. KapahiP. ZhangX.M. ShenZ.Y. Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans.PLoS One2011612e2883510.1371/journal.pone.002883522216122
    [Google Scholar]
  33. WangL. XuY. LiH. LeiH. GuanR. GaoZ. XinZ. Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats.J. Cell. Mol. Med.201519596096910.1111/jcmm.1248025781208
    [Google Scholar]
  34. NagaiH. KimY.H. Cancer prevention from the perspective of global cancer burden patterns.J. Thorac. Dis.20179344845110.21037/jtd.2017.02.7528449441
    [Google Scholar]
  35. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends—An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑057826667886
    [Google Scholar]
  36. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  37. SongJ. FengL. ZhongR. XiaZ. ZhangL. CuiL. YanH. JiaX. ZhangZ. Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway.Mol. Carcinog.2017561364810.1002/mc.2247126859114
    [Google Scholar]
  38. SongJ. ShuL. ZhangZ. TanX. SunE. JinX. ChenY. JiaX. Reactive oxygen species-mediated mitochondrial pathway is involved in Baohuoside I-induced apoptosis in human non-small cell lung cancer.Chem. Biol. Interact.2012199191710.1016/j.cbi.2012.05.00522687635
    [Google Scholar]
  39. TangZ. DuW. XuF. SunX. ChenW. CuiJ. TangW. YangF. TengF. LinJ. LiuB. DongJ. Icariside II enhances cisplatin-induced apoptosis by promoting endoplasmic reticulum stress signalling in non-small cell lung cancer cells.Int. J. Biol. Sci.20221852060207410.7150/ijbs.6663035342361
    [Google Scholar]
  40. YanH. ZhangZ. JiaX. SongJ. D-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: Optimization and in vitro , in vivo evaluation.Int. J. Nanomedicine2016114563457110.2147/IJN.S11220427660448
    [Google Scholar]
  41. HuangC. ChenX. GuoB. HuangW. ShenT. SunX. XiaoP. ZhouQ. Induction of apoptosis by Icariside II through extrinsic and intrinsic signaling pathways in human breast cancer MCF7 cells.Biosci. Biotechnol. Biochem.20127671322132810.1271/bbb.12007722785466
    [Google Scholar]
  42. KimB. ParkB. BaohuosideI. Baohuoside I suppresses invasion of cervical and breast cancer cells through the downregulation of CXCR4 chemokine receptor expression.Biochemistry201453487562756910.1021/bi501192725407882
    [Google Scholar]
  43. GuoY. ZhuH. WengM. ChenB. WangC. SunL. Baohuoside-1 targeting mTOR inducing apoptsis to inhibit hepatocellular carcinoma proliferation, invasion and migration.Biomed. Pharmacother.202012811036610.1016/j.biopha.2020.11036632526459
    [Google Scholar]
  44. LeeS.E. OkhlopkovaZ. LimC. ChoS. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway.Chin. J. Nat. Med.2020181079380010.1016/S1875‑5364(20)60019‑X33039058
    [Google Scholar]
  45. LiS. ZhanY. XieY. WangY. LiuY. The impact of Icariside II on human prostate cancer cell proliferation, mobility, and autophagy via PI3K-AKT-mTOR signaling pathway.Drug Des. Devel. Ther.2020144169417810.2147/DDDT.S26852433116405
    [Google Scholar]
  46. DuJ. WuJ. FuX. Kai-Wing TseA. LiT. SuT. YuZ.L. Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling.Oncotarget2016732522185222910.18632/oncotarget.1058227418138
    [Google Scholar]
  47. WuJ. GuanM. WongP.F. YuH. DongJ. XuJ. Icariside II potentiates paclitaxel-induced apoptosis in human melanoma A375 cells by inhibiting TLR4 signaling pathway.Food Chem. Toxicol.20125093019302410.1016/j.fct.2012.06.02722743248
    [Google Scholar]
  48. PengY.G. ZhangL. Baohuoside-I suppresses cell proliferation and migration by up-regulating miR-144 in melanoma.Pharm. Biol.2018561435010.1080/13880209.2017.141839129260980
    [Google Scholar]
  49. SunY.S. ThakurK. HuF. Cespedes-AcuñaC.L. ZhangJ.G. WeiZ.J. Icariside II suppresses cervical cancer cell migration through JNK modulated matrix metalloproteinase-2/9 inhibition in vitro and in vivo .Biomed. Pharmacother.202012511001310.1016/j.biopha.2020.11001332092821
    [Google Scholar]
  50. SunY.S. ThakurK. HuF. ZhangJ.G. WeiZ.J. Icariside II inhibits tumorigenesis via inhibiting AKT/Cyclin E/ CDK 2 pathway and activating mitochondria-dependent pathway.Pharmacol. Res.202015210461610.1016/j.phrs.2019.10461631883767
    [Google Scholar]
  51. NiF. TangH. WangC. ZhangH. ZhengC. ZhangN. ChenB. SunL. Baohuoside I inhibits the proliferation of pancreatic cancer cells via mTOR/S6K1-Caspases/Bcl2/Bax apoptotic signaling.Cancer Manag. Res.201911106091062110.2147/CMAR.S22892631908533
    [Google Scholar]
  52. QuanK. ZhangX. FanK. LiuP. YueQ. LiB. WuJ. LiuB. XuY. HuaW. ZhuW. Icariside II induces cell cycle arrest and apoptosis in human glioblastoma cells through suppressing Akt activation and potentiating FOXO3a activity.Am. J. Transl. Res.2017952508251928560001
    [Google Scholar]
  53. ShanB. LuA. LiuX. SangM. ShanB. MengF. CaoQ. JiX. The flavonoid Baohuoside-I inhibits cell growth and downregulates survivin and cyclin D1 expression in esophageal carcinoma via β-catenin-dependent signaling.Oncol. Rep.20112651149115610.3892/or.2011.140021785828
    [Google Scholar]
  54. ChoiH.J. EunJ.S. KimD.K. LiR.H. ShinT.Y. ParkH. ChoN.P. SohY. Icariside II from Epimedium koreanum inhibits hypoxia-inducible factor-1α in human osteosarcoma cells.Eur. J. Pharmacol.20085791-3586510.1016/j.ejphar.2007.10.01017980359
    [Google Scholar]
  55. GengY. YangL. ZhangC. KongL. Blockade of epidermal growth factor receptor/mammalian target of rapamycin pathway by Icariside II results in reduced cell proliferation of osteosarcoma cells.Food Chem. Toxicol.20147371610.1016/j.fct.2014.08.00225119583
    [Google Scholar]
  56. YuanD. GuoT. QianH. GeH. ZhaoY. HuangA. WangX. CaoX. ZhuD. HeC. YuH. Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis.Drug Dev. Res.20228361383139310.1002/ddr.2196735808943
    [Google Scholar]
  57. ShiC.J. LiS.Y. ShenC.H. PanF.F. DengL.Q. FuW.M. WangJ.Y. ZhangJ.F. Icariside II suppressed tumorigenesis by epigenetically regulating the circβ-catenin-Wnt/β-catenin axis in colorectal cancer.Bioorg. Chem.202212410580010.1016/j.bioorg.2022.10580035468415
    [Google Scholar]
  58. YuR. ZhouY. ShiS. WangX. HuangS. RenY. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis.Phytomedicine202210215418210.1016/j.phymed.2022.15418235636172
    [Google Scholar]
  59. KongQ. MaM. ZhangL. LiuS. HeS. WuJ. LiuB. DongJ. Icariside II potentiates the anti-PD-1 antitumor effect by reducing chemotactic infiltration of myeloid-derived suppressor cells into the tumor microenvironment via ROS-mediated inactivation of the SRC/ERK/STAT3 signaling pathways.Phytomedicine202311015463810.1016/j.phymed.2022.15463836621167
    [Google Scholar]
  60. XieM. TangS. LiaoS. LiuF. WangR. GuoZ. TanS. TangA. LiuY. HeG. Icariside II targets in vitro MAPK and PI3K/Akt signaling in human nasopharyngeal carcinoma cells to induce apoptotic death and suppress proliferation.Research SquareResearch Square202310.21203/rs.3.rs‑2742638/v1
    [Google Scholar]
  61. FloraG.D. NayakM.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes.Curr. Pharm. Des.201925384063408410.2174/138161282566619092516382731553287
    [Google Scholar]
  62. KreatsoulasC. AnandS.S. The impact of social determinants on cardiovascular disease.Can. J. Cardiol.201026Suppl CSuppl. C8C13C10.1016/S0828‑282X(10)71075‑820847985
    [Google Scholar]
  63. LiY. FengL. XieD. LinM. LiY. ChenN. YangD. GaoJ. ZhuY. GongQ. Icariside II, a naturally occurring SIRT3 Agonist, protects against myocardial infarction through the AMPK/PGC-1α/apoptosis signaling pathway.Antioxidants2022118146510.3390/antiox1108146536009184
    [Google Scholar]
  64. GuanB.F. DaiX.F. HuangQ.B. ZhaoD. ShiJ.L. ChenC. ZhuY. AiF. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway.Mol. Med. Rep.20202243151316010.3892/mmr.2020.1139632945440
    [Google Scholar]
  65. LiY. FengL. XieD. LuoY. LinM. GaoJ. ZhangY. HeZ. ZhuY.Z. GongQ. Icariside II mitigates myocardial infarction by balancing mitochondrial dynamics and reducing oxidative stress through the activation of Nrf2/SIRT3 signaling pathway.Eur. J. Pharmacol.202395617598710.1016/j.ejphar.2023.17598737572941
    [Google Scholar]
  66. HuD. GuY. WuD. ZhangJ. LiQ. LuoJ. LiS. YuanZ. ZhuB. Icariside II protects cardiomyocytes from hypoxia-induced injury by upregulating the miR-7-5p/BTG2 axis and activating the PI3K/Akt signaling pathway.Int. J. Mol. Med.20204641453146510.3892/ijmm.2020.467732945347
    [Google Scholar]
  67. LiuX.Y. LiaoH. FengH. ZhangN. YangJ. LiW. ChenS. DengW. TangQ.Z. Icariside II attenuates cardiac remodeling via AMPKα2/mTORC1 in vivo and in vitro .J. Pharmacol. Sci.20181381384510.1016/j.jphs.2018.08.01030241784
    [Google Scholar]
  68. WuY. YueY. FuS. LiY. WuD. LvJ. YangD. Icariside II prevents hypertensive heart disease by alleviating endoplasmic reticulum stress via the PERK/ATF-4/CHOP signalling pathway in spontaneously hypertensive rats.J. Pharm. Pharmacol.201971340040710.1111/jphp.1304130456794
    [Google Scholar]
  69. FuS. LiY. WuY. YueY. YangD. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis.J. Pharm. Pharmacol.202072222723510.1111/jphp.1319031820448
    [Google Scholar]
  70. HanD. WangB. CuiX. HeW. zhangY. JiangQ. WangF. LiuZ. ShenD. ICS II protects against cardiac hypertrophy by regulating metabolic remodelling, not by inhibiting autophagy.J. Cell. Mol. Med.20212521074108810.1111/jcmm.16175
    [Google Scholar]
  71. YangL. PengC. XiaJ. ZhangW. TianL. TianY. YangX. CaoY. Effects of icariside II ameliorates diabetic cardiomyopathy in streptozotocin-induced diabetic rats by activating Akt/NOS/NF-κB signaling.Mol. Med. Rep.201710.3892/mmr.2017.834229286100
    [Google Scholar]
  72. WoźniakŁ. SkąpskaS. MarszałekK. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities.Molecules20152011206142064110.3390/molecules20111972126610440
    [Google Scholar]
  73. BondyS.C. LeBelC.P. The relationship between excitotoxicity and oxidative stress in the central nervous system.Free Radic. Biol. Med.199314663364210.1016/0891‑5849(93)90144‑J8325535
    [Google Scholar]
  74. CastegnaA. AksenovM. ThongboonkerdV. KleinJ.B. PierceW.M. BoozeR. MarkesberyW.R. ButterfieldD.A. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71.J. Neurochem.20028261524153210.1046/j.1471‑4159.2002.01103.x12354300
    [Google Scholar]
  75. De IuliisA. GrigolettoJ. RecchiaA. GiustiP. ArslanP. A proteomic approach in the study of an animal model of Parkinson’s disease.Clin. Chim. Acta2005357220220910.1016/j.cccn.2005.03.02815946658
    [Google Scholar]
  76. GaoJ. XuY. LeiM. ShiJ. GongQ. Icariside II, a PDE5 inhibitor from Epimedium brevicornum, promotes neuron-like pheochromocytoma PC12 cell proliferation via activating NO/cGMP/PKG pathway.Neurochem. Int.2018112182610.1016/j.neuint.2017.10.01529101001
    [Google Scholar]
  77. XuF. LvC. DengY. LiuY. GongQ. ShiJ. GaoJ. Icariside II, a PDE5 inhibitor, suppresses oxygen-glucose deprivation/reperfusion-induced primary Hippocampal neuronal death through activating the PKG/CREB/BDNF/TrkB signaling pathway.Front. Pharmacol.20201152310.3389/fphar.2020.0052332390851
    [Google Scholar]
  78. FengL. GaoJ. LiuY. ShiJ. GongQ. Icariside II alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 cell oxidative injury by activating Nrf2/SIRT3 signaling pathway.Biomed. Pharmacother.201810391710.1016/j.biopha.2018.04.00529635133
    [Google Scholar]
  79. GaoJ. DengY. YinC. LiuY. ZhangW. ShiJ. GongQ. Icariside II, a novel phosphodiesterase 5 inhibitor, protects against H2O2-induced PC 12 cells death by inhibiting mitochondria-mediated autophagy.J. Cell. Mol. Med.201721237538610.1111/jcmm.1297127642051
    [Google Scholar]
  80. XiaoH.H. ZhangM.B. XuJ.T. DengY. LiN. GaoP. LiY. KongL. LiW. ChenJ.C. LiH.Y. ShanG.S. TaiH. YangJ.X. Icarisid II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β-catenin signaling pathway.Phytother. Res.20213552773278410.1002/ptr.702233455039
    [Google Scholar]
  81. KuangW. LiuT. HeF. YuL. WangQ. YuC. Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells.In vitro Cell. Dev. Biol. Anim.202157445746710.1007/s11626‑021‑00556‑833721206
    [Google Scholar]
  82. FanW. ZhouJ. Icariside II suppresses ferroptosis to protect against MPP+-induced Parkinson’s disease through Keap1/Nrf2/GPX4 signaling.Chin. J. Physiol.202366643744510.4103/cjop.CJOP‑D‑23‑0010738149556
    [Google Scholar]
  83. FanW. ZhouJ. Icariside II protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced neurotoxicity by downregulating HDAC2 to restore mitochondrial function.Exp. Ther. Med.20232714010.3892/etm.2023.1232838125349
    [Google Scholar]
  84. LiuT. HeF. YanJ. KuangW. YuC. Icariside II affects hippocampal neuron axon regeneration and improves learning and memory in a chronic cerebral hypoperfusion rat model.Int. J. Clin. Exp. Pathol.201912382683431933890
    [Google Scholar]
  85. LiuM. WangW. GaoJ. LiF. ShiJ. GongQ. Icariside II attenuates cerebral ischemia/reperfusion-induced blood–brain barrier dysfunction in rats via regulating the balance of MMP9/TIMP1.Acta Pharmacol. Sin.202041121547155610.1038/s41401‑020‑0409‑332488170
    [Google Scholar]
  86. YinC. DengY. LiuY. GaoJ. YanL. GongQ. IcarisideI.I. Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: Involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats.Front. Pharmacol.20189121110.3389/fphar.2018.0121130405422
    [Google Scholar]
  87. LiuS. LiX. GaoJ. LiuY. ShiJ. GongQ. Icariside II, a phosphodiesterase-5 inhibitor, attenuates beta-amyloid-induced cognitive deficits via BDNF/TrkB/CREB signaling.Cell. Physiol. Biochem.20184931010102510.1159/00049323230196289
    [Google Scholar]
  88. DengY. LongL. WangK. ZhouJ. ZengL. HeL. GongQ. Icariside II, a broad-spectrum anti-cancer agent, reverses Beta-Amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats.Front. Pharmacol.201783910.3389/fphar.2017.0003928210222
    [Google Scholar]
  89. YinC. DengY. GaoJ. LiX. LiuY. GongQ. Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats.Neuroscience2016328697910.1016/j.neuroscience.2016.04.02227109920
    [Google Scholar]
  90. HeL. DengY. GaoJ. ZengL. GongQ. Icariside II ameliorates ibotenic acid-induced cognitive impairment and apoptotic response via modulation of MAPK pathway in rats.Phytomedicine201841748110.1016/j.phymed.2018.01.02529519323
    [Google Scholar]
  91. XiaoH.H. ChenJ.C. LiH. LiR.H. WangH.B. SongH.P. LiH.Y. ShanG.S. TianY. ZhaoY.M. TianJ.M. YangJ.X. Icarisid II rescues cognitive dysfunction via activation of Wnt/β-catenin signaling pathway promoting hippocampal neurogenesis in APP / PS1 transgenic mice.Phytother. Res.20223652095210810.1002/ptr.743035230733
    [Google Scholar]
  92. GuY. HuZ.F. ZhengD.W. YangY.Q. DongX.L. ChenW.F. Baohuoside I suppresses the NLRP3 inflammasome activation via targeting GPER to fight against Parkinson’s disease.Phytomedicine202412615543510.1016/j.phymed.2024.15543538394727
    [Google Scholar]
  93. GaoJ. MaC. XiaD. ChenN. ZhangJ. XuF. LiF. HeY. GongQ. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway.Br. J. Pharmacol.2023180330832910.1111/bph.1596136166825
    [Google Scholar]
  94. HuangJ. DingJ. WangZ. LiY. HeY. WangX. FanH. XieQ. QiuP. IcarisideI.I. Icariside II attenuates methamphetamine-induced neurotoxicity and behavioral impairments via activating the Keap1-Nrf2 pathway.Oxid. Med. Cell. Longev.2022202212310.1155/2022/840087635387263
    [Google Scholar]
  95. ZhouJ. DengY. LiF. YinC. ShiJ. GongQ. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats.Biomed. Pharmacother.201911131532410.1016/j.biopha.2018.10.20130590319
    [Google Scholar]
  96. Van BerendoncksA.M. ElseviersM.M. LinsR.L. Outcome of acute kidney injury with different treatment options: Long-term follow-up.Clin. J. Am. Soc. Nephrol.20105101755176210.2215/CJN.0077011020634328
    [Google Scholar]
  97. CoreshJ. SelvinE. StevensL.A. ManziJ. KusekJ.W. EggersP. Van LenteF. LeveyA.S. Prevalence of chronic kidney disease in the United States.JAMA2007298172038204710.1001/jama.298.17.203817986697
    [Google Scholar]
  98. MaP. ZhangS. SuX. QiuG. WuZ. Protective effects of icariin on cisplatin-induced acute renal injury in mice.Am. J. Transl. Res.20157102105211426692955
    [Google Scholar]
  99. LeiH. TianW. GuanR. XuY. LiH. WangL. YangB. GaoZ. XinZ. Icariside II ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats.Drug Des. Devel. Ther.20155147514710.2147/DDDT.S90060
    [Google Scholar]
  100. LiangS.R. BiJ.W. GuoZ.L. BaiY. HuZ. Protective effect of icariin on kidney in 5/6 nephrectomized rats and its mechanism.Genet. Mol. Res.20141336466647110.4238/2014.August.25.1025158265
    [Google Scholar]
  101. ZhangW. YuanW. XuN. LiJ. ChangW. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancy-induced hypertension.Mol. Med. Rep.20171657398740410.3892/mmr.2017.751328944832
    [Google Scholar]
  102. WangM. WangJ. WangL. FengX. QianY. YeC. WangC. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation.Phytother. Res.202310.1002/ptr.808538081477
    [Google Scholar]
  103. GaoJ. WeiJ. YiY. GongM-X. HouF. LiY. ZhangY. GongQ. Icariside II, a novel dual PPARα/γ Agonist, confers protection against D-GalN/LPS-induced acute liver injury: involvement of SIRT6/NF-κB/Pyroptosis axis.Lancet202310.2139/ssrn.4583136
    [Google Scholar]
  104. GaoJ. HouF. YiY. Icarisid II, a novel dual pparrα/γ agonist, alleviates d-galactosamine and lipopolysaccharide-induced fulminant hepatic failure: Involvement of SIRT6/NF-κB/pyroptosis axis.2022Available from: https://ssrn.com/abstract=4221757
    [Google Scholar]
  105. TianC. GaoF. LiX. LiZ. Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model.Exp. Mol. Pathol.202011310437310.1016/j.yexmp.2020.10437331917285
    [Google Scholar]
  106. LiX. WangY. ChenY. LuZ. SunY. ZhongC. LvZ. PanH. ChenJ. YaoD. HuangX. YuC. Icariside II alleviates lipopolysaccharide-induced acute lung injury by inhibiting lung epithelial inflammatory and immune responses mediated by neutrophil extracellular traps.Life Sci.202434612264810.1016/j.lfs.2024.12264838631668
    [Google Scholar]
  107. LiY. LinB. Icariside II regulates TLR4/NF-κB signaling pathway to improve septic lung injury.Signa Vitae202110.22514/sv.2021.216
    [Google Scholar]
  108. DengL. OuyangB. ShiH. YangF. LiS. XieC. DuW. HuL. WeiY. DongJ. Icariside II attenuates bleomycin-induced pulmonary fibrosis by modulating macrophage polarization.J. Ethnopharmacol.202331711681010.1016/j.jep.2023.11681037331450
    [Google Scholar]
  109. DuW. TangZ. YangF. LiuX. DongJ. Icariin attenuates bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway.Biomed. Pharmacother.202114311215210.1016/j.biopha.2021.11215234536758
    [Google Scholar]
  110. AliM.Y. GadottiV.M. HuangS. Garcia-CaballeroA. AntunesF.T.T. JungH.A. ChoiJ.S. ZamponiG.W. Icariside II, a prenyl-flavonol, alleviates inflammatory and neuropathic pain by inhibiting T-type calcium channels and USP5-Cav3.2 interactions.ACS Chem. Neurosci.202314101859186910.1021/acschemneuro.3c0008337116219
    [Google Scholar]
  111. AlamM.B. KwonY.G. SimuS.Y. Abrar ShahriyarS. LeeS.H. Attenuation of inflammatory symptoms by Icariside B2 in Carrageenan and LPS-induced inflammation models via regulation of MAPK/NF-κB signaling cascades.Biomolecules2020107103710.3390/biom1007103732664577
    [Google Scholar]
  112. LaiX. YeY. SunC. HuangX. TangX. ZengX. YinP. ZengY. Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model.Int. Immunopharmacol.2013161414910.1016/j.intimp.2013.03.02523566810
    [Google Scholar]
  113. LorenzoJ. HorowitzM. ChoiY. Osteoimmunology: Interactions of the bone and immune system.Endocr. Rev.200829440344010.1210/er.2007‑003818451259
    [Google Scholar]
  114. MarieP.J. KassemM. Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets.Eur. J. Endocrinol.2011165111010.1530/EJE‑11‑013221543379
    [Google Scholar]
  115. LuoG. XuB. HuangY. Icariside II promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways.Am. J. Transl. Res.2017952077208728559962
    [Google Scholar]
  116. LiuW. MaoL. JiF. ChenF. WangS. XieY. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.Oncotarget2017822594260310.18632/oncotarget.1373227911877
    [Google Scholar]
  117. ShamloulR. GhanemH. Erectile dysfunction.Lancet2013381986115316510.1016/S0140‑6736(12)60520‑023040455
    [Google Scholar]
  118. KandeelF.R. KoussaV.K.T. SwerdloffR.S. Male sexual function and its disorders: Physiology, pathophysiology, clinical investigation, and treatment.Endocr. Rev.200122334238810.1210/edrv.22.3.043011399748
    [Google Scholar]
  119. ZhouF. XinH. LiuT. LiG.Y. GaoZ.Z. LiuJ. LiW.R. CuiW.S. BaiG.Y. ParkN.C. XinZ.C. Effects of icariside II on improving erectile function in rats with streptozotocin-induced diabetes.J. Androl.201233583284410.2164/jandrol.111.01517222403279
    [Google Scholar]
  120. LeiH. LiH. TianL. LiM. XinZ. ZhangX. GuanR. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells.Drug Des. Devel. Ther.2018121743175110.2147/DDDT.S16673429942117
    [Google Scholar]
  121. ZhengT. ZhangT-B. WangC-L. ZhangW-X. JiaD-H. YangF. SunY-Y. DingX-J. WangR. IcarisideI.I. Icariside II promotes the differentiation of Adipose tissue-derived stem cells to Schwann cells to preserve erectile function after cavernous nerve injury.PubMed201841655356110.14348/molcells.2018.223629902838
    [Google Scholar]
  122. BaiG.Y. ZhouF. HuiY. XuY.D. LeiH.E. PuJ.X. XinZ.C. Effects of Icariside II on corpus cavernosum and major pelvic ganglion neuropathy in streptozotocin-induced diabetic rats.Int. J. Mol. Sci.20141512232942330610.3390/ijms15122329425517034
    [Google Scholar]
  123. ZhangJ. LiS. ZhangS. WangY. JinS. ZhaoC. YangW. LiuY. KongG. Effect of icariside II and metformin on penile erectile function, histological structure, mitochondrial autophagy, glucose-lipid metabolism, angiotensin II and sex hormone in type 2 diabetic rats with erectile dysfunction.Sex. Med.20208216817710.1016/j.esxm.2020.01.00632147433
    [Google Scholar]
  124. ZhangJ. LiS. LiS. ZhangS. WangY. JinS. ZhaoC. YangW. LiuY. FangD. LiX. XinZ. Effect of icariside II and metformin on penile erectile function, glucose metabolism, reaction oxygen species, superoxide dismutase, and mitochondrial autophagy in type 2 diabetic rats with erectile dysfunction.Transl. Androl. Urol.20209235536610.21037/tau.2020.02.0732420141
    [Google Scholar]
  125. HanZ.Y. ZhangZ.H. WangH. ChenY. Efficacy of leech powder on hyperlipidaemia-associated erectile dysfunction in male rats.Zhonghua Nan Ke Xue202228433233837477455
    [Google Scholar]
  126. LiuY. WeiZ. LiuS. SunJ. MaoY. XuY. YangY. A flavonoid derivative of icariside II (YS-10) improves erectile dysfunction in radiation-injured rats via oxidative stress pathway.Transl. Androl. Urol.202211683284110.21037/tau‑22‑37635812197
    [Google Scholar]
  127. LvJ. LiX. WuH. LiJ. LuanB. LiY. LiY. YangD. WenH. IcarisideI.I. Icariside II restores vascular smooth muscle cell contractile phenotype by enhancing the focal adhesion signaling pathway in the rat vascular remodeling model.Front. Pharmacol.20221389761510.3389/fphar.2022.89761535770073
    [Google Scholar]
  128. SongW. YuanY. TanX. GuY. ZengJ. SongW. XinZ. FangD. GuanR. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways.PeerJ202210e1419210.7717/peerj.1419236312762
    [Google Scholar]
  129. WuH.Y. LiJ.Y. WenH. LiY.Q. LiY.L. LiG.Y. JiangY. LvJ.Y. YangD. IcarisideI.I. Icariside II attenuates vascular remodeling via Wnt7b/CCND1 axis.J. Cardiovasc. Pharmacol.2022801485510.1097/FJC.000000000000123935170494
    [Google Scholar]
  130. GuY.Y. TanX.H. SongW.P. SongW.D. YuanY.M. XinZ.C. WangJ.D. FangD. GuanR.L. IcarisideI.I. Icariside II attenuates palmitic acid-induced endothelial dysfunction through SRPK1-Akt-eNOS signaling pathway.Front. Pharmacol.20221392060110.3389/fphar.2022.92060135846993
    [Google Scholar]
  131. LiY. LiY. ChenN. FengL. GaoJ. ZengN. HeZ. GongQ. IcarisideI.I. Icariside II exerts anti-Type 2 diabetic effect by targeting PPARα/γ: Involvement of ROS/NF-κB/IRS1 signaling pathway.Antioxidants2022119170510.3390/antiox1109170536139776
    [Google Scholar]
  132. ChiA. YangB. CaoX. WangZ. LiuH. DaiH. DengC. ZhangM. ICA II Alleviates testicular torsion injury by dampening the oxidative and inflammatory stress.Front. Endocrinol. (Lausanne)20221387154810.3389/fendo.2022.87154835634492
    [Google Scholar]
  133. XuY. LeiH. GuanR. GaoZ. LiH. WangL. HuiY. ZhouF. XinZ. Prophylactic protective effects and its potential mechanisms of IcarisideII on streptozotocin induced spermatogenic dysfunction.Int. J. Mol. Sci.2014159161001611310.3390/ijms15091610025216341
    [Google Scholar]
  134. YanD. WuQ. LiX. ChenQ. HuangC. HuJ. LiuZ. Icariside II alleviates ischemic retinopathy by modulating microglia and promoting vessel integrity.J. Funct. Foods202310410551010.1016/j.jff.2023.105510
    [Google Scholar]
  135. KongQ. ZhuH. DongJ. LiuB. Icariside II in NSCLC and COVID-19: Network pharmacology and molecular docking study.J. Gene Med.2024267e371010.1002/jgm.371038967229
    [Google Scholar]
  136. YangX. LangS. LiS. JiangC. HanJ. Preparation of icariside I and icariside II, an exploration of their protective mechanism against cyclophosphamide-induced bone marrow suppression in mice, and their regulatory effects on immune function.Pharmazie2022771323710.1691/ph.2022.177135045923
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501329810241117231839
Loading
/content/journals/cdt/10.2174/0113894501329810241117231839
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; Flavonoids; Icariside II; lung protective; neuroprotective; renal protective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test