Skip to content
2000
image of Repurposing Nano Curcumin: Unveiling its Therapeutic Potential in Diabetic Nephropathy

Abstract

Currently, diabetic nephropathy (DN) stands as the predominant global cause of end- stage renal disease. Many scientists believe that diabetes will eventually spread to pandemic levels due to the rising prevalence of the disease. While the primary factor leading to diabetic nephropathy is vascular dysfunction induced by hyperglycemia, several other pathological elements, such as fibrosis, inflammation, and oxidative stress, also contribute to the progression of the disease. The primary targets of current DN therapy approaches are the underlying abnormalities of hypertension and glucose. With several targets and fewer side effects, curcumin is a commonly utilized antioxidant in DN. The present study emphasizes the critical role of oxidative stress and inflammation in the development of diabetic nephropathy. It reveals how these factors induce damage in key kidney cell types, highlighting their potential as therapeutic targets for this disease. In addition, by concentrating on Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of curcumin, has strong anti-inflammatory and antioxidant characteristics. This review describes the role of curcumin in the therapeutic application of diabetic nephropathy. In this attempt, we tried to elaborate on the bench-to-bedside aspects of curcumin in DN, including clinical and preclinical investigations. The rationales of curcumin’s mechanisms in alleviating symptoms of the DN were discussed. Curcumin could serve as the potential therapeutic agent for the patient seeking to recover from DN.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501326054241126043554
2025-01-06
2025-02-28
Loading full text...

Full text loading...

References

  1. Arya A. Aggarwal S. Yadav H.N. Pathogenesis of diabetic nephropathy. Chronic Kidney Disease and Type 2 Diabetes. American Diabetes Association; 2021
    [Google Scholar]
  2. Magee C. Grieve D.J. Watson C.J. Brazil D.P. Diabetic Nephropathy: A Tangled Web to Unweave. Cardiovasc. Drugs Ther. 2017 31 5-6 579 592 10.1007/s10557‑017‑6755‑9 28956186
    [Google Scholar]
  3. Zhang J. Liu J. Qin X. Advances in early biomarkers of diabetic nephropathy. Rev. Assoc. Med. Bras. 2018 64 1 85 92 10.1590/1806‑9282.64.01.85 29561946
    [Google Scholar]
  4. Escatell F. Sierra J. Villaseñor L. Arciniega C. Vázquez E. Iñiguez J. Velarde M. Figueroa F. The role of dietary antioxidants on oxidative stress in diabetic nephropathy. Iran. J. Kidney Dis. 2020 14 2 81 94 32165592
    [Google Scholar]
  5. Panizo S. Martínez-Arias L. Alonso-Montes C. Cannata P. Carro B. Martín J.L. Díaz M. López N. Andía J.B. Fibrosis in chronic kidney disease: pathogenesis and consequences. Int. J. Mol. Sci. 2021 22 1 408 10.3390/ijms22010408 33401711
    [Google Scholar]
  6. Ataei M. Gumpricht E. Kesharwani P. Jamialahmadi T. Sahebkar A. Recent advances in curcumin-based nanoformulations in diabetes. J. Drug Target. 2023 31 7 671 684 10.1080/1061186X.2023.2229961 37354074
    [Google Scholar]
  7. Marshall C.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic? Am. J. Physiol. Renal Physiol. 2016 311 5 F831 F843 10.1152/ajprenal.00313.2016 27582102
    [Google Scholar]
  8. Singh R. Barden A. Mori T. Beilin L. Advanced glycation end-products: A review. Diabetologia 2001 44 2 129 146 10.1007/s001250051591 11270668
    [Google Scholar]
  9. Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021 2021 1 17 10.1155/2021/1497449 34307650
    [Google Scholar]
  10. Hernandez L.F. Eguchi N. Whaley D. Alexander M. Tantisattamo E. Ichii H. Anti-oxidative therapy in diabetic nephropathy. Front. Biosci. 2022 14 2 14 10.31083/j.fbs1402014
    [Google Scholar]
  11. Selby N.M. Taal M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020 22 S1 3 15 10.1111/dom.14007 32267079
    [Google Scholar]
  12. Yacoub R. Campbell K.N. Inhibition of RAS in diabetic nephropathy. Int. J. Nephrol. Renovasc. Dis. 2015 8 29 40 25926752
    [Google Scholar]
  13. Chawla R. Chawla A. Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016 20 4 546 551 10.4103/2230‑8210.183480 27366724
    [Google Scholar]
  14. Curran C.S. Kopp J.B. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front. Med. (Lausanne) 2022 9 970423 10.3389/fmed.2022.970423 36017003
    [Google Scholar]
  15. Basta G. Schmidt A.M. De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 2004 63 4 582 592 10.1016/j.cardiores.2004.05.001 15306213
    [Google Scholar]
  16. Cao Z. Cooper M.E. Pathogenesis of diabetic nephropathy. J. Diabetes Investig. 2011 2 4 243 247 10.1111/j.2040‑1124.2011.00131.x 24843491
    [Google Scholar]
  17. Chen L. Wu J. Hu B. Liu C. Wang H. The role of cell division autoantigen 1 (CDA1) in renal fibrosis of diabetic nephropathy. BioMed Res. Int. 2021 2021 1 13 10.1155/2021/6651075 33997036
    [Google Scholar]
  18. Ajalbert G. Brenna A. Ming X.F. Yang Z. Potenza D.M. Elevation of arginase-II in podocytes contributes to age-associated albuminuria in male mice. Int. J. Mol. Sci. 2023 24 13 11228 10.3390/ijms241311228 37446405
    [Google Scholar]
  19. Tu Y. Wu T. Dai A. Pham Y. Chew P. de Haan J.B. Wang Y. Toh B.H. Zhu H. Cao Z. Cooper M.E. Chai Z. Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-β in diabetic nephropathy. Kidney Int. 2011 79 2 199 209 10.1038/ki.2010.374 20962744
    [Google Scholar]
  20. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021 18 6 14791641211058856 10.1177/14791641211058856 34791910
    [Google Scholar]
  21. Zhang A. Progress in pathogenesis of proteinuria. Int. J. Nephrol. 2012 2012 314251 10.1155/2012/314251.
    [Google Scholar]
  22. Jin Q. Liu T. Qiao Y. Liu D. Yang L. Mao H. Ma F. Wang Y. Peng L. Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front. Immunol. 2023 14 1185317 10.3389/fimmu.2023.1185317 37545494
    [Google Scholar]
  23. Yamagishi S. Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev. 2010 3 2 101 108 10.4161/oxim.3.2.11148 20716934
    [Google Scholar]
  24. Thallas-Bonke V. Jha J.C. Gray S.P. Barit D. Haller H. Schmidt H.H.H.W. Coughlan M.T. Cooper M.E. Forbes J.M. Jandeleit-Dahm K.A.M. Nox-4 deletion reduces oxidative stress and injury by PKC- α -associated mechanisms in diabetic nephropathy. Physiol. Rep. 2014 2 11 e12192 10.14814/phy2.12192 25367693
    [Google Scholar]
  25. Panahi Y. Khalili N. Sahebi E. Namazi S. Reiner Ž. Majeed M. Sahebkar A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med. 2017 33 1 5 10.1016/j.ctim.2017.05.006 28735818
    [Google Scholar]
  26. Zhu X. Xu X. Du C. Su Y. Yin L. Tan X. Liu H. Wang Y. Xu L. Xu X. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed. Pharmacother. 2022 153 113438 10.1016/j.biopha.2022.113438
    [Google Scholar]
  27. Ghareghomi S. Rahban M. Moosavi-Movahedi Z. Habibi-Rezaei M. Saso L. Moosavi-Movahedi A.A. The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules 2021 26 24 7658 10.3390/molecules26247658 34946740
    [Google Scholar]
  28. Soetikno V. Suzuki K. Veeraveedu P.T. Arumugam S. Lakshmanan A.P. Sone H. Watanabe K. Molecular understanding of curcumin in diabetic nephropathy. Drug Discov. Today 2013 18 15-16 756 763 10.1016/j.drudis.2013.04.009 23651956
    [Google Scholar]
  29. Kim B.H. Lee E.S. Choi R. Nawaboot J. Lee M.Y. Lee E.Y. Kim H.S. Chung C.H. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med. J. 2016 57 3 664 673 10.3349/ymj.2016.57.3.664 26996567
    [Google Scholar]
  30. Fu X. Zhang J. Huang X. Mo Z. Sang Z. Duan W. Huang W. Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway. Mediators Inflamm. 2021 2021 1 25 10.1155/2021/6104529 34456629
    [Google Scholar]
  31. Chen H. Yang X. Lu K. Lu C. Zhao Y. Zheng S. Li J. Huang Z. Huang Y. Zhang Y. Liang G. Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol. Lett. 2017 278 48 58 10.1016/j.toxlet.2017.07.212 28700904
    [Google Scholar]
  32. Hammouda M. Ford A. Liu Y. Zhang J. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020 9 4 857 10.3390/cells9040857 32252279
    [Google Scholar]
  33. Lu M. Yin N. Liu W. Cui X. Chen S. Wang E. Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. BioMed Res. Int. 2017 2017 1 10 10.1155/2017/1516985 28194406
    [Google Scholar]
  34. Ibrahim Z.S. Alkafafy M.E. Ahmed M.M. Soliman M.M. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats. Mol. Med. Rep. 2016 13 4 3017 3026 10.3892/mmr.2016.4922 26936435
    [Google Scholar]
  35. Loboda A. Damulewicz M. Pyza E. Jozkowicz A. Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016 73 17 3221 3247 10.1007/s00018‑016‑2223‑0 27100828
    [Google Scholar]
  36. Meier M. Menne J. Haller H. Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice. Diabetologia 2009 52 5 765 775 10.1007/s00125‑009‑1278‑y 19238353
    [Google Scholar]
  37. Liu B. Miao J. Peng M. Liu T. Miao M. Effect of 3:7 ratio of Astragalus total saponins and Curcumin on the diabetic nephropathy rats model. Saudi J. Biol. Sci. 2019 26 1 188 194 10.1016/j.sjbs.2018.11.003 30622426
    [Google Scholar]
  38. Sun L. Liu X. Chen X. Guan G. Liu G. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS. Acta Pharmacol. Sin. 2016 37 5 645 655 10.1038/aps.2015.159 26838071
    [Google Scholar]
  39. Lee E.S. Kang J.S. Kim H.M. Kim S.J. Kim N. Lee J.O. Kim H.S. Lee E.Y. Chung C.H. Dehydrozingerone inhibits renal lipotoxicity in high-fat diet–induced obese mice. J. Cell. Mol. Med. 2021 25 18 8725 8733 10.1111/jcmm.16828 34382326
    [Google Scholar]
  40. Wu H. Kong L. Tan Y. Epstein P.N. Zeng J. Gu J. Liang G. Kong M. Chen X. Miao L. Cai L. C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia 2016 59 7 1558 1568 10.1007/s00125‑016‑3958‑8 27115417
    [Google Scholar]
  41. Sangartit W. Ha K.B. Lee E.S. Kim H.M. Kukongviriyapan U. Lee E.Y. Chung C.H. Tetrahydrocurcumin ameliorates kidney injury and high systolic blood pressure in high-fat diet-induced type 2 diabetic mice. Endocrinol. Metab. (Seoul) 2021 36 4 810 822 10.3803/EnM.2021.988 34474516
    [Google Scholar]
  42. Irazabal M.V. Torres V.E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020 9 6 1342 10.3390/cells9061342 32481548
    [Google Scholar]
  43. Pan Y. Zhu G. Wang Y. Cai L. Cai Y. Hu J. Li Y. Yan Y. Wang Z. Li X. Wei T. Liang G. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J. Nutr. Biochem. 2013 24 1 146 155 10.1016/j.jnutbio.2012.03.012 22819547
    [Google Scholar]
  44. ALTamimi JZ AlFaris NA, AL-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. Vol. 87. J. Nutr. Biochem. 2021
    [Google Scholar]
  45. Chiu J. Khan Z.A. Farhangkhoee H. Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition 2009 25 9 964 972 10.1016/j.nut.2008.12.007 19268536
    [Google Scholar]
  46. Sharma S. Kulkarni S.K. Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 2006 33 10 940 945 10.1111/j.1440‑1681.2006.04468.x 17002671
    [Google Scholar]
  47. Ma J.F. Sun J.L. Zhao J. Wei X. Wang B.S. Fu Y. Relationship between nocturnal blood pressure variation and silent cerebral infarction in Chinese hypertensive patients. J. Neurol. Sci. 2010 294 1-2 67 69 10.1016/j.jns.2010.04.002 20439107
    [Google Scholar]
  48. Wang Y. Wang Y. Luo M. Wu H. Kong L. Xin Y. Cui W. Zhao Y. Wang J. Liang G. Miao L. Cai L. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 1 34 46 10.1016/j.bbadis.2014.11.006 25446993
    [Google Scholar]
  49. Theocharis A.D. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2021 97 4 27
    [Google Scholar]
  50. Sun L. Chen Z. Liu X. Liu H. Guan G. Liu G. Curcumin ameliorates epithelial-to-mesenchymal transition of podocytes in vivo and in vitro via regulating caveolin-1. Biomed. Pharmacother. 2014 68 8 1079 1088 10.1016/j.biopha.2014.10.005 25456852
    [Google Scholar]
  51. Ho C. Hsu Y.C. Lei C.C. Mau S.C. Shih Y.H. Lin C.L. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways. Am. J. Med. Sci. 2016 351 3 286 295 10.1016/j.amjms.2015.12.017 26992258
    [Google Scholar]
  52. Lu Q. Wang W.W. Zhang M.Z. Ma Z.X. Qiu X.R. Shen M. Yin X-X. ROS induces epithelial‑mesenchymal transition via the TGF‑β1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp. Ther. Med. 2018 10.3892/etm.2018.7014 30651870
    [Google Scholar]
  53. Yazaki K. Matsuno Y. Yoshida K. Sherpa M. Nakajima M. Matsuyama M. Kiwamoto T. Morishima Y. Ishii Y. Hizawa N. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. Eur. J. Cell Biol. 2021 100 7-8 151181 10.1016/j.ejcb.2021.151181 34763128
    [Google Scholar]
  54. Wei Y. Gao J. Qin L. Xu Y. Shi H. Qu L. Liu Y. Xu T. Liu T. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy. Exp. Ther. Med. 2017 14 6 6052 6058 10.3892/etm.2017.5314 29285156
    [Google Scholar]
  55. Tu Q. Li Y. Jin J. Jiang X. Ren Y. He Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm. Biol. 2019 57 1 778 786 10.1080/13880209.2019.1688843 31741405
    [Google Scholar]
  56. Zhao J.L. Guo M.Z. Zhu J.J. Zhang T. Min D.Y. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cell. Mol. Biol. Lett. 2019 24 1 32 10.1186/s11658‑019‑0157‑x 31143210
    [Google Scholar]
  57. Huang J. Huang K. Lan T. Xie X. Shen X. Liu P. Huang H. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol. 2013 365 2 231 240 10.1016/j.mce.2012.10.024 23127801
    [Google Scholar]
  58. Soetikno V. Sari F.R. Veeraveedu P.T. Thandavarayan R.A. Harima M. Sukumaran V. Lakshmanan A.P. Suzuki K. Kawachi H. Watanabe K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr. Metab. (Lond.) 2011 8 1 35 10.1186/1743‑7075‑8‑35 21663638
    [Google Scholar]
  59. Liu J. Feng L. Zhu M. Wang R.S. Zhang M. Hu S. Jia X. Wu J.J. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress. Planta Med. 2012 78 16 1757 1760 10.1055/s‑0032‑1315257 22923199
    [Google Scholar]
  60. Bongaerts G.P.A. What of apoptosis is important: The decay process or the causative origin? Med. Hypotheses 2008 70 3 482 487 10.1016/j.mehy.2007.07.006 17728070
    [Google Scholar]
  61. Dai H. Liu Q. Liu B. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy. J. Diabetes Res. 2017 2017 1 10 10.1155/2017/2615286 28791309
    [Google Scholar]
  62. Shome S. Talukdar A.D. Choudhury M.D. Bhattacharya M.K. Upadhyaya H. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J. Pharm. Pharmacol. 2016 68 12 1481 1500 10.1111/jphp.12611 27747859
    [Google Scholar]
  63. Zhang P. Fang J. Zhang J. Ding S. Gan D. Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating beclin1/UVRAG/Bcl2. Diabetes Metab. Syndr. Obes. 2020 13 641 652 10.2147/DMSO.S237451 32184643
    [Google Scholar]
  64. Tikoo K. Meena R.L. Kabra D.G. Gaikwad A.B. Change in post- translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br. J. Pharmacol. 2008 153 6 1225 1231 10.1038/sj.bjp.0707666 18204486
    [Google Scholar]
  65. Ma J. Phillips L. Wang Y. Dai T. LaPage J. Natarajan R. Adler S.G. Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC. BMC Complement. Altern. Med. 2010 10 1 67 10.1186/1472‑6882‑10‑67 21073732
    [Google Scholar]
  66. Lenoir O. Jasiek M. Hénique C. Guyonnet L. Hartleben B. Bork T. Chipont A. Flosseau K. Bensaada I. Schmitt A. Massé J.M. Souyri M. Huber T.B. Tharaux P.L. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2015 11 7 1130 1145 10.1080/15548627.2015.1049799 26039325
    [Google Scholar]
  67. McKnight N.C. Zhong Y. Wold M.S. Gong S. Phillips G.R. Dou Z. Zhao Y. Heintz N. Zong W.X. Yue Z. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet. 2014 10 10 e1004626 10.1371/journal.pgen.1004626 25275521
    [Google Scholar]
  68. Arun N. Nalini N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr. 2002 57 1 41 52 10.1023/A:1013106527829 11855620
    [Google Scholar]
  69. Dei Cas M. Ghidoni R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 2019 11 9 2147 10.3390/nu11092147 31500361
    [Google Scholar]
  70. Darenskaya M. Kolesnikov S. Semenova N. Kolesnikova L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int. J. Mol. Sci. 2023 24 15 12378 10.3390/ijms241512378 37569752
    [Google Scholar]
  71. Pan R. Liu G. Zeng Y. He X. Ma Z. Wei Y. Chen S. Yang L. Tao L. A multi-responsive self-healing hydrogel for controlled release of curcumin. Polym. Chem. 2021 12 16 2457 2463 10.1039/D1PY00176K
    [Google Scholar]
  72. de la Torre P. Pérez-Lorenzo M.J. Alcázar-Garrido Á. Flores A.I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments. Molecules 2020 25 3 715 10.3390/molecules25030715 32046010
    [Google Scholar]
  73. Zhao J. Luo D. Zhang Z. Fan N. Wang Y. Nie H. Rong J. Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice. J. Control. Release 2019 310 188 197 10.1016/j.jconrel.2019.08.026 31454532
    [Google Scholar]
  74. Vollono L. Falconi M. Gaziano R. Iacovelli F. Dika E. Terracciano C. Bianchi L. Campione E. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 10.3390/nu11092169 31509968
    [Google Scholar]
  75. Zhang T. He Q. Liu Y. Chen Z. Hu H. Efficacy and safety of curcumin supplement on improvement of insulin resistance in people with type 2 Diabetes Mellitus: A systematic review and meta-analysis of randomized controlled trials. Evid. based Compl. Alter. Med. 2021 2021
    [Google Scholar]
  76. Shahidi S. Vanaie A. Iraj B. Siadat Z. Kabirzade M. Shakiba F. Mohammadi M. Parvizian H. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy. J. Res. Med. Sci. 2019 24 1 77 10.4103/jrms.JRMS_1055_18 31523263
    [Google Scholar]
  77. Osorio A.S. Niño W.R. Reyes S. Mejía A.E. León S. Segovia J. Falcón I. Solano H. Madero M. Chaverri J. The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J. Ren. Nutr. 2016 26 4 237 244 10.1053/j.jrn.2016.01.013 26915483
    [Google Scholar]
  78. Shafabakhsh R. Asemi Z. Reiner Z. Soleimani A. Aghadavod E. Bahmani F. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial. Iran. J. Kidney Dis. 2020 14 4 290 299 32655024
    [Google Scholar]
  79. Quispe C. Herrera-Bravo J. Javed Z. Khan K. Raza S. Gulsunoglu-Konuskan Z. Daştan S.D. Sytar O. Martorell M. Sharifi-Rad J. Calina D. Therapeutic applications of curcumin in diabetes: A review and perspective. BioMed Res. Int. 2022 2022 1 14 10.1155/2022/1375892 35155670
    [Google Scholar]
  80. Racz L.Z. Racz C.P. Pop L.C. Tomoaia G. Mocanu A. Barbu I. Sárközi M. Roman I. Avram A. Tomoaia-Cotisel M. Toma V.A. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin. Molecules 2022 27 20 6854 10.3390/molecules27206854 36296447
    [Google Scholar]
  81. Scrivo R. Vasile M. Bartosiewicz I. Valesini G. Inflammation as “common soil” of the multifactorial diseases. Autoimmun. Rev. 2011 10 7 369 374 10.1016/j.autrev.2010.12.006 21195808
    [Google Scholar]
  82. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  83. Khajehdehi P. Pakfetrat M. Javidnia K. Azad F. Malekmakan L. Nasab M.H. Dehghanzadeh G. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study. Scand. J. Urol. Nephrol. 2011 45 5 365 370 10.3109/00365599.2011.585622 21627399
    [Google Scholar]
  84. Yang H. Xu W. Zhou Z. Liu J. Li X. Chen L. Weng J. Yu Z. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies. Exp. Clin. Endocrinol. Diabetes 2015 123 6 360 367 10.1055/s‑0035‑1545345 25875220
    [Google Scholar]
  85. Panahi Y. Khalili N. Sahebi E. Namazi S. Karimian M.S. Majeed M. Sahebkar A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology 2017 25 1 25 31 10.1007/s10787‑016‑0301‑4 27928704
    [Google Scholar]
  86. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  87. Jie Z. Chao M. Jun A. Wei S. LiFeng M. Effect of curcumin on diabetic kidney disease: A systematic review and meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Evid. Based Complement. Alternat. Med. 2021 2021 1 14 10.1155/2021/6109406 34899954
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501326054241126043554
Loading
/content/journals/cdt/10.2174/0113894501326054241126043554
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: oxidative stress ; Diabetic nephropathy ; curcumin ; clinical trials ; autophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test