Skip to content
2000
image of Pharmacological and Therapeutic Potential of a Natural Flavonoid Icariside II in Human Complication

Abstract

Emerging challenges to human health necessitate a coordinated effort to find both preventative and therapeutic techniques, with natural products at the forefront of attempts to gain novel medicines and minimize disease transmission and related death. The medicinal potential of chemicals contained in plants has been known for centuries, leading to its use in homes and clinics for the treatment of numerous disorders. Despite global advancements, plant-based medicines continue to be utilized to treat various pathological illnesses or as alternatives to contemporary pharmaceuticals. The safety and low toxicity of natural products have led to their increasing acceptability for the prevention or treatment of many ailments. Flavonoids are biologically active compounds that are classified as polyphenols, which are a type of secondary metabolite found in all plants. Icariside II (ICA-II) is one of the secondary metabolites that belong to the flavonoid category of phytochemicals and is present in Maxim. In recent years, ICA-II has been discovered to show anti-inflammatory, antioxidant, anticancer, renal protecting, and cardiac protective effects, as well as several other biological characteristics. This review is focused on the exploration of the pharmacological activities of ICA-II. ICA-II is considered a prospective candidate for future clinical investigations due to a number of therapeutic properties.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501329810241117231839
2025-01-02
2025-02-20
Loading full text...

Full text loading...

References

  1. Ahmad B. Rehman M.U. Amin I. Arif A. Rasool S. Bhat S.A. Afzal I. Hussain I. Bilal S. Mir M.R. A review on pharmacological properties of Zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2- butanone). ScientificWorldJournal 2015 2015 1 816364 10.1155/2015/816364 26106644
    [Google Scholar]
  2. Dua K. Sheshala R. Al-Waeli H. Gupta G. Chellappan D. Antimicrobial efficacy of extemporaneously prepared Herbal Mouthwashes. Recent Pat. Drug Deliv. Formul. 2015 9 3 201 205 10.2174/1872211309666150608095106 26051152
    [Google Scholar]
  3. Hong J. Role of natural product diversity in chemical biology. Curr. Opin. Chem. Biol. 2011 15 3 350 354 10.1016/j.cbpa.2011.03.004 21489856
    [Google Scholar]
  4. Gu J. Gui Y. Chen L. Yuan G. Lu H.Z. Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 2013 8 4 e62839 10.1371/journal.pone.0062839 23638153
    [Google Scholar]
  5. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002 96 2-3 67 202 10.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  6. Rice-Evans C. Packer L. Flavonoids in health and disease CRC Press 2nd ed 2003 10.1201/9780367803681
    [Google Scholar]
  7. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 1983 32 7 1141 1148 10.1016/0006‑2952(83)90262‑9 6342623
    [Google Scholar]
  8. Robak J. Gryglewski R.J. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988 37 5 837 841 10.1016/0006‑2952(88)90169‑4 2830882
    [Google Scholar]
  9. Morel I. Lescoat G. Cogrel P. Sergent O. Pasdeloup N. Brissot P. Cillard P. Cillard J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol. 1993 45 1 13 19 10.1016/0006‑2952(93)90371‑3 8424806
    [Google Scholar]
  10. Cushnie T.P.T. Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005 26 5 343 356 10.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  11. Middleton E. Jr Kandaswami C. Theoharides T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000 52 4 673 751 11121513
    [Google Scholar]
  12. Marder M. Paladini A. GABA(A)-receptor ligands of flavonoid structure. Curr. Top. Med. Chem. 2002 2 8 853 867 10.2174/1568026023393462 12171576
    [Google Scholar]
  13. Galati G. O’Brien P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004 37 3 287 303 10.1016/j.freeradbiomed.2004.04.034 15223063
    [Google Scholar]
  14. Shamsudin N.F. Ahmed Q.U. Mahmood S. Ali Shah S.A. Khatib A. Mukhtar S. Alsharif M.A. Parveen H. Zakaria Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022 27 4 1149 10.3390/molecules27041149 35208939
    [Google Scholar]
  15. Akhavan O. Ghaderi E. Abouei E. Hatamie S. Ghasemi E. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 2014 66 395 406 10.1016/j.carbon.2013.09.015
    [Google Scholar]
  16. Ai S. Li Y. Zheng H. Zhang M. Tao J. Liu W. Peng L. Wang Z. Wang Y. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023. J. Nanobiotechnology 2024 22 1 140 10.1186/s12951‑024‑02426‑3 38556857
    [Google Scholar]
  17. Teja P.K. Mithiya J. Kate A.S. Bairwa K. Chauthe S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022 96 153890 10.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  18. Akhavan O. Kalaee M. Alavi Z.S. Ghiasi S.M.A. Esfandiar A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 2012 50 8 3015 3025 10.1016/j.carbon.2012.02.087
    [Google Scholar]
  19. Amani H. Habibey R. Hajmiresmail S.J. Latifi S. Pazoki-Toroudi H. Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B Mater. Biol. Med. 2017 5 48 9452 9476 10.1039/C7TB01689A 32264560
    [Google Scholar]
  20. Ramezani Farani M. Farsadrooh M. Zare I. Gholami A. Akhavan O. Green synthesis of magnesium oxide nanoparticles and nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and antifungal applications. Catalysts 2023 13 4 642 10.3390/catal13040642
    [Google Scholar]
  21. Jannat K. Paul A.K. Bondhon T.A. Hasan A. Nawaz M. Jahan R. Mahboob T. Nissapatorn V. Wilairatana P. Pereira M.L. Rahmatullah M. Nanotechnology applications of flavonoids for viral diseases. Pharmaceutics 2021 13 11 1895 10.3390/pharmaceutics13111895 34834309
    [Google Scholar]
  22. Guo L. Li Y. Mao X. Tao R. Tao B. Zhou Z. Antifungal Activity of Polymethoxylated Flavonoids (PMFs)-Loaded Citral Nanoemulsion against Penicillium italicum by Causing Cell Membrane Damage. J. Fungi (Basel) 2022 8 4 388 10.3390/jof8040388 35448619
    [Google Scholar]
  23. Hatamie S. Akhavan O. Sadrnezhaad S.K. Ahadian M.M. Shirolkar M.M. Wang H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015 55 482 489 10.1016/j.msec.2015.05.077 26117780
    [Google Scholar]
  24. Abdolahad M. Janmaleki M. Mohajerzadeh S. Akhavan O. Abbasi S. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells. Mater. Sci. Eng. C 2013 33 3 1498 1505 10.1016/j.msec.2012.12.052 23827601
    [Google Scholar]
  25. Xiao P.G. Xing S.T. Wang L.W. Immunological aspects of Chinese medicinal plants as antiageing drugs. J. Ethnopharmacol. 1993 38 2-3 159 165 10.1016/0378‑8741(93)90012‑T 8510465
    [Google Scholar]
  26. Meng F.H. Li Y.B. Xiong Z.L. Jiang Z.M. Li F.M. Osteoblastic proliferative activity of Epimedium brevicornum Maxim. Phytomedicine 2005 12 3 189 193 10.1016/j.phymed.2004.03.007 15830840
    [Google Scholar]
  27. Sze S.C.W. Tong Y. Ng T.B. Cheng C.L.Y. Cheung H.P. Herba Epimedii: Anti-oxidative properties and its medical implications. Molecules 2010 15 11 7861 7870 10.3390/molecules15117861 21060294
    [Google Scholar]
  28. Lee K.S. Lee H.J. Ahn K.S. Kim S.H. Nam D. Kim D.K. Choi D.Y. Ahn K.S. Lu J. Kim S.H. Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett. 2009 280 1 93 100 10.1016/j.canlet.2009.02.024 19289254
    [Google Scholar]
  29. Gu J. Sun X. Wang G. Li M. Chi M. Icariside I.I. Icariside II enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression coupled with the ERK, Akt and JNK signaling pathways. Molecules 2011 16 11 9234 9244 10.3390/molecules16119234 22051934
    [Google Scholar]
  30. Geng Y. Zhang C. Shi Y. Xia Y. Guo C. Yang L. Kong L. Icariside II-induced mitochondrion and lysosome mediated apoptosis is counterbalanced by an autophagic salvage response in hepatoblastoma. Cancer Lett. 2015 366 1 19 31 10.1016/j.canlet.2015.05.032 26118776
    [Google Scholar]
  31. Luo G. Gu F. Zhang Y. Liu T. Guo P. Huang Y. Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine. Int. J. Clin. Exp. Pathol. 2015 8 5 4367 4377 26191128
    [Google Scholar]
  32. Cai W.J. Huang J.H. Zhang S.Q. Wu B. Kapahi P. Zhang X.M. Shen Z.Y. Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 2011 6 12 e28835 10.1371/journal.pone.0028835 22216122
    [Google Scholar]
  33. Wang L. Xu Y. Li H. Lei H. Guan R. Gao Z. Xin Z. Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats. J. Cell. Mol. Med. 2015 19 5 960 969 10.1111/jcmm.12480 25781208
    [Google Scholar]
  34. Nagai H. Kim Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017 9 3 448 451 10.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  35. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  36. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  37. Song J. Feng L. Zhong R. Xia Z. Zhang L. Cui L. Yan H. Jia X. Zhang Z. Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol. Carcinog. 2017 56 1 36 48 10.1002/mc.22471 26859114
    [Google Scholar]
  38. Song J. Shu L. Zhang Z. Tan X. Sun E. Jin X. Chen Y. Jia X. Reactive oxygen species-mediated mitochondrial pathway is involved in Baohuoside I-induced apoptosis in human non-small cell lung cancer. Chem. Biol. Interact. 2012 199 1 9 17 10.1016/j.cbi.2012.05.005 22687635
    [Google Scholar]
  39. Tang Z. Du W. Xu F. Sun X. Chen W. Cui J. Tang W. Yang F. Teng F. Lin J. Liu B. Dong J. Icariside II enhances cisplatin-induced apoptosis by promoting endoplasmic reticulum stress signalling in non-small cell lung cancer cells. Int. J. Biol. Sci. 2022 18 5 2060 2074 10.7150/ijbs.66630 35342361
    [Google Scholar]
  40. Yan H. Zhang Z. Jia X. Song J. D-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: Optimization and in vitro, in vivo evaluation. Int. J. Nanomedicine 2016 11 4563 4571 10.2147/IJN.S112204 27660448
    [Google Scholar]
  41. Huang C. Chen X. Guo B. Huang W. Shen T. Sun X. Xiao P. Zhou Q. Induction of apoptosis by Icariside II through extrinsic and intrinsic signaling pathways in human breast cancer MCF7 cells. Biosci. Biotechnol. Biochem. 2012 76 7 1322 1328 10.1271/bbb.120077 22785466
    [Google Scholar]
  42. Kim B. Park B. Baohuoside I. Baohuoside I suppresses invasion of cervical and breast cancer cells through the downregulation of CXCR4 chemokine receptor expression. Biochemistry 2014 53 48 7562 7569 10.1021/bi5011927 25407882
    [Google Scholar]
  43. Guo Y. Zhu H. Weng M. Chen B. Wang C. Sun L. Baohuoside-1 targeting mTOR inducing apoptsis to inhibit hepatocellular carcinoma proliferation, invasion and migration. Biomed. Pharmacother. 2020 128 110366 10.1016/j.biopha.2020.110366 32526459
    [Google Scholar]
  44. Lee S.E. Okhlopkova Z. Lim C. Cho S. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020 18 10 793 800 10.1016/S1875‑5364(20)60019‑X 33039058
    [Google Scholar]
  45. Li S. Zhan Y. Xie Y. Wang Y. Liu Y. The impact of Icariside II on human prostate cancer cell proliferation, Mobility, and autophagy via PI3K-AKT-mTOR Signaling Pathway. Drug Des. Devel. Ther. 2020 14 4169 4178 10.2147/DDDT.S268524 33116405
    [Google Scholar]
  46. Du J. Wu J. Fu X. Kai-Wing Tse A. Li T. Su T. Yu Z.L. Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling. Oncotarget 2016 7 32 52218 52229 10.18632/oncotarget.10582 27418138
    [Google Scholar]
  47. Wu J. Guan M. Wong P.F. Yu H. Dong J. Xu J. Icariside II potentiates paclitaxel-induced apoptosis in human melanoma A375 cells by inhibiting TLR4 signaling pathway. Food Chem. Toxicol. 2012 50 9 3019 3024 10.1016/j.fct.2012.06.027 22743248
    [Google Scholar]
  48. Peng Y.G. Zhang L. Baohuoside-I suppresses cell proliferation and migration by up-regulating miR-144 in melanoma. Pharm. Biol. 2018 56 1 43 50 10.1080/13880209.2017.1418391 29260980
    [Google Scholar]
  49. Sun Y.S. Thakur K. Hu F. Cespedes-Acuña C.L. Zhang J.G. Wei Z.J. Icariside II suppresses cervical cancer cell migration through JNK modulated matrix metalloproteinase-2/9 inhibition in vitro and in vivo. Biomed. Pharmacother. 2020 125 110013 10.1016/j.biopha.2020.110013 32092821
    [Google Scholar]
  50. Sun Y.S. Thakur K. Hu F. Zhang J.G. Wei Z.J. Icariside II inhibits tumorigenesis via inhibiting AKT/Cyclin E/ CDK 2 pathway and activating mitochondria-dependent pathway. Pharmacol. Res. 2020 152 104616 10.1016/j.phrs.2019.104616 31883767
    [Google Scholar]
  51. Ni F. Tang H. Wang C. Zhang H. Zheng C. Zhang N. Chen B. Sun L. Baohuoside I inhibits the proliferation of pancreatic cancer cells via mTOR/S6K1-Caspases/Bcl2/Bax Apoptotic signaling. Cancer Manag. Res. 2019 11 10609 10621 10.2147/CMAR.S228926 31908533
    [Google Scholar]
  52. Quan K. Zhang X. Fan K. Liu P. Yue Q. Li B. Wu J. Liu B. Xu Y. Hua W. Zhu W. Icariside II induces cell cycle arrest and apoptosis in human glioblastoma cells through suppressing Akt activation and potentiating FOXO3a activity. Am. J. Transl. Res. 2017 9 5 2508 2519 28560001
    [Google Scholar]
  53. Shan B. Lu A. Liu X. Sang M. Shan B. Meng F. Cao Q. Ji X. The flavonoid Baohuoside-I inhibits cell growth and downregulates survivin and cyclin D1 expression in esophageal carcinoma via β-catenin-dependent signaling. Oncol. Rep. 2011 26 5 1149 1156 10.3892/or.2011.1400 21785828
    [Google Scholar]
  54. Choi H.J. Eun J.S. Kim D.K. Li R.H. Shin T.Y. Park H. Cho N.P. Soh Y. Icariside II from Epimedium koreanum inhibits hypoxia-inducible factor-1α in human osteosarcoma cells. Eur. J. Pharmacol. 2008 579 1-3 58 65 10.1016/j.ejphar.2007.10.010 17980359
    [Google Scholar]
  55. Geng Y. Yang L. Zhang C. Kong L. Blockade of epidermal growth factor receptor/mammalian target of rapamycin pathway by Icariside II results in reduced cell proliferation of osteosarcoma cells. Food Chem. Toxicol. 2014 73 7 16 10.1016/j.fct.2014.08.002 25119583
    [Google Scholar]
  56. Yuan D. Guo T. Qian H. Ge H. Zhao Y. Huang A. Wang X. Cao X. Zhu D. He C. Yu H. Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Dev. Res. 2022 83 6 1383 1393 10.1002/ddr.21967 35808943
    [Google Scholar]
  57. Shi C.J. Li S.Y. Shen C.H. Pan F.F. Deng L.Q. Fu W.M. Wang J.Y. Zhang J.F. Icariside II suppressed tumorigenesis by epigenetically regulating the circβ-catenin-Wnt/β-catenin axis in colorectal cancer. Bioorg. Chem. 2022 124 105800 10.1016/j.bioorg.2022.105800 35468415
    [Google Scholar]
  58. Yu R. Zhou Y. Shi S. Wang X. Huang S. Ren Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine 2022 102 154182 10.1016/j.phymed.2022.154182 35636172
    [Google Scholar]
  59. Kong Q. Ma M. Zhang L. Liu S. He S. Wu J. Liu B. Dong J. Icariside II potentiates the anti-PD-1 antitumor effect by reducing chemotactic infiltration of myeloid-derived suppressor cells into the tumor microenvironment via ROS-mediated inactivation of the SRC/ERK/STAT3 signaling pathways. Phytomedicine 2023 110 154638 10.1016/j.phymed.2022.154638 36621167
    [Google Scholar]
  60. Xie M. Tang S. Liao S. Liu F. Wang R. Guo Z. Tan S. Tang A. Liu Y. He G. Icariside II targets in vitro MAPK and PI3K/Akt signaling in human nasopharyngeal carcinoma cells to induce apoptotic death and suppress proliferation. Research Square Research Square 2023 10.21203/rs.3.rs‑2742638/v1
    [Google Scholar]
  61. Flora G.D. Nayak M.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr. Pharm. Des. 2019 25 38 4063 4084 10.2174/1381612825666190925163827 31553287
    [Google Scholar]
  62. Kreatsoulas C. Anand S.S. The impact of social determinants on cardiovascular disease. Can. J. Cardiol. 2010 26 Suppl C Suppl. C 8C 13C 10.1016/S0828‑282X(10)71075‑8 20847985
    [Google Scholar]
  63. Li Y. Feng L. Xie D. Lin M. Li Y. Chen N. Yang D. Gao J. Zhu Y. Gong Q. Icariside II, a naturally occurring SIRT3 Agonist, protects against myocardial infarction through the AMPK/PGC-1α/apoptosis signaling pathway. Antioxidants 2022 11 8 1465 10.3390/antiox11081465 36009184
    [Google Scholar]
  64. Guan B.F. Dai X.F. Huang Q.B. Zhao D. Shi J.L. Chen C. Zhu Y. Ai F. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway. Mol. Med. Rep. 2020 22 4 3151 3160 10.3892/mmr.2020.11396 32945440
    [Google Scholar]
  65. Li Y. Feng L. Xie D. Luo Y. Lin M. Gao J. Zhang Y. He Z. Zhu Y.Z. Gong Q. Icariside II mitigates myocardial infarction by balancing mitochondrial dynamics and reducing oxidative stress through the activation of Nrf2/SIRT3 signaling pathway. Eur. J. Pharmacol. 2023 956 175987 10.1016/j.ejphar.2023.175987 37572941
    [Google Scholar]
  66. Hu D. Gu Y. Wu D. Zhang J. Li Q. Luo J. Li S. Yuan Z. Zhu B. Icariside II protects cardiomyocytes from hypoxia‑induced injury by upregulating the miR‑7‑5p/BTG2 axis and activating the PI3K/Akt signaling pathway. Int. J. Mol. Med. 2020 46 4 1453 1465 10.3892/ijmm.2020.4677 32945347
    [Google Scholar]
  67. Liu X.Y. Liao H. Feng H. Zhang N. Yang J. Li W. Chen S. Deng W. Tang Q.Z. Icariside II attenuates cardiac remodeling via AMPKα2/mTORC1 in vivo and in vitro. J. Pharmacol. Sci. 2018 138 1 38 45 10.1016/j.jphs.2018.08.010 30241784
    [Google Scholar]
  68. Wu Y. Yue Y. Fu S. Li Y. Wu D. Lv J. Yang D. Icariside II prevents hypertensive heart disease by alleviating endoplasmic reticulum stress via the PERK/ATF-4/CHOP signalling pathway in spontaneously hypertensive rats. J. Pharm. Pharmacol. 2019 71 3 400 407 10.1111/jphp.13041 30456794
    [Google Scholar]
  69. Fu S. Li Y. Wu Y. Yue Y. Yang D. Icariside II improves myocardial fibrosis in spontaneously hypertensive rats by inhibiting collagen synthesis. J. Pharm. Pharmacol. 2020 72 2 227 235 10.1111/jphp.13190 31820448
    [Google Scholar]
  70. Han D. Wang B. Cui X. He W. zhang Y. Jiang Q. Wang F. Liu Z. Shen D. ICS II protects against cardiac hypertrophy by regulating metabolic remodelling, not by inhibiting autophagy. J. Cell. Mol. Med. 2021 25 2 1074 1088 10.1111/jcmm.16175
    [Google Scholar]
  71. Yang L. Peng C. Xia J. Zhang W. Tian L. Tian Y. Yang X. Cao Y. Effects of icariside II ameliorates diabetic cardiomyopathy in streptozotocin-induced diabetic rats by activating Akt/NOS/NF-κB signaling. Mol. Med. Rep. 2017 ••• 10.3892/mmr.2017.8342 29286100
    [Google Scholar]
  72. Woźniak Ł. Skąpska S. Marszałek K. Ursolic Acid—A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015 20 11 20614 20641 10.3390/molecules201119721 26610440
    [Google Scholar]
  73. Bondy S.C. LeBel C.P. The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Radic. Biol. Med. 1993 14 6 633 642 10.1016/0891‑5849(93)90144‑J 8325535
    [Google Scholar]
  74. Castegna A. Aksenov M. Thongboonkerd V. Klein J.B. Pierce W.M. Booze R. Markesbery W.R. Butterfield D.A. Proteomic identification of oxidatively modified proteins in alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 2002 82 6 1524 1532 10.1046/j.1471‑4159.2002.01103.x 12354300
    [Google Scholar]
  75. De Iuliis A. Grigoletto J. Recchia A. Giusti P. Arslan P. A proteomic approach in the study of an animal model of Parkinson’s disease. Clin. Chim. Acta 2005 357 2 202 209 10.1016/j.cccn.2005.03.028 15946658
    [Google Scholar]
  76. Gao J. Xu Y. Lei M. Shi J. Gong Q. Icariside II, a PDE5 inhibitor from Epimedium brevicornum, promotes neuron-like pheochromocytoma PC12 cell proliferation via activating NO/cGMP/PKG pathway. Neurochem. Int. 2018 112 18 26 10.1016/j.neuint.2017.10.015 29101001
    [Google Scholar]
  77. Xu F. Lv C. Deng Y. Liu Y. Gong Q. Shi J. Gao J. Icariside II, a PDE5 inhibitor, Suppresses Oxygen-Glucose Deprivation/Reperfusion-induced primary Hippocampal neuronal death through activating the PKG/CREB/BDNF/TrkB signaling pathway. Front. Pharmacol. 2020 11 523 10.3389/fphar.2020.00523 32390851
    [Google Scholar]
  78. Feng L. Gao J. Liu Y. Shi J. Gong Q. Icariside II alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 cell oxidative injury by activating Nrf2/SIRT3 signaling pathway. Biomed. Pharmacother. 2018 103 9 17 10.1016/j.biopha.2018.04.005 29635133
    [Google Scholar]
  79. Gao J. Deng Y. Yin C. Liu Y. Zhang W. Shi J. Gong Q. Icariside II, a novel phosphodiesterase 5 inhibitor, protects against H 2 O 2 -induced PC 12 cells death by inhibiting mitochondria-mediated autophagy. J. Cell. Mol. Med. 2017 21 2 375 386 10.1111/jcmm.12971 27642051
    [Google Scholar]
  80. Xiao H.H. Zhang M.B. Xu J.T. Deng Y. Li N. Gao P. Li Y. Kong L. Li W. Chen J.C. Li H.Y. Shan G.S. Tai H. Yang J.X. Icarisid II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β-catenin signaling pathway. Phytother. Res. 2021 35 5 2773 2784 10.1002/ptr.7022 33455039
    [Google Scholar]
  81. Kuang W. Liu T. He F. Yu L. Wang Q. Yu C. Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells. in vitro Cell. Dev. Biol. Anim. 2021 57 4 457 467 10.1007/s11626‑021‑00556‑8 33721206
    [Google Scholar]
  82. Fan W. Zhou J. Icariside II suppresses ferroptosis to protect against MPP+-induced parkinson’s disease through Keap1/Nrf2/GPX4 signaling. Chin. J. Physiol. 2023 66 6 437 445 10.4103/cjop.CJOP‑D‑23‑00107 38149556
    [Google Scholar]
  83. Fan W. Zhou J. Icariside II protects dopaminergic neurons from 1‑methyl‑4‑phenylpyridinium‑induced neurotoxicity by downregulating HDAC2 to restore mitochondrial function. Exp. Ther. Med. 2023 27 1 40 10.3892/etm.2023.12328 38125349
    [Google Scholar]
  84. Liu T. He F. Yan J. Kuang W. Yu C. Icariside II affects hippocampal neuron axon regeneration and improves learning and memory in a chronic cerebral hypoperfusion rat model. Int. J. Clin. Exp. Pathol. 2019 12 3 826 834 31933890
    [Google Scholar]
  85. Liu M. Wang W. Gao J. Li F. Shi J. Gong Q. Icariside II attenuates cerebral ischemia/reperfusion-induced blood–brain barrier dysfunction in rats via regulating the balance of MMP9/TIMP1. Acta Pharmacol. Sin. 2020 41 12 1547 1556 10.1038/s41401‑020‑0409‑3 32488170
    [Google Scholar]
  86. Yin C. Deng Y. Liu Y. Gao J. Yan L. Gong Q. Icariside I.I. Icariside II Ameliorates cognitive impairments induced by chronic Cerebral Hypoperfusion by inhibiting the Amyloidogenic pathway: Involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats. Front. Pharmacol. 2018 9 1211 10.3389/fphar.2018.01211 30405422
    [Google Scholar]
  87. Liu S. Li X. Gao J. Liu Y. Shi J. Gong Q. Icariside II, a Phosphodiesterase-5 inhibitor, Attenuates Beta-Amyloid-induced cognitive deficits via BDNF/TrkB/CREB signaling. Cell. Physiol. Biochem. 2018 49 3 1010 1025 10.1159/000493232 30196289
    [Google Scholar]
  88. Deng Y. Long L. Wang K. Zhou J. Zeng L. He L. Gong Q. Icariside II, a broad-spectrum anti-cancer agent, reverses Beta-Amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats. Front. Pharmacol. 2017 8 39 10.3389/fphar.2017.00039 28210222
    [Google Scholar]
  89. Yin C. Deng Y. Gao J. Li X. Liu Y. Gong Q. Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats. Neuroscience 2016 328 69 79 10.1016/j.neuroscience.2016.04.022 27109920
    [Google Scholar]
  90. He L. Deng Y. Gao J. Zeng L. Gong Q. Icariside II ameliorates ibotenic acid-induced cognitive impairment and apoptotic response via modulation of MAPK pathway in rats. Phytomedicine 2018 41 74 81 10.1016/j.phymed.2018.01.025 29519323
    [Google Scholar]
  91. Xiao H.H. Chen J.C. Li H. Li R.H. Wang H.B. Song H.P. Li H.Y. Shan G.S. Tian Y. Zhao Y.M. Tian J.M. Yang J.X. Icarisid II rescues cognitive dysfunction via activation of Wnt/β-catenin signaling pathway promoting hippocampal neurogenesis in APP / PS1 transgenic mice. Phytother. Res. 2022 36 5 2095 2108 10.1002/ptr.7430 35230733
    [Google Scholar]
  92. Gu Y. Hu Z.F. Zheng D.W. Yang Y.Q. Dong X.L. Chen W.F. Baohuoside I suppresses the NLRP3 inflammasome activation via targeting GPER to fight against parkinson’s disease. Phytomedicine 2024 126 155435 10.1016/j.phymed.2024.155435 38394727
    [Google Scholar]
  93. Gao J. Ma C. Xia D. Chen N. Zhang J. Xu F. Li F. He Y. Gong Q. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway. Br. J. Pharmacol. 2023 180 3 308 329 10.1111/bph.15961 36166825
    [Google Scholar]
  94. Huang J. Ding J. Wang Z. Li Y. He Y. Wang X. Fan H. Xie Q. Qiu P. Icariside I.I. Icariside II attenuates Methamphetamine-Induced neurotoxicity and behavioral impairments via activating the Keap1-Nrf2 pathway. Oxid. Med. Cell. Longev. 2022 2022 1 23 10.1155/2022/8400876 35387263
    [Google Scholar]
  95. Zhou J. Deng Y. Li F. Yin C. Shi J. Gong Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed. Pharmacother. 2019 111 315 324 10.1016/j.biopha.2018.10.201 30590319
    [Google Scholar]
  96. Van Berendoncks A.M. Elseviers M.M. Lins R.L. Outcome of acute kidney injury with different treatment options: Long-term follow-up. Clin. J. Am. Soc. Nephrol. 2010 5 10 1755 1762 10.2215/CJN.00770110 20634328
    [Google Scholar]
  97. Coresh J. Selvin E. Stevens L.A. Manzi J. Kusek J.W. Eggers P. Van Lente F. Levey A.S. Prevalence of chronic kidney disease in the United States. JAMA 2007 298 17 2038 2047 10.1001/jama.298.17.2038 17986697
    [Google Scholar]
  98. Ma P. Zhang S. Su X. Qiu G. Wu Z. Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am. J. Transl. Res. 2015 7 10 2105 2114 26692955
    [Google Scholar]
  99. Lei H. Tian W. Guan R. Xu Y. Li H. Wang L. Yang B. Gao Z. Xin Z. Icariside II ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Drug Des. Devel. Ther. 2015 5147 5147 10.2147/DDDT.S90060
    [Google Scholar]
  100. Liang S.R. Bi J.W. Guo Z.L. Bai Y. Hu Z. Protective effect of icariin on kidney in 5/6 nephrectomized rats and its mechanism. Genet. Mol. Res. 2014 13 3 6466 6471 10.4238/2014.August.25.10 25158265
    [Google Scholar]
  101. Zhang W. Yuan W. Xu N. Li J. Chang W. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancy-induced hypertension. Mol. Med. Rep. 2017 16 5 7398 7404 10.3892/mmr.2017.7513 28944832
    [Google Scholar]
  102. Wang M. Wang J. Wang L. Feng X. Qian Y. Ye C. Wang C. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation. Phytother. Res. 2023 ••• 10.1002/ptr.8085 38081477
    [Google Scholar]
  103. Gao J. Wei J. Yi Y. Gong M-X. Hou F. Li Y. Zhang Y. Gong Q. Icariside II, a novel dual PPARα/γ Agonist, confers protection against D-GalN/LPS-induced acute liver injury: involvement of SIRT6/NF-κB/Pyroptosis axis. Lancet 2023 10.2139/ssrn.4583136
    [Google Scholar]
  104. Gao J. Hou F. Yi Y. Icarisid II, A Novel Dual PPARRα/γ Agonist, Alleviates D-Galactosamine and Lipopolysaccharide-Induced Fulminant Hepatic Failure: Involvement of SIRT6/NF-κB/Pyroptosis Axis. 2022 Available from: https://ssrn.com/abstract=4221757
    [Google Scholar]
  105. Tian C. Gao F. Li X. Li Z. Icariside II attenuates eosinophils-induced airway inflammation and remodeling via inactivation of NF-κB and STAT3 in an asthma mouse model. Exp. Mol. Pathol. 2020 113 104373 10.1016/j.yexmp.2020.104373 31917285
    [Google Scholar]
  106. Li X. Wang Y. Chen Y. Lu Z. Sun Y. Zhong C. Lv Z. Pan H. Chen J. Yao D. Huang X. Yu C. Icariside II alleviates lipopolysaccharide-induced acute lung injury by inhibiting lung epithelial inflammatory and immune responses mediated by neutrophil extracellular traps. Life Sci. 2024 346 122648 10.1016/j.lfs.2024.122648 38631668
    [Google Scholar]
  107. Li Y. Lin B. Icariside II regulates TLR4/NF-κB signaling pathway to improve septic lung injury. Signa Vitae 2021 10.22514/sv.2021.216
    [Google Scholar]
  108. Deng L. Ouyang B. Shi H. Yang F. Li S. Xie C. Du W. Hu L. Wei Y. Dong J. Icariside Ⅱ attenuates bleomycin-induced pulmonary fibrosis by modulating macrophage polarization. J. Ethnopharmacol. 2023 317 116810 10.1016/j.jep.2023.116810 37331450
    [Google Scholar]
  109. Du W. Tang Z. Yang F. Liu X. Dong J. Icariin attenuates bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed. Pharmacother. 2021 143 112152 10.1016/j.biopha.2021.112152 34536758
    [Google Scholar]
  110. Ali M.Y. Gadotti V.M. Huang S. Garcia-Caballero A. Antunes F.T.T. Jung H.A. Choi J.S. Zamponi G.W. Icariside II, a Prenyl-Flavonol, alleviates inflammatory and Neuropathic Pain by inhibiting T-Type Calcium channels and USP5-Cav3.2 interactions. ACS Chem. Neurosci. 2023 14 10 1859 1869 10.1021/acschemneuro.3c00083 37116219
    [Google Scholar]
  111. Alam M.B. Kwon Y.G. Simu S.Y. Abrar Shahriyar S. Lee S.H. Attenuation of inflammatory symptoms by Icariside B2 in Carrageenan and LPS-induced inflammation models via regulation of MAPK/NF-κB signaling cascades. Biomolecules 2020 10 7 1037 10.3390/biom10071037 32664577
    [Google Scholar]
  112. Lai X. Ye Y. Sun C. Huang X. Tang X. Zeng X. Yin P. Zeng Y. Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model. Int. Immunopharmacol. 2013 16 1 41 49 10.1016/j.intimp.2013.03.025 23566810
    [Google Scholar]
  113. Lorenzo J. Horowitz M. Choi Y. Osteoimmunology: Interactions of the bone and immune system. Endocr. Rev. 2008 29 4 403 440 10.1210/er.2007‑0038 18451259
    [Google Scholar]
  114. Marie P.J. Kassem M. Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets. Eur. J. Endocrinol. 2011 165 1 1 10 10.1530/EJE‑11‑0132 21543379
    [Google Scholar]
  115. Luo G. Xu B. Huang Y. Icariside II promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways. Am. J. Transl. Res. 2017 9 5 2077 2087 28559962
    [Google Scholar]
  116. Liu W. Mao L. Ji F. Chen F. Wang S. Xie Y. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Oncotarget 2017 8 2 2594 2603 10.18632/oncotarget.13732 27911877
    [Google Scholar]
  117. Shamloul R. Ghanem H. Erectile dysfunction. Lancet 2013 381 9861 153 165 10.1016/S0140‑6736(12)60520‑0 23040455
    [Google Scholar]
  118. Kandeel F.R. Koussa V.K.T. Swerdloff R.S. Male sexual function and its disorders: Physiology, pathophysiology, clinical investigation, and treatment. Endocr. Rev. 2001 22 3 342 388 10.1210/edrv.22.3.0430 11399748
    [Google Scholar]
  119. Zhou F. Xin H. Liu T. Li G.Y. Gao Z.Z. Liu J. Li W.R. Cui W.S. Bai G.Y. Park N.C. Xin Z.C. Effects of icariside II on improving erectile function in rats with streptozotocin-induced diabetes. J. Androl. 2012 33 5 832 844 10.2164/jandrol.111.015172 22403279
    [Google Scholar]
  120. Lei H. Li H. Tian L. Li M. Xin Z. Zhang X. Guan R. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug Des. Devel. Ther. 2018 12 1743 1751 10.2147/DDDT.S166734 29942117
    [Google Scholar]
  121. Zheng T. Zhang T-B. Wang C-L. Zhang W-X. Jia D-H. Yang F. Sun Y-Y. Ding X-J. Wang R. Icariside I.I. Icariside II promotes the differentiation of Adipose tissue-derived stem cells to Schwann cells to preserve Erectile function after cavernous nerve injury. PubMed 2018 41 6 553 561 10.14348/molcells.2018.2236 29902838
    [Google Scholar]
  122. Bai G.Y. Zhou F. Hui Y. Xu Y.D. Lei H.E. Pu J.X. Xin Z.C. Effects of Icariside II on corpus cavernosum and major pelvic ganglion neuropathy in streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2014 15 12 23294 23306 10.3390/ijms151223294 25517034
    [Google Scholar]
  123. Zhang J. Li S. Zhang S. Wang Y. Jin S. Zhao C. Yang W. Liu Y. Kong G. Effect of Icariside II and Metformin on Penile Erectile function, Histological Structure, Mitochondrial autophagy, glucose-lipid Metabolism, Angiotensin II and sex hormone in type 2 diabetic rats with Erectile dysfunction. Sex. Med. 2020 8 2 168 177 10.1016/j.esxm.2020.01.006 32147433
    [Google Scholar]
  124. Zhang J. Li S. Li S. Zhang S. Wang Y. Jin S. Zhao C. Yang W. Liu Y. Fang D. Li X. Xin Z. Effect of icariside II and metformin on penile erectile function, glucose metabolism, reaction oxygen species, superoxide dismutase, and mitochondrial autophagy in type 2 diabetic rats with erectile dysfunction. Transl. Androl. Urol. 2020 9 2 355 366 10.21037/tau.2020.02.07 32420141
    [Google Scholar]
  125. Han Z.Y. Zhang Z.H. Wang H. Chen Y. Efficacy of leech powder on hyperlipidaemia-associated erectile dysfunction in male rats. Zhonghua Nan Ke Xue 2022 28 4 332 338 37477455
    [Google Scholar]
  126. Liu Y. Wei Z. Liu S. Sun J. Mao Y. Xu Y. Yang Y. A flavonoid derivative of icariside II (YS-10) improves erectile dysfunction in radiation-injured rats via oxidative stress pathway. Transl. Androl. Urol. 2022 11 6 832 841 10.21037/tau‑22‑376 35812197
    [Google Scholar]
  127. Lv J. Li X. Wu H. Li J. Luan B. Li Y. Li Y. Yang D. Wen H. Icariside I.I. Icariside II restores vascular smooth muscle cell contractile phenotype by enhancing the focal adhesion signaling pathway in the rat vascular remodeling model. Front. Pharmacol. 2022 13 897615 10.3389/fphar.2022.897615 35770073
    [Google Scholar]
  128. Song W. Yuan Y. Tan X. Gu Y. Zeng J. Song W. Xin Z. Fang D. Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022 10 e14192 10.7717/peerj.14192 36312762
    [Google Scholar]
  129. Wu H.Y. Li J.Y. Wen H. Li Y.Q. Li Y.L. Li G.Y. Jiang Y. Lv J.Y. Yang D. Icariside I.I. Icariside II Attenuates Vascular Remodeling via Wnt7b/CCND1 Axis. J. Cardiovasc. Pharmacol. 2022 80 1 48 55 10.1097/FJC.0000000000001239 35170494
    [Google Scholar]
  130. Gu Y.Y. Tan X.H. Song W.P. Song W.D. Yuan Y.M. Xin Z.C. Wang J.D. Fang D. Guan R.L. Icariside I.I. Icariside Ⅱ Attenuates Palmitic Acid-Induced Endothelial dysfunction through SRPK1-Akt-eNOS signaling pathway. Front. Pharmacol. 2022 13 920601 10.3389/fphar.2022.920601 35846993
    [Google Scholar]
  131. Li Y. Li Y. Chen N. Feng L. Gao J. Zeng N. He Z. Gong Q. Icariside I.I. Icariside II exerts anti-Type 2 diabetic effect by targeting PPARα/γ: Involvement of ROS/NF-κB/IRS1 signaling pathway. Antioxidants 2022 11 9 1705 10.3390/antiox11091705 36139776
    [Google Scholar]
  132. Chi A. Yang B. Cao X. Wang Z. Liu H. Dai H. Deng C. Zhang M. ICA II Alleviates testicular torsion injury by dampening the oxidative and inflammatory stress. Front. Endocrinol. (Lausanne) 2022 13 871548 10.3389/fendo.2022.871548 35634492
    [Google Scholar]
  133. Xu Y. Lei H. Guan R. Gao Z. Li H. Wang L. Hui Y. Zhou F. Xin Z. Prophylactic protective effects and its potential mechanisms of IcarisideII on streptozotocin induced spermatogenic dysfunction. Int. J. Mol. Sci. 2014 15 9 16100 16113 10.3390/ijms150916100 25216341
    [Google Scholar]
  134. Yan D. Wu Q. Li X. Chen Q. Huang C. Hu J. Liu Z. Icariside II alleviates ischemic retinopathy by modulating microglia and promoting vessel integrity. J. Funct. Foods 2023 104 105510 10.1016/j.jff.2023.105510
    [Google Scholar]
  135. Kong Q. Zhu H. Dong J. Liu B. Icariside II in NSCLC and COVID-19: Network pharmacology and molecular docking study. J. Gene Med. 2024 26 7 e3710 10.1002/jgm.3710 38967229
    [Google Scholar]
  136. Yang X. Lang S. Li S. Jiang C. Han J. Preparation of icariside I and icariside II, an exploration of their protective mechanism against cyclophosphamide-induced bone marrow suppression in mice, and their regulatory effects on immune function. Pharmazie 2022 77 1 32 37 10.1691/ph.2022.1771 35045923
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501329810241117231839
Loading
/content/journals/cdt/10.2174/0113894501329810241117231839
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Icariside II ; neuroprotective ; lung protective ; anti-cancer ; Flavonoids ; renal protective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test