Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The incidence of inflammatory diseases, including infections, autoimmune disorders, and tumors, is consistently increasing year by year, posing a significant and growing threat to human health on a global scale. Recent research has indicated that RNA acetylation modification, a specific type of post-transcriptional modification, may play a critical role in the pathogenesis of these diseases. Among the various mechanisms of RNA modification, N-acetyltransferase 10 (NAT10) has been identified as the sole cytidine acetyltransferase in eukaryotes. NAT10 is responsible for acetylating mRNA cytosine, which leads to the formation of N4-acetylcytidine (ac4C), a modification that subsequently influences mRNA stability and translation efficiency. Despite these insights, the specific roles and underlying mechanisms by which RNA acetylation contributes to the onset and progression of inflammatory diseases remain largely unclear. This review aimed to elucidate the alterations in NAT10 expression, the modifications it induces in target genes, and its overall contribution to the pathogenesis of various inflammatory conditions. It has been observed that NAT10 expression tends to increase in most inflammatory conditions, thereby affecting the expression and function of target genes through the formation of ac4C. Furthermore, inhibitors targeting NAT10 present promising therapeutic avenues for treating inflammatory diseases by selectively blocking NAT10 activity, thereby preventing the modification of target genes and suppressing immune cell activation and inflammatory responses. This potential for therapeutic intervention underscores the critical importance of further research on NAT10's role in inflammatory disease pathogenesis, as understanding these mechanisms could lead to significant advancements in treatment strategies, potentially transforming the therapeutic landscape for these conditions.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501346709241202110834
2024-12-04
2025-05-06
Loading full text...

Full text loading...

References

  1. MedzhitovR. The spectrum of inflammatory responses.Science202137465711070107510.1126/science.abi520034822279
    [Google Scholar]
  2. MeizlishM.L. FranklinR.A. ZhouX. MedzhitovR. Tissue Homeostasis and Inflammation.Annu. Rev. Immunol.202139155758110.1146/annurev‑immunol‑061020‑05373433651964
    [Google Scholar]
  3. NeteaM.G. BalkwillF. ChoncholM. CominelliF. DonathM.Y. Giamarellos-BourboulisE.J. GolenbockD. GresnigtM.S. HenekaM.T. HoffmanH.M. HotchkissR. JoostenL.A.B. KastnerD.L. KorteM. LatzE. LibbyP. Mandrup-PoulsenT. MantovaniA. MillsK.H.G. NowakK.L. O’NeillL.A. PickkersP. van der PollT. RidkerP.M. SchalkwijkJ. SchwartzD.A. SiegmundB. SteerC.J. TilgH. van der MeerJ.W.M. van de VeerdonkF.L. DinarelloC.A. A guiding map for inflammation.Nat. Immunol.201718882683110.1038/ni.379028722720
    [Google Scholar]
  4. SugimotoM.A. SousaL.P. PinhoV. PerrettiM. TeixeiraM.M. Resolution of Inflammation: What Controls Its Onset?Front. Immunol.2016716010.3389/fimmu.2016.0016027199985
    [Google Scholar]
  5. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  6. Falstie-jensenN. ChristensenK.S. Brøchner-MortensenJ. Selection of lower limb amputation level not aided by transcutaneous pO 2 measurements.Acta Orthop. Scand.198960448348510.3109/174536789091493262816330
    [Google Scholar]
  7. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.02220303872
    [Google Scholar]
  8. NeteaM.G. BalkwillF. ChoncholM. CominelliF. DonathM.Y. Giamarellos-BourboulisE.J. GolenbockD. GresnigtM.S. HenekaM.T. HoffmanH.M. HotchkissR. JoostenL.A.B. KastnerD.L. KorteM. LatzE. LibbyP. Mandrup-PoulsenT. MantovaniA. MillsK.H.G. NowakK.L. O’NeillL.A. PickkersP. van der PollT. RidkerP.M. SchalkwijkJ. SchwartzD.A. SiegmundB. SteerC.J. TilgH. van der MeerJ.W.M. van de VeerdonkF.L. DinarelloC.A. Author Correction: A guiding map for inflammation.Nat. Immunol.202122225410.1038/s41590‑020‑00846‑533288963
    [Google Scholar]
  9. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature0720118650913
    [Google Scholar]
  10. DongC. NiuL. SongW. XiongX. ZhangX. ZhangZ. YangY. YiF. ZhanJ. ZhangH. YangZ. ZhangL.H. ZhaiS. LiH. YeM. DuQ. tRNA modification profiles of the fast-proliferating cancer cells.Biochem. Biophys. Res. Commun.2016476434034510.1016/j.bbrc.2016.05.12427246735
    [Google Scholar]
  11. SharmaS. LanghendriesJ.L. WatzingerP. KötterP. EntianK.D. LafontaineD.L.J. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1.Nucleic Acids Res.20154342242225810.1093/nar/gkv07525653167
    [Google Scholar]
  12. ArangoD. SturgillD. AlhusainiN. DillmanA.A. SweetT.J. HansonG. HosoganeM. SinclairW.R. NananK.K. MandlerM.D. FoxS.D. ZengeyaT.T. AndressonT. MeierJ.L. CollerJ. OberdoerfferS. Acetylation of cytidine in mRNA promotes translation efficiency.Cell2018175718721886.e2410.1016/j.cell.2018.10.03030449621
    [Google Scholar]
  13. JinG. XuM. ZouM. DuanS. The processing, gene regulation, biological functions, and clinical relevance of N4-Acetylcytidine on RNA: A systematic review.Mol. Ther. Nucleic Acids202020132410.1016/j.omtn.2020.01.03732171170
    [Google Scholar]
  14. ItoS. HorikawaS. SuzukiT. KawauchiH. TanakaY. SuzukiT. SuzukiT. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA).J. Biol. Chem.201428952357243573010.1074/jbc.C114.60269825411247
    [Google Scholar]
  15. SilvaA.P.G. ByrneR.T. ChechikM. SmitsC. WatermanD.G. AntsonA.A. Expression, purification, crystallization and preliminary X-ray studies of the TAN1 orthologue from Methanothermobacter thermautotrophicus.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.200864111083108610.1107/S174430910803403918997348
    [Google Scholar]
  16. XuH. JiangB. MengL. RenT. ZengY. WuJ. QuL. ShouC. N -α-Acetyltransferase 10 protein inhibits apoptosis through RelA/p65-regulated MCL1 expression.Carcinogenesis20123361193120210.1093/carcin/bgs14422496479
    [Google Scholar]
  17. ZhangX. LiuJ. YanS. HuangK. BaiY. ZhengS. High expression of N-acetyltransferase 10: A novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma.Int. J. Clin. Exp. Pathol.2015811147651477126823802
    [Google Scholar]
  18. TsaiK. Jaguva VasudevanA.A. Martinez CamposC. EmeryA. SwanstromR. CullenB.R. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability.Cell Host Microbe2020282306312.e610.1016/j.chom.2020.05.01132533923
    [Google Scholar]
  19. YanQ. ZhouJ. WangZ. DingX. MaX. LiW. JiaX. GaoS.J. LuC. NAT10-dependent N4-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation.Nat. Commun.2023141632710.1038/s41467‑023‑42135‑337816771
    [Google Scholar]
  20. GuoG. ShiX. WangH. YeL. TongX. YanK. DingN. ChenC. ZhangH. XueX. Epitranscriptomic N4-acetylcytidine profiling in CD4+ T cells of systemic lupus erythematosus.Front. Cell Dev. Biol.2020884210.3389/fcell.2020.0084232984334
    [Google Scholar]
  21. ShiJ. YangC. ZhangJ. ZhaoK. LiP. KongC. WuX. SunH. ZhengR. SunW. ChenL. KongX. NAT10 is involved in cardiac remodeling through ac4C-Mediated transcriptomic regulation.Circ. Res.202313312989100210.1161/CIRCRESAHA.122.32224437955115
    [Google Scholar]
  22. YangC. WuT. ZhangJ. LiuJ. ZhaoK. SunW. ZhouX. KongX. ShiJ. Prognostic and immunological role of mRNA ac4C regulator NAT10 in pan-cancer: New territory for cancer research?Front. Oncol.20211163041710.3389/fonc.2021.63041734094911
    [Google Scholar]
  23. LiuD. KuangY. ChenS. LiR. SuF. ZhangS. QiuQ. LinS. ShenC. LiuY. LiangL. WangJ. XuH. XiaoY. NAT10 promotes synovial aggression by increasing the stability and translation of N4-acetylated PTX3 mRNA in rheumatoid arthritis.Ann. Rheum. Dis.2024839ard-2023-22534310.1136/ard‑2023‑22534338724075
    [Google Scholar]
  24. LiuY. WangX. LiuY. YangJ. MaoW. FengC. WuX. ChenX. ChenL. DongP. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway.Cell Death Dis.2023141171210.1038/s41419‑023‑06245‑637914704
    [Google Scholar]
  25. ZhangZ. ZhangY. CaiY. LiD. HeJ. FengZ. XuQ. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages.Biochim. Biophys. Acta Mol. Cell Res.20231870711952110.1016/j.bbamcr.2023.11952137307924
    [Google Scholar]
  26. ZhangX. JiangY. MaoJ. RenX. JiY. MaoY. ChenY. SunX. PanY. MaJ. HuangS. Hydroxytyrosol prevents periodontitis-induced bone loss by regulating mitochondrial function and mitogen-activated protein kinase signaling of bone cells.Free Radic. Biol. Med.202117629831110.1016/j.freeradbiomed.2021.09.02734610362
    [Google Scholar]
  27. WangZ. LuoJ. HuangH. WangL. LvT. WangZ. LiC. WangY. LiuJ. ChengQ. ZuoX. HuL. YeM. LiuH. SongY. NAT10-mediated upregulation of GAS5 facilitates immune cell infiltration in non-small cell lung cancer via the MYBBP1A-p53/IRF1/type I interferon signaling axis.Cell Death Discov.202410124010.1038/s41420‑024‑01997‑238762546
    [Google Scholar]
  28. JinC. GaoJ. ZhuJ. AoY. ShiB. LiX. Exosomal NAT10 from esophageal squamous cell carcinoma cells modulates macrophage lipid metabolism and polarization through ac4C modification of FASN.Transl. Oncol.20244510193410.1016/j.tranon.2024.10193438692194
    [Google Scholar]
  29. DuanJ. ZhangQ. HuX. LuD. YuW. BaiH. N4-acetylcytidine is required for sustained NLRP3 inflammasome activation via HMGB1 pathway in microglia.Cell. Signal.201958445210.1016/j.cellsig.2019.03.00730853521
    [Google Scholar]
  30. FurmanD. ChangJ. LartigueL. BolenC.R. HaddadF. GaudilliereB. GanioE.A. FragiadakisG.K. SpitzerM.H. DouchetI. DaburonS. MoreauJ.F. NolanG.P. BlancoP. Déchanet-MervilleJ. DekkerC.L. JojicV. KuoC.J. DavisM.M. FaustinB. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states.Nat. Med.201723217418410.1038/nm.426728092664
    [Google Scholar]
  31. DemkowU. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis.Cancers (Basel)20211317449510.3390/cancers1317449534503307
    [Google Scholar]
  32. LiuD. YangX. WangX. Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2.Cell. Signal.202411611101410.1016/j.cellsig.2023.11101438110168
    [Google Scholar]
  33. WanW. LiuW. STING recruits WIPI2 for autophagosome formation.Autophagy202420492892910.1080/15548627.2023.220210837041719
    [Google Scholar]
  34. ZhangH. ChenZ. ZhouJ. GuJ. WuH. JiangY. GaoS. LiaoY. ShenR. MiaoC. ChenW. NAT10 regulates neutrophil pyroptosis in sepsis via acetylating ULK1 RNA and activating STING pathway.Commun. Biol.20225191610.1038/s42003‑022‑03868‑x36068299
    [Google Scholar]
  35. LiQ. YuanZ. WangY. ZhaiP. WangJ. ZhangC. ShaoZ. XingC. Unveiling YWHAH: A potential therapeutic target for overcoming CD8+ T cell exhaustion in colorectal cancer.Int. Immunopharmacol.202413511231710.1016/j.intimp.2024.11231738796965
    [Google Scholar]
  36. TownsendA.K. SewallK.B. LeonardA.S. HawleyD.M. Infectious disease and cognition in wild populations.Trends Ecol. Evol.2022371089991010.1016/j.tree.2022.06.00535872026
    [Google Scholar]
  37. LiaoZ. HeL. FuJ. ZhouX. LiY. HeJ. LiuY. GuoJ. LiuS. Identification of novel biomarkers for lupus nephritis.Biomol. Biomed.202410.17305/bb.2024.1045038980684
    [Google Scholar]
  38. ShacterE. WeitzmanS.A. Chronic inflammation and cancer.Oncology (Williston Park)200216221722611866137
    [Google Scholar]
  39. ChenD. ZhangX. LiZ. ZhuB. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages.Theranostics20211131016103010.7150/thno.5177733391518
    [Google Scholar]
  40. LiH. QinQ. ShiX. HeJ. XuG. Modified metabolites mapping by liquid chromatography-high resolution mass spectrometry using full scan/all ion fragmentation/neutral loss acquisition.J. Chromatogr. A20191583808710.1016/j.chroma.2018.11.01430471789
    [Google Scholar]
  41. LiuX. TanY. ZhangC. ZhangY. ZhangL. RenP. DengH. LuoJ. KeY. DuX. NAT 10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.EMBO Rep.201617334936610.15252/embr.20154050526882543
    [Google Scholar]
  42. LiQ. LiuX. JinK. LuM. ZhangC. DuX. XingB. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity.BMC Cancer201717160510.1186/s12885‑017‑3570‑428859621
    [Google Scholar]
  43. DengM. ZhangL. ZhengW. ChenJ. DuN. LiM. ChenW. HuangY. ZengN. SongY. ChenY. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression.J. Exp. Clin. Cancer Res.2023421910.1186/s13046‑022‑02586‑w36609449
    [Google Scholar]
  44. WangG. ZhangM. ZhangY. XieY. ZouJ. ZhongJ. ZhengZ. ZhouX. ZhengY. ChenB. LiuC. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression.Clin. Transl. Med.2022125e73810.1002/ctm2.73835522942
    [Google Scholar]
  45. WeiZ. YangM. FengM. WuZ. Rosin-ArbesfeldR. DongJ. ZhuD. Inhibition of BCL9 modulates the cellular landscape of tumor-associated macrophages in the tumor immune microenvironment of colorectal cancer.Front. Pharmacol.20211271333110.3389/fphar.2021.71333134566638
    [Google Scholar]
  46. ZongG. WangX. GuoX. ZhaoQ. WangC. ShenS. XiaoW. YangQ. JiangW. ShenJ. WanR. NAT10-mediated AXL mRNA N4-acetylcytidine modification promotes pancreatic carcinoma progression.Exp. Cell Res.2023428211362010.1016/j.yexcr.2023.11362037156457
    [Google Scholar]
  47. FukamiK. YamagishiS. OkudaS. Role of AGEs-RAGE system in cardiovascular disease.Curr. Pharm. Des.201420142395240210.2174/1381612811319999047523844818
    [Google Scholar]
  48. SchmidM.C. AvraamidesC.J. DippoldH.C. FrancoI. FoubertP. ElliesL.G. AcevedoL.M. ManglicmotJ.R.E. SongX. WrasidloW. BlairS.L. GinsbergM.H. ChereshD.A. HirschE. FieldS.J. VarnerJ.A. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression.Cancer Cell201119671572710.1016/j.ccr.2011.04.01621665146
    [Google Scholar]
  49. DingM. YuZ. LuT. HuS. ZhouX. WangX. N -acetyltransferase 10 facilitates tumorigenesis of diffuse large B-cell lymphoma by regulating AMPK/mTOR signalling through N4-acetylcytidine modification of SLC30A9.Clin. Transl. Med.2024147e174710.1002/ctm2.174738961519
    [Google Scholar]
  50. XuX. GaoW. LiL. HaoJ. YangB. WangT. LiL. BaiX. LiF. RenH. ZhangM. ZhangL. WangJ. WangD. ZhangJ. JiaoL. Annexin A1 protects against cerebral ischemia–reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway.J. Neuroinflammation202118111910.1186/s12974‑021‑02174‑334022892
    [Google Scholar]
  51. ChunY. KimJ. AMPK–mTOR Signaling and Cellular Adaptations in Hypoxia.Int. J. Mol. Sci.20212218976510.3390/ijms2218976534575924
    [Google Scholar]
  52. LiaoL. HeY. LiS.J. YuX.M. LiuZ.C. LiangY.Y. YangH. YangJ. ZhangG.G. DengC.M. WeiX. ZhuY.D. XuT.Y. ZhengC.C. ChengC. LiA. LiZ.G. LiuJ.B. LiB. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner.Cell Res.202333535537110.1038/s41422‑023‑00793‑436882514
    [Google Scholar]
  53. JinC. WangT. ZhangD. YangP. ZhangC. PengW. JinK. WangL. ZhouJ. PengC. TanY. JiJ. ChenZ. SunQ. YangS. TangJ. FengY. SunY. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA.J. Exp. Clin. Cancer Res.202241134510.1186/s13046‑022‑02551‑736522719
    [Google Scholar]
  54. AccapezzatoD. CaccavaleR. ParoliM.P. GioiaC. NguyenB.L. SpadeaL. ParoliM. Advances in the pathogenesis and treatment of systemic lupus erythematosus.Int. J. Mol. Sci.2023247657810.3390/ijms2407657837047548
    [Google Scholar]
  55. BuddR.C. ScharerC.D. Barrantes-ReynoldsR. LegunnS. FortnerK.A. T cell homeostatic proliferation promotes a redox state that drives metabolic and epigenetic upregulation of inflammatory pathways in lupus.Antioxid. Redox Signal.2022367-941042210.1089/ars.2021.007834328790
    [Google Scholar]
  56. YimL.Y. LauC.S. ChanV.S.F. Heightened TLR7/9-induced IL-10 and CXCL13 production with dysregulated NF-ҝB activation in CD11chiCD11b+ dendritic cells in NZB/W F1 Mice.Int. J. Mol. Sci.20192018463910.3390/ijms2018463931546763
    [Google Scholar]
  57. SmithM.H. BermanJ.R. What is rheumatoid arthritis?JAMA202232712119410.1001/jama.2022.078635315883
    [Google Scholar]
  58. PayetM. DargaiF. GasqueP. GuillotX. Epigenetic regulation (Including micro-RNAs, DNA methylation and histone modifications) of rheumatoid arthritis: A systematic review.Int. J. Mol. Sci.202122221217010.3390/ijms22221217034830057
    [Google Scholar]
  59. BouletJ. SridharV. S. BouabdallaouiN. TardifJ. C. WhiteM. Inflammation in heart failure: Pathophysiology and therapeutic strategies.Inflamm Res.202473570972310.1007/s00011‑023‑01845‑6
    [Google Scholar]
  60. KumariR. RanjanP. SuleimanZ.G. GoswamiS.K. LiJ. PrasadR. VermaS.K. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification.Cardiovasc. Res.202211871680169210.1093/cvr/cvab16033956076
    [Google Scholar]
  61. GeY. ChenR. LingT. LiuB. HuangJ. ChengY. LinY. ChenH. XieX. XiaG. LuoG. YuanS. XuA. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models.J. Clin. Invest.202413414e17793210.1172/JCI17793239007267
    [Google Scholar]
  62. QiuL. JingQ. LiY. HanJ. RNA modification: mechanisms and therapeutic targets.Mol. Biomed.2023412510.1186/s43556‑023‑00139‑x37612540
    [Google Scholar]
  63. WangC. SongS. ZhangY. GeY. FangX. HuangT. DuJ. GaoJ. Inhibition of the Rho/Rho kinase pathway prevents lipopolysaccharide-induced hyperalgesia and the release of TNF-α and IL-1β in the mouse spinal cord.Sci. Rep.2015511455310.1038/srep1455326416580
    [Google Scholar]
  64. Zanin-ZhorovA. FlynnR. WaksalS.D. BlazarB.R. Isoform-specific targeting of ROCK proteins in immune cells.Small GTPases20167317317710.1080/21541248.2016.118169827254302
    [Google Scholar]
  65. BiswasP.S. GuptaS. ChangE. SongL. StirzakerR.A. LiaoJ.K. BhagatG. PernisA.B. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice.J. Clin. Invest.201012093280329510.1172/JCI4285620697158
    [Google Scholar]
  66. KannoS. HiranoS. ChibaS. TakeshitaH. NagaiT. TakadaM. SakamotoK. MukaiT. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes.Arch. Toxicol.2015891738510.1007/s00204‑014‑1238‑224760326
    [Google Scholar]
  67. MinistriniS. CarboneF. MontecuccoF. Updating concepts on atherosclerotic inflammation: From pathophysiology to treatment.Eur. J. Clin. Invest.2021515e1346710.1111/eci.1346733259635
    [Google Scholar]
  68. OliveiraJ.B. SoaresA.A.S.M. SpositoA.C. Inflammatory response during myocardial infarction.Adv. Clin. Chem.201884397910.1016/bs.acc.2017.12.00229478516
    [Google Scholar]
  69. ChenY. ZengL. Peripheral inflammatory factors and acute myocardial infarction risk: A mendelian randomization study.Glob. Heart20231815510.5334/gh.126937811136
    [Google Scholar]
  70. BrochK. AnstensrudA.K. WoxholtS. SharmaK. TøllefsenI.M. BendzB. AakhusS. UelandT. AmundsenB.H. DamåsJ.K. BergE.S. BjørkelundE. BendzC. HoppE. KlevelandO. StensæthK.H. OpdahlA. KløwN.E. SeljeflotI. AndersenG.Ø. WisethR. AukrustP. GullestadL. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction.J. Am. Coll. Cardiol.202177151845185510.1016/j.jacc.2021.02.04933858620
    [Google Scholar]
  71. RanaI. StebbingM. KompaA. KellyD.J. KrumH. BadoerE. Microglia activation in the hypothalamic PVN following myocardial infarction.Brain Res.201013269610410.1016/j.brainres.2010.02.02820156424
    [Google Scholar]
  72. WangK. ZhouL. Y. LiuF. LinL. JuJ. TianP. C. LiuC. Y. LiX. M. ChenX. Z. WangT. WangF. WangS. C. ZhangJ. ZhangY. H. TianJ. W. WangK. PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac(4) C acetylation of Tfec mRNA.Adv. Sci.202298e2106058
    [Google Scholar]
  73. NutmaE. FancyN. WeinertM. TsartsalisS. MarzinM.C. MuirheadR.C.J. FalkI. BreurM. de BruinJ. HollausD. PietermanR. AninkJ. StoryD. ChandranS. TangJ. TroleseM.C. SaitoT. SaidoT.C. WiltshireK.H. Beltran-LoboP. PhillipsA. AntelJ. HealyL. DorionM.F. GallowayD.A. BenoitR.Y. AmosséQ. CeyzériatK. BadinaA.M. KövariE. BendottiC. AronicaE. RadulescuC.I. WongJ.H. BarronA.M. SmithA.M. BarnesS.J. HamptonD.W. van der ValkP. JacobsonS. HowellO.W. BakerD. KippM. KaddatzH. TournierB.B. MilletP. MatthewsP.M. MooreC.S. AmorS. OwenD.R. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases.Nat. Commun.2023141524710.1038/s41467‑023‑40937‑z37640701
    [Google Scholar]
  74. QuZ. PangX. MeiZ. LiY. ZhangY. HuangC. LiuK. YuS. WangC. SunZ. LiuY. LiX. JiaY. DongY. LuM. JuT. WuF. HuangM. LiN. DouS. JiangJ. DongX. ZhangY. LiW. YangB. DuW. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury.Redox Biol.20247210314510.1016/j.redox.2024.10314538583415
    [Google Scholar]
  75. TwarowskiB. HerbetM. Inflammatory processes in alzheimer’s disease—pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms2407651837047492
    [Google Scholar]
  76. MaY. FanC. WangY. LiW. JiangH. YangW. Comprehensive analysis of mRNAs in the cerebral cortex in APP/PS1 double- transgenic mice with Alzheimer’s disease based on high-throughput sequencing of N4-acetylcytidine.Funct. Integr. Genomics202323326710.1007/s10142‑023‑01192‑z37548859
    [Google Scholar]
  77. BurkeJ.E. TriscottJ. EmerlingB.M. HammondG.R.V. Beyond PI3Ks: targeting phosphoinositide kinases in disease.Nat. Rev. Drug Discov.202322535738610.1038/s41573‑022‑00582‑536376561
    [Google Scholar]
  78. CaoY. ChenJ. RenG. ZhangY. TanX. YangL. Punicalagin Prevents Inflammation in LPS- Induced RAW264.7 Macrophages by Inhibiting FoxO3a/Autophagy Signaling Pathway.Nutrients20191111279410.3390/nu1111279431731808
    [Google Scholar]
  79. JiaoB. ZhangW. ZhangC. ZhangK. CaoX. YuS. ZhangX. Protein tyrosine phosphatase 1B contributes to neuropathic pain by aggravating NF-κB and glial cells activation-mediated neuroinflammation via promoting endoplasmic reticulum stress.CNS Neurosci. Ther.2024302e1460910.1111/cns.1460938334011
    [Google Scholar]
  80. GaoY. MeiC. ChenP. ChenX. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord.Int. Immunopharmacol.202210710870010.1016/j.intimp.2022.10870035313271
    [Google Scholar]
  81. ZhangM. YangK. WangQ.H. XieL. LiuQ. WeiR. TaoY. ZhengH.L. LinN. XuH. YangL. WangH. ZhangT. XueZ. CaoJ.L. PanZ. The cytidine n-acetyltransferase NAT10 participates in peripheral nerve injury-induced neuropathic pain by stabilizing SYT9 expression in primary sensory neurons.J. Neurosci.202343173009302710.1523/JNEUROSCI.2321‑22.202336898834
    [Google Scholar]
  82. ChoM.J. LeeD.G. LeeJ.W. HwangB. YoonS.J. LeeS.J. ParkY.J. ParkS.H. LeeH.G. KimY.H. LeeC.H. LeeJ. LeeN.K. HanT.S. ChoH.S. MoonJ.H. LeeG.S. BaeK.H. HwangG.S. LeeS.H. ChungS.J. ShimS. ChoJ. OhG.T. KwonY.G. ParkJ.G. MinJ.K. Endothelial PTP4A1 mitigates vascular inflammation via USF1/A20 axis-mediated NF-κB inactivation.Cardiovasc. Res.202311951265127810.1093/cvr/cvac19336534975
    [Google Scholar]
  83. XuT. WangJ. WuY. WuJ. Y. LuW. C. LiuM. ZhangS. B. XieD. XinW. J. XieJ. D. Ac4C enhances the translation efficiency of vegfa mRNA and mediates central sensitization in spinal dorsal horn in neuropathic pain.Adv. Sci.20231035e2303113
    [Google Scholar]
  84. ZhuZ. XingX. HuangS. TuY. NAT10 promotes osteogenic differentiation of mesenchymal stem cells by mediating N4-acetylcytidine modification of gremlin 1.Stem Cells Int.2021202111010.1155/2021/883352733953754
    [Google Scholar]
  85. GoodingS. LeedhamS.J. Gremlin 1 — small protein, big impact: The multiorgan consequences of disrupted BMP antagonism †.J. Pathol.2020251434935210.1002/path.547932472605
    [Google Scholar]
  86. YangW. LiH.Y. WuY.F. MiR.J. LiuW.Z. ShenX. LuY.X. JiangY.H. MaM.J. ShenH.Y. ac4C acetylation of RUNX2 catalyzed by NAT10 spurs osteogenesis of BMSCs and prevents ovariectomy-induced bone loss.Mol. Ther. Nucleic Acids20212613514710.1016/j.omtn.2021.06.02234513300
    [Google Scholar]
  87. ChenC.W. WeiJ.C.C. GuJ. YuD. Editorial: Advances in pathogenesis, etiology, and therapies for ankylosing spondylitis.Front. Immunol.20211282258210.3389/fimmu.2021.82258235003143
    [Google Scholar]
  88. LuoQ. ZhuJ. WangS. fuP. FuB. HuangZ. LiJ. Decreased expression of NAT10 in peripheral blood mononuclear cells from new-onset ankylosing spondylitis and its clinical significance.Arthritis Res. Ther.2024261710.1186/s13075‑023‑03250‑038167491
    [Google Scholar]
  89. DangY. LiJ. LiY. WangY. ZhaoY. ZhaoN. LiW. ZhangH. YeC. MaH. ZhangL. LiuH. DongY. YaoM. LeiY. XuZ. ZhangF. YeW. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA.J. Virol.2024981e01350-2310.1128/jvi.01350‑2338169284
    [Google Scholar]
  90. ZieglerU. FischerD. EidenM. ReuschelM. RinderM. MüllerK. SchwehnR. SchmidtV. GroschupM.H. KellerM. Sindbis virus- A wild bird associated zoonotic arbovirus circulates in Germany.Vet. Microbiol.201923910845310.1016/j.vetmic.2019.10845331767092
    [Google Scholar]
  91. LiaoH. MaH. MengH. KangN. WangL. Ropinirole suppresses LPS-induced periodontal inflammation by inhibiting the NAT10 in an ac4C-dependent manner.BMC Oral Health202424151010.1186/s12903‑024‑04250‑538689229
    [Google Scholar]
  92. CuiZ. XuY. WuP. LuY. TaoY. ZhouC. CuiR. LiJ. HanR. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification.Odontology2023111487088210.1007/s10266‑023‑00793‑136879181
    [Google Scholar]
  93. LiuJ.R. MiaoH. DengD.Q. VaziriN.D. LiP. ZhaoY.Y. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation.Cell. Mol. Life Sci.202178390992210.1007/s00018‑020‑03645‑132965514
    [Google Scholar]
  94. BinattiE. GerussiA. BarisaniD. InvernizziP. The role of macrophages in liver fibrosis: New therapeutic opportunities.Int. J. Mol. Sci.20222312664910.3390/ijms2312664935743092
    [Google Scholar]
  95. ShenshenW. YinL. HanK. JiangB. MengQ. AschnerM. LiX. ChenR. NAT10 accelerates pulmonary fibrosis through N4-acetylated TGFB1-initiated epithelial-to-mesenchymal transition upon ambient fine particulate matter exposure.Environmental Pollution202332212114910.1016/j.envpol.2023.121149
    [Google Scholar]
  96. FabreT. BarronA.M.S. ChristensenS.M. AsanoS. BoundK. LechM.P. WadsworthM.H.II ChenX. WangC. WangJ. McMahonJ. SchlermanF. WhiteA. KravarikK.M. FisherA.J. BorthwickL.A. HartK.M. HendersonN.C. WynnT.A. DowerK. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation.Sci. Immunol.2023882eadd894510.1126/sciimmunol.add894537027478
    [Google Scholar]
  97. ZiJ. HanQ. GuS. McGrathM. KaneS. SongC. GeZ. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells.Front. Oncol.20201059810710.3389/fonc.2020.59810733425753
    [Google Scholar]
  98. CaoY. YaoM. WuY. MaN. LiuH. ZhangB. N-acetyltransferase 10 promotes micronuclei formation to activate the senescence-associated secretory phenotype machinery in colorectal cancer cells.Transl. Oncol.202013810078310.1016/j.tranon.2020.10078332428852
    [Google Scholar]
  99. DalhatM.H. MohammedM.R.S. AhmadA. KhanM.I. ChoudhryH. Remodelin, a N-acetyltransferase 10 (NAT10) inhibitor, alters mitochondrial lipid metabolism in cancer cells.J. Cell. Biochem.2021122121936194510.1002/jcb.3015534605570
    [Google Scholar]
  100. GuoQ. YuW. TanJ. ZhangJ. ChenJ. RaoS. GuoX. CaiK. Remodelin delays non-small cell lung cancer progression by inhibiting NAT10 via the EMT pathway.Cancer Med.20241311e728310.1002/cam4.728338826095
    [Google Scholar]
  101. WangC. LiuY. ZhangY. WangD. XuL. LiZ. BaiX. WangY. Targeting NAT10 protects against sepsis-induced skeletal muscle atrophy by inhibiting ROS/NLRP3.Life Sci.202333012194810.1016/j.lfs.2023.12194837467885
    [Google Scholar]
  102. MaW. TianY. ShiL. LiangJ. OuyangQ. LiJ. ChenH. SunH. JiH. LiuX. HuangW. GaoX. JinX. WangX. LiuY. YuY. GuoX. TianY. YangF. LiF. WangN. CaiB. N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration.Nat. Commun.2024151213710.1038/s41467‑024‑46458‑738459019
    [Google Scholar]
  103. JiangF. DoudnaJ.A. CRISPR–Cas9 Structures and Mechanisms.Annu. Rev. Biophys.201746150552910.1146/annurev‑biophys‑062215‑01082228375731
    [Google Scholar]
  104. PaddisonP.J. CaudyA.A. BernsteinE. HannonG.J. ConklinD.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.Genes Dev.200216894895810.1101/gad.98100211959843
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501346709241202110834
Loading
/content/journals/cdt/10.2174/0113894501346709241202110834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test