Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Currently, Diabetic Nephropathy (DN) stands as the predominant global cause of end-stage renal disease. Many scientists believe that diabetes will eventually spread to pandemic levels due to the rising prevalence of the disease. While the primary factor leading to diabetic nephropathy is vascular dysfunction induced by hyperglycemia, several other pathological elements, such as fibrosis, inflammation, and oxidative stress, also contribute to the progression of the disease. The primary targets of current DN therapy approaches are the underlying abnormalities of hypertension and glucose. With several targets and fewer side effects, curcumin is a commonly utilized antioxidant in DN. The present study emphasizes the critical role of oxidative stress and inflammation in the development of diabetic nephropathy. It reveals how these factors induce damage in key kidney cell types, highlighting their potential as therapeutic targets for this disease. In addition, by concentrating on Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of curcumin, has strong anti-inflammatory and antioxidant characteristics. This review describes the role of curcumin in the therapeutic application of diabetic nephropathy. In this attempt, we tried to elaborate on the bench-to-bedside aspects of curcumin in DN, including clinical and preclinical investigations. The rationales of curcumin’s mechanisms in alleviating symptoms of the DN were discussed. Curcumin could serve as the potential therapeutic agent for the patient seeking to recover from DN.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501326054241126043554
2025-01-06
2025-05-07
Loading full text...

Full text loading...

References

  1. AryaA. AggarwalS. YadavH.N. Pathogenesis of diabetic nephropathy.Chronic Kidney Disease and Type 2 Diabetes. American Diabetes Association;2021
    [Google Scholar]
  2. MageeC. GrieveD.J. WatsonC.J. BrazilD.P. Diabetic Nephropathy: A Tangled Web to Unweave.Cardiovasc. Drugs Ther.2017315-657959210.1007/s10557‑017‑6755‑928956186
    [Google Scholar]
  3. ZhangJ. LiuJ. QinX. Advances in early biomarkers of diabetic nephropathy.Rev. Assoc. Med. Bras.2018641859210.1590/1806‑9282.64.01.8529561946
    [Google Scholar]
  4. EscatellF. SierraJ. VillaseñorL. ArciniegaC. VázquezE. IñiguezJ. VelardeM. FigueroaF. The role of dietary antioxidants on oxidative stress in diabetic nephropathy.Iran. J. Kidney Dis.2020142819432165592
    [Google Scholar]
  5. PanizoS. Martínez-AriasL. Alonso-MontesC. CannataP. CarroB. MartínJ.L. DíazM. LópezN. AndíaJ.B. Fibrosis in chronic kidney disease: Pathogenesis and consequences.Int. J. Mol. Sci.202122140810.3390/ijms2201040833401711
    [Google Scholar]
  6. ChauhanP, Tamrakar AK, Mahajan S, Prasad GBKS. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function.Life Sci.20181521322623510.1016/j.lfs.2018.10.027
    [Google Scholar]
  7. MarshallC.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic?Am. J. Physiol. Renal Physiol.20163115F831F84310.1152/ajprenal.00313.201627582102
    [Google Scholar]
  8. SinghR. BardenA. MoriT. BeilinL. Advanced glycation end-products: A review.Diabetologia200144212914610.1007/s00125005159111270668
    [Google Scholar]
  9. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/149744934307650
    [Google Scholar]
  10. HernandezL.F. EguchiN. WhaleyD. AlexanderM. TantisattamoE. IchiiH. Anti-oxidative therapy in diabetic nephropathy.Front. Biosci.20221421410.31083/j.fbs1402014
    [Google Scholar]
  11. SelbyN.M. TaalM.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines.Diabetes Obes. Metab.202022S131510.1111/dom.1400732267079
    [Google Scholar]
  12. YacoubR. CampbellK.N. Inhibition of RAS in diabetic nephropathy.Int. J. Nephrol. Renovasc. Dis.20158294025926752
    [Google Scholar]
  13. ChawlaR. ChawlaA. JaggiS. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?Indian J. Endocrinol. Metab.201620454655110.4103/2230‑8210.18348027366724
    [Google Scholar]
  14. CurranC.S. KoppJ.B. RAGE pathway activation and function in chronic kidney disease and COVID-19.Front. Med. (Lausanne)2022997042310.3389/fmed.2022.97042336017003
    [Google Scholar]
  15. BastaG. SchmidtA.M. De CaterinaR. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes.Cardiovasc. Res.200463458259210.1016/j.cardiores.2004.05.00115306213
    [Google Scholar]
  16. CaoZ. CooperM.E. Pathogenesis of diabetic nephropathy.J. Diabetes Investig.20112424324710.1111/j.2040‑1124.2011.00131.x24843491
    [Google Scholar]
  17. ChenL. WuJ. HuB. LiuC. WangH. The role of cell division autoantigen 1 (CDA1) in renal fibrosis of diabetic nephropathy.BioMed Res. Int.2021202111310.1155/2021/665107533997036
    [Google Scholar]
  18. AjalbertG. BrennaA. MingX.F. YangZ. PotenzaD.M. Elevation of arginase-II in podocytes contributes to age-associated albuminuria in male mice.Int. J. Mol. Sci.202324131122810.3390/ijms24131122837446405
    [Google Scholar]
  19. TuY. WuT. DaiA. PhamY. ChewP. de HaanJ.B. WangY. TohB.H. ZhuH. CaoZ. CooperM.E. ChaiZ. Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-β in diabetic nephropathy.Kidney Int.201179219920910.1038/ki.2010.37420962744
    [Google Scholar]
  20. ThipsawatS. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature.Diab. Vasc. Dis. Res.20211861479164121105885610.1177/1479164121105885634791910
    [Google Scholar]
  21. ZhangA. Progress in pathogenesis of proteinuria.Int. J. Nephrol.2012201231425110.1155/2012/314251.
    [Google Scholar]
  22. JinQ. LiuT. QiaoY. LiuD. YangL. MaoH. MaF. WangY. PengL. ZhanY. Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols.Front. Immunol.202314118531710.3389/fimmu.2023.118531737545494
    [Google Scholar]
  23. YamagishiS. MatsuiT. Advanced glycation end products, oxidative stress and diabetic nephropathy.Oxid. Med. Cell. Longev.20103210110810.4161/oxim.3.2.1114820716934
    [Google Scholar]
  24. Thallas-BonkeV. JhaJ.C. GrayS.P. BaritD. HallerH. SchmidtH.H.H.W. CoughlanM.T. CooperM.E. ForbesJ.M. Jandeleit-DahmK.A.M. Nox-4 deletion reduces oxidative stress and injury by PKC- α -associated mechanisms in diabetic nephropathy.Physiol. Rep.2014211e1219210.14814/phy2.1219225367693
    [Google Scholar]
  25. PanahiY. KhaliliN. SahebiE. NamaziS. ReinerŽ. MajeedM. SahebkarA. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial.Complement. Ther. Med.2017331510.1016/j.ctim.2017.05.00628735818
    [Google Scholar]
  26. ZhuX. XuX. DuC. SuY. YinL. TanX. LiuH. WangY. XuL. XuX. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy.Biomed. Pharmacother.202215311343810.1016/j.biopha.2022.113438
    [Google Scholar]
  27. GhareghomiS. RahbanM. Moosavi-MovahediZ. Habibi-RezaeiM. SasoL. Moosavi-MovahediA.A. The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications.Molecules20212624765810.3390/molecules2624765834946740
    [Google Scholar]
  28. SoetiknoV. SuzukiK. VeeraveeduP.T. ArumugamS. LakshmananA.P. SoneH. WatanabeK. Molecular understanding of curcumin in diabetic nephropathy.Drug Discov. Today20131815-1675676310.1016/j.drudis.2013.04.00923651956
    [Google Scholar]
  29. KimB.H. LeeE.S. ChoiR. NawabootJ. LeeM.Y. LeeE.Y. KimH.S. ChungC.H. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy.Yonsei Med. J.201657366467310.3349/ymj.2016.57.3.66426996567
    [Google Scholar]
  30. FuX. ZhangJ. HuangX. MoZ. SangZ. DuanW. HuangW. Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway.Mediators Inflamm.2021202112510.1155/2021/610452934456629
    [Google Scholar]
  31. ChenH. YangX. LuK. LuC. ZhaoY. ZhengS. LiJ. HuangZ. HuangY. ZhangY. LiangG. Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice.Toxicol. Lett.2017278485810.1016/j.toxlet.2017.07.21228700904
    [Google Scholar]
  32. HammoudaM. FordA. LiuY. ZhangJ. The JNK signaling pathway in inflammatory skin disorders and cancer.Cells20209485710.3390/cells904085732252279
    [Google Scholar]
  33. LuM. YinN. LiuW. CuiX. ChenS. WangE. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling.BioMed Res. Int.2017201711010.1155/2017/151698528194406
    [Google Scholar]
  34. IbrahimZ.S. AlkafafyM.E. AhmedM.M. SolimanM.M. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats.Mol. Med. Rep.20161343017302610.3892/mmr.2016.492226936435
    [Google Scholar]
  35. LobodaA. DamulewiczM. PyzaE. JozkowiczA. DulakJ. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism.Cell. Mol. Life Sci.201673173221324710.1007/s00018‑016‑2223‑027100828
    [Google Scholar]
  36. MeierM. MenneJ. HallerH. Targeting the protein kinase C family in the diabetic kidney: Lessons from analysis of mutant mice.Diabetologia200952576577510.1007/s00125‑009‑1278‑y19238353
    [Google Scholar]
  37. LiuB. MiaoJ. PengM. LiuT. MiaoM. Effect of 3:7 ratio of Astragalus total saponins and Curcumin on the diabetic nephropathy rats model.Saudi J. Biol. Sci.201926118819410.1016/j.sjbs.2018.11.00330622426
    [Google Scholar]
  38. SunL. LiuX. ChenX. GuanG. LiuG. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS.Acta Pharmacol. Sin.201637564565510.1038/aps.2015.15926838071
    [Google Scholar]
  39. LeeE.S. KangJ.S. KimH.M. KimS.J. KimN. LeeJ.O. KimH.S. LeeE.Y. ChungC.H. Dehydrozingerone inhibits renal lipotoxicity in high-fat diet–induced obese mice.J. Cell. Mol. Med.202125188725873310.1111/jcmm.1682834382326
    [Google Scholar]
  40. WuH. KongL. TanY. EpsteinP.N. ZengJ. GuJ. LiangG. KongM. ChenX. MiaoL. CaiL. C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21.Diabetologia20165971558156810.1007/s00125‑016‑3958‑827115417
    [Google Scholar]
  41. SangartitW. HaK.B. LeeE.S. KimH.M. KukongviriyapanU. LeeE.Y. ChungC.H. Tetrahydrocurcumin ameliorates kidney injury and high systolic blood pressure in high-fat diet-induced type 2 diabetic mice.Endocrinol. Metab. (Seoul)202136481082210.3803/EnM.2021.98834474516
    [Google Scholar]
  42. IrazabalM.V. TorresV.E. Reactive oxygen species and redox signaling in chronic kidney disease.Cells202096134210.3390/cells906134232481548
    [Google Scholar]
  43. PanY. ZhuG. WangY. CaiL. CaiY. HuJ. LiY. YanY. WangZ. LiX. WeiT. LiangG. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart.J. Nutr. Biochem.201324114615510.1016/j.jnutbio.2012.03.01222819547
    [Google Scholar]
  44. ALTamimi JZ ALTamimi JZ, AlFaris NA, AL-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a.J. Nutr. Biochem.202187108515
    [Google Scholar]
  45. ChiuJ. KhanZ.A. FarhangkhoeeH. ChakrabartiS. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB.Nutrition200925996497210.1016/j.nut.2008.12.00719268536
    [Google Scholar]
  46. SharmaS. KulkarniS.K. ChopraK. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats.Clin. Exp. Pharmacol. Physiol.2006331094094510.1111/j.1440‑1681.2006.04468.x17002671
    [Google Scholar]
  47. MaJ.F. SunJ.L. ZhaoJ. WeiX. WangB.S. FuY. Relationship between nocturnal blood pressure variation and silent cerebral infarction in Chinese hypertensive patients.J. Neurol. Sci.20102941-2676910.1016/j.jns.2010.04.00220439107
    [Google Scholar]
  48. WangY. WangY. LuoM. WuH. KongL. XinY. CuiW. ZhaoY. WangJ. LiangG. MiaoL. CaiL. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation.Biochim. Biophys. Acta Mol. Basis Dis.201518521344610.1016/j.bbadis.2014.11.00625446993
    [Google Scholar]
  49. TheocharisA.D. Extracellular matrix structure.Adv. Drug Deliv. Rev.202197427
    [Google Scholar]
  50. SunL. ChenZ. LiuX. LiuH. GuanG. LiuG. Curcumin ameliorates epithelial-to-mesenchymal transition of podocytes in vivo and in vitro via regulating caveolin-1.Biomed. Pharmacother.20146881079108810.1016/j.biopha.2014.10.00525456852
    [Google Scholar]
  51. HoC. HsuY.C. LeiC.C. MauS.C. ShihY.H. LinC.L. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.Am. J. Med. Sci.2016351328629510.1016/j.amjms.2015.12.01726992258
    [Google Scholar]
  52. LuQ. WangW.W. ZhangM.Z. MaZ.X. QiuX.R. ShenM. YinX-X. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy.Exp. Ther. Med.201810.3892/etm.2018.701430651870
    [Google Scholar]
  53. YazakiK. MatsunoY. YoshidaK. SherpaM. NakajimaM. MatsuyamaM. KiwamotoT. MorishimaY. IshiiY. HizawaN. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling.Eur. J. Cell Biol.20211007-815118110.1016/j.ejcb.2021.15118134763128
    [Google Scholar]
  54. WeiY. GaoJ. QinL. XuY. ShiH. QuL. LiuY. XuT. LiuT. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy.Exp. Ther. Med.20171466052605810.3892/etm.2017.531429285156
    [Google Scholar]
  55. TuQ. LiY. JinJ. JiangX. RenY. HeQ. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells.Pharm. Biol.201957177878610.1080/13880209.2019.168884331741405
    [Google Scholar]
  56. ZhaoJ.L. GuoM.Z. ZhuJ.J. ZhangT. MinD.Y. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1).Cell. Mol. Biol. Lett.20192413210.1186/s11658‑019‑0157‑x31143210
    [Google Scholar]
  57. HuangJ. HuangK. LanT. XieX. ShenX. LiuP. HuangH. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway.Mol. Cell. Endocrinol.2013365223124010.1016/j.mce.2012.10.02423127801
    [Google Scholar]
  58. SoetiknoV. SariF.R. VeeraveeduP.T. ThandavarayanR.A. HarimaM. SukumaranV. LakshmananA.P. SuzukiK. KawachiH. WatanabeK. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy.Nutr. Metab. (Lond.)2011813510.1186/1743‑7075‑8‑3521663638
    [Google Scholar]
  59. LiuJ. FengL. ZhuM. WangR.S. ZhangM. HuS. JiaX. WuJ.J. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress.Planta Med.201278161757176010.1055/s‑0032‑131525722923199
    [Google Scholar]
  60. BongaertsG.P.A. What of apoptosis is important: The decay process or the causative origin?Med. Hypotheses200870348248710.1016/j.mehy.2007.07.00617728070
    [Google Scholar]
  61. DaiH. LiuQ. LiuB. Research progress on mechanism of podocyte depletion in diabetic nephropathy.J. Diabetes Res.2017201711010.1155/2017/261528628791309
    [Google Scholar]
  62. ShomeS. TalukdarA.D. ChoudhuryM.D. BhattacharyaM.K. UpadhyayaH. Curcumin as potential therapeutic natural product: A nanobiotechnological perspective.J. Pharm. Pharmacol.201668121481150010.1111/jphp.1261127747859
    [Google Scholar]
  63. ZhangP. FangJ. ZhangJ. DingS. GanD. Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating beclin1/UVRAG/Bcl2.Diabetes Metab. Syndr. Obes.20201364165210.2147/DMSO.S23745132184643
    [Google Scholar]
  64. TikooK. MeenaR.L. KabraD.G. GaikwadA.B. Change in post- translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy.Br. J. Pharmacol.200815361225123110.1038/sj.bjp.070766618204486
    [Google Scholar]
  65. MaJ. PhillipsL. WangY. DaiT. LaPageJ. NatarajanR. AdlerS.G. Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC.BMC Complement. Altern. Med.20101016710.1186/1472‑6882‑10‑6721073732
    [Google Scholar]
  66. LenoirO. JasiekM. HéniqueC. GuyonnetL. HartlebenB. BorkT. ChipontA. FlosseauK. BensaadaI. SchmittA. MasséJ.M. SouyriM. HuberT.B. TharauxP.L. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis.Autophagy20151171130114510.1080/15548627.2015.104979926039325
    [Google Scholar]
  67. McKnightN.C. ZhongY. WoldM.S. GongS. PhillipsG.R. DouZ. ZhaoY. HeintzN. ZongW.X. YueZ. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex.PLoS Genet.20141010e100462610.1371/journal.pgen.100462625275521
    [Google Scholar]
  68. ArunN. NaliniN. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats.Plant Foods Hum. Nutr.2002571415210.1023/A:101310652782911855620
    [Google Scholar]
  69. Dei CasM. GhidoniR. Dietary curcumin: Correlation between bioavailability and health potential.Nutrients2019119214710.3390/nu1109214731500361
    [Google Scholar]
  70. DarenskayaM. KolesnikovS. SemenovaN. KolesnikovaL. Diabetic nephropathy: Significance of determining oxidative stress and opportunities for antioxidant therapies.Int. J. Mol. Sci.202324151237810.3390/ijms24151237837569752
    [Google Scholar]
  71. PanR. LiuG. ZengY. HeX. MaZ. WeiY. ChenS. YangL. TaoL. A multi-responsive self-healing hydrogel for controlled release of curcumin.Polym. Chem.202112162457246310.1039/D1PY00176K
    [Google Scholar]
  72. de la TorreP. Pérez-LorenzoM.J. Alcázar-GarridoÁ. FloresA.I. Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments.Molecules202025371510.3390/molecules2503071532046010
    [Google Scholar]
  73. ZhaoJ. LuoD. ZhangZ. FanN. WangY. NieH. RongJ. Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice.J. Control. Release201931018819710.1016/j.jconrel.2019.08.02631454532
    [Google Scholar]
  74. VollonoL. FalconiM. GazianoR. IacovelliF. DikaE. TerraccianoC. BianchiL. CampioneE. Potential of curcumin in skin disorders.Nutrients2019119216910.3390/nu1109216931509968
    [Google Scholar]
  75. ZhangT. HeQ. LiuY. ChenZ. HuH. Efficacy and safety of curcumin supplement on improvement of insulin resistance in people with type 2 Diabetes Mellitus: A systematic review and meta-analysis of randomized controlled trials.Evid. based Compl. Alter. Med.202120214471944
    [Google Scholar]
  76. MitraS, Mateti, T, Ramakrishna, S. A review on curcumin-loaded electrospun nanofibers and their application in modern medicine.JOM2022743392340710.1007/s11837‑022‑05180‑9
    [Google Scholar]
  77. OsorioA.S. NiñoW.R. ReyesS. MejíaA.E. LeónS. SegoviaJ. FalcónI. SolanoH. MaderoM. ChaverriJ. The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study.J. Ren. Nutr.201626423724410.1053/j.jrn.2016.01.01326915483
    [Google Scholar]
  78. LiangG, Li X, Chen L, Yang S, Wu X, Studer E, Gurley E, Hylemon PB, Ye F, Li Y, Zhou H. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin.Bioorg Med Chem Lett.20081841525910.1016/j.bmcl.2007.12.068
    [Google Scholar]
  79. QuispeC. Herrera-BravoJ. JavedZ. KhanK. RazaS. Gulsunoglu-KonuskanZ. DaştanS.D. SytarO. MartorellM. Sharifi-RadJ. CalinaD. Therapeutic applications of curcumin in diabetes: A review and perspective.BioMed Res. Int.2022202211410.1155/2022/137589235155670
    [Google Scholar]
  80. RaczL.Z. RaczC.P. PopL.C. TomoaiaG. MocanuA. BarbuI. SárköziM. RomanI. AvramA. Tomoaia-CotiselM. TomaV.A. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin.Molecules20222720685410.3390/molecules2720685436296447
    [Google Scholar]
  81. ScrivoR. VasileM. BartosiewiczI. ValesiniG. Inflammation as common soil of the multifactorial diseases.Autoimmun. Rev.201110736937410.1016/j.autrev.2010.12.00621195808
    [Google Scholar]
  82. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a11742414
    [Google Scholar]
  83. KhajehdehiP. PakfetratM. JavidniaK. AzadF. MalekmakanL. NasabM.H. DehghanzadehG. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study.Scand. J. Urol. Nephrol.201145536537010.3109/00365599.2011.58562221627399
    [Google Scholar]
  84. YangH. XuW. ZhouZ. LiuJ. LiX. ChenL. WengJ. YuZ. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies.Exp. Clin. Endocrinol. Diabetes2015123636036710.1055/s‑0035‑154534525875220
    [Google Scholar]
  85. PanahiY. KhaliliN. SahebiE. NamaziS. KarimianM.S. MajeedM. SahebkarA. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial.Inflammopharmacology2017251253110.1007/s10787‑016‑0301‑427928704
    [Google Scholar]
  86. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  87. JieZ. ChaoM. JunA. WeiS. LiFengM. Effect of curcumin on diabetic kidney disease: A systematic review and meta-analysis of randomized, double-blind, placebo-controlled clinical trials.Evid. Based Complement. Alternat. Med.2021202111410.1155/2021/610940634899954
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501326054241126043554
Loading
/content/journals/cdt/10.2174/0113894501326054241126043554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test