Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer’s Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501323980240815113851
2024-10-01
2024-11-16
Loading full text...

Full text loading...

/deliver/fulltext/cdt/25/13/CDT-25-13-03.html?itemId=/content/journals/cdt/10.2174/0113894501323980240815113851&mimeType=html&fmt=ahah

References

  1. HataA.N. BreyerR.M. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation.Pharmacol. Ther.2004103214716610.1016/j.pharmthera.2004.06.00315369681
    [Google Scholar]
  2. RicciottiE. FitzGeraldG.A. Prostaglandins and Inflammation.Arterioscler. Thromb. Vasc. Biol.2011315986100010.1161/ATVBAHA.110.20744921508345
    [Google Scholar]
  3. PeeblesR.S.Jr Prostaglandins in asthma and allergic diseases.Pharmacol. Ther.201919311910.1016/j.pharmthera.2018.08.00130081047
    [Google Scholar]
  4. RittchenS. HeinemannA. Therapeutic potential of hematopoietic prostaglandin D(2) synthase in allergic inflammation.Cells20198661910.3390/cells806061931226822
    [Google Scholar]
  5. KursunO. KaratasH. BariskanerH. OzturkS. Arachidonic acid metabolites in neurologic disorders.CNS Neurol. Disord. Drug Targets202221215015910.2174/187152732066621051201364833982658
    [Google Scholar]
  6. de OliveiraA.C.P. Candelario-JalilE. BhatiaH.S. LiebK. HüllM. FiebichB.L. Regulation of prostaglandin E 2 synthase expression in activated primary rat microglia: Evidence for uncoupled regulation of mPGES-1 and COX-2.Glia200856884485510.1002/glia.2065818383341
    [Google Scholar]
  7. MilatovicD. MontineT.J. AschnerM. Prostanoid signaling: Dual role for prostaglandin E2 in neurotoxicity.Neurotoxicology201132331231910.1016/j.neuro.2011.02.00421376752
    [Google Scholar]
  8. BrenneisC. CosteO. AltenrathK. AngioniC. SchmidtH. SchuhC.D. ZhangD.D. HenkeM. WeigertA. BrüneB. RubinB. NusingR. ScholichK. GeisslingerG. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation.J. Biol. Chem.201128632331234210.1074/jbc.M110.15736221075851
    [Google Scholar]
  9. Bonfill-TeixidorE. Otxoa-de-AmezagaA. Font-NievesM. Sans-FonsM.G. PlanasA.M. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide.J. Neuroinflammation2017141310.1186/s12974‑016‑0780‑728086956
    [Google Scholar]
  10. GaneshT. Prostanoid receptor EP2 as a therapeutic target.J. Med. Chem.201457114454446510.1021/jm401431x24279689
    [Google Scholar]
  11. XuJ. XuZ. YanA. Prostaglandin E2 EP4 receptor activation attenuates neuroinflammation and early brain injury induced by subarachnoid hemorrhage in rats.Neurochem. Res.20174241267127810.1007/s11064‑016‑2168‑628239768
    [Google Scholar]
  12. ShiJ. JohanssonJ. WoodlingN.S. WangQ. MontineT.J. AndreassonK. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity.J. Immunol.2010184127207721810.4049/jimmunol.090348720483760
    [Google Scholar]
  13. KonyaV. MarscheG. SchuligoiR. HeinemannA. E-type prostanoid receptor 4 (EP4) in disease and therapy.Pharmacol. Ther.2013138348550210.1016/j.pharmthera.2013.03.00623523686
    [Google Scholar]
  14. TangE.H.C. LibbyP. VanhoutteP.M. XuA. Anti-inflammation therapy by activation of prostaglandin EP4 receptor in cardiovascular and other inflammatory diseases.J. Cardiovasc. Pharmacol.201259211612310.1097/FJC.0b013e3182244a1221697732
    [Google Scholar]
  15. MorimotoK. ShirataN. TaketomiY. TsuchiyaS. Segi-NishidaE. InazumiT. KabashimaK. TanakaS. MurakamiM. NarumiyaS. SugimotoY. Prostaglandin E2-EP3 signaling induces inflammatory swelling by mast cell activation.J. Immunol.201419231130113710.4049/jimmunol.130029024342806
    [Google Scholar]
  16. WangX.S. LauH.Y.A. Prostaglandin E 2 potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors.Allergy200661450350610.1111/j.1398‑9995.2006.01043.x16512814
    [Google Scholar]
  17. AndreassonK. Emerging roles of PGE2 receptors in models of neurological disease.Prostaglandins Other Lipid Mediat.2010913-410411210.1016/j.prostaglandins.2009.04.00319808012
    [Google Scholar]
  18. KawaharaK. HohjohH. InazumiT. TsuchiyaS. SugimotoY. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851441442110.1016/j.bbalip.2014.07.00825038274
    [Google Scholar]
  19. MizunoR. KawadaK. SakaiY. Prostaglandin E2/EP signaling in the tumor microenvironment of colorectal cancer.Int. J. Mol. Sci.20192024625410.3390/ijms2024625431835815
    [Google Scholar]
  20. JooM. SadikotR.T. PGD synthase and PGD2 in immune resposne.Mediators Inflamm.201220121610.1155/2012/50312822791937
    [Google Scholar]
  21. UradeY. UjiharaM. HoriguchiY. IkaiK. HayaishiO. The major source of endogenous prostaglandin D2 production is likely antigen-presenting cells. Localization of glutathione-requiring prostaglandin D synthetase in histiocytes, dendritic, and Kupffer cells in various rat tissues.J. Immunol.198914392982298910.4049/jimmunol.143.9.29822509561
    [Google Scholar]
  22. XiaJ. AbduS. MaguireT.J.A. HopkinsC. TillS.J. WoszczekG. Prostaglandin D 2 receptors in human mast cells.Allergy20207561477148010.1111/all.1416131876962
    [Google Scholar]
  23. TanakaK. OgawaK. SugamuraK. NakamuraM. TakanoS. NagataK. Cutting edge: differential production of prostaglandin D2 by human helper T cell subsets.J. Immunol.200016452277228010.4049/jimmunol.164.5.227710679060
    [Google Scholar]
  24. AritakeK. KadoY. InoueT. MiyanoM. UradeY. Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase.J. Biol. Chem.200628122152771528610.1074/jbc.M50643120016547010
    [Google Scholar]
  25. MinghettiL. LeviG. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures.J. Neurochem.19956562690269810.1046/j.1471‑4159.1995.65062690.x7595567
    [Google Scholar]
  26. EguchiN. MinamiT. ShirafujiN. KanaokaY. TanakaT. NagataA. YoshidaN. UradeY. ItoS. HayaishiO. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice.Proc. Natl. Acad. Sci. USA199996272673010.1073/pnas.96.2.7269892701
    [Google Scholar]
  27. IwasaK. YamamotoS. YamashinaK. Yagishita-kyoN. MaruyamaK. AwajiT. TakeiY. HirasawaA. YoshikawaK. A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus.J. Neuroinflammation202118130410.1186/s12974‑021‑02361‑234961526
    [Google Scholar]
  28. NarumiyaS. OgorochiT. NakaoK. HayaishiO. Prostaglandin D2 in rat brain, spinal cord and pituitary: Basal level and regional distribution.Life Sci.198231192093210310.1016/0024‑3205(82)90101‑16960222
    [Google Scholar]
  29. HayaishiO. MatsumuraH. UradeY. Prostaglandin D synthase is the key enzyme in the promotion of physiological sleep.J. Lipid Mediat.199361-34294318358001
    [Google Scholar]
  30. CriderJ.Y. GriffinB.W. SharifN.A. Prostaglandin DP receptors positively coupled to adenylyl cyclase in embryonic bovine tracheal (EBTr) cells: pharmacological characterization using agonists and antagonists.Br. J. Pharmacol.1999127120421010.1038/sj.bjp.070249010369474
    [Google Scholar]
  31. HataA.N. ZentR. BreyerM.D. BreyerR.M. Expression and molecular pharmacology of the mouse CRTH2 receptor.J. Pharmacol. Exp. Ther.2003306246347010.1124/jpet.103.05095512721327
    [Google Scholar]
  32. SatohT. MoroiR. AritakeK. UradeY. KanaiY. SumiK. YokozekiH. HiraiH. NagataK. HaraT. UtsuyamaM. HirokawaK. SugamuraK. NishiokaK. NakamuraM. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor.J. Immunol.200617742621262910.4049/jimmunol.177.4.262116888024
    [Google Scholar]
  33. JooM. KwonM. SadikotR.T. KingsleyP.J. MarnettL.J. BlackwellT.S. PeeblesR.S.Jr UradeY. ChristmanJ.W. Induction and function of lipocalin prostaglandin D synthase in host immunity.J. Immunol.200717942565257510.4049/jimmunol.179.4.256517675519
    [Google Scholar]
  34. MohriI. TaniikeM. TaniguchiH. KanekiyoT. AritakeK. InuiT. FukumotoN. EguchiN. KushiA. SasaiH. KanaokaY. OzonoK. NarumiyaS. SuzukiK. UradeY. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher.J. Neurosci.200626164383439310.1523/JNEUROSCI.4531‑05.200616624958
    [Google Scholar]
  35. KabashimaK. NarumiyaS. The DP receptor, allergic inflammation and asthma.Prostaglandins Leukot. Essent. Fatty Acids2003692-318719410.1016/S0952‑3278(03)00080‑212895602
    [Google Scholar]
  36. MaJ. YangQ. WeiY. YangY. JiC. HuX. MaiS. KuangS. TianX. LuoY. LiangG. YangJ. Effect of the PGD2-DP signaling pathway on primary cultured rat hippocampal neuron injury caused by aluminum overload.Sci. Rep.2016612464610.1038/srep2464627089935
    [Google Scholar]
  37. HerlongJ.L. ScottT.R. Positioning prostanoids of the D and J series in the immunopathogenic scheme.Immunol. Lett.2006102212113110.1016/j.imlet.2005.10.00416310861
    [Google Scholar]
  38. SawyerN. CauchonE. ChateauneufA. CruzR.P.G. NicholsonD.W. MettersK.M. O’NeillG.P. GervaisF.G. Molecular pharmacology of the human prostaglandin D 2 receptor, CRTH2.Br. J. Pharmacol.200213781163117210.1038/sj.bjp.070497312466225
    [Google Scholar]
  39. Marion-LetellierR. SavoyeG. GhoshS. Fatty acids, eicosanoids and PPAR gamma.Eur. J. Pharmacol.2016785444910.1016/j.ejphar.2015.11.00426632493
    [Google Scholar]
  40. MirzaA.Z. AlthagafiI.I. ShamshadH. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications.Eur. J. Med. Chem.201916650251310.1016/j.ejmech.2019.01.06730739829
    [Google Scholar]
  41. StithamJ. MidgettC. MartinK.A. HwaJ. Prostacyclin: an inflammatory paradox.Front. Pharmacol.201122410.3389/fphar.2011.0002421687516
    [Google Scholar]
  42. WaxmanA.B. ZamanianR.T. Pulmonary arterial hypertension: new insights into the optimal role of current and emerging prostacyclin therapies.Am. J. Cardiol.201311151A16A10.1016/j.amjcard.2012.12.00223414683
    [Google Scholar]
  43. SafdarZ. Treatment of pulmonary arterial hypertension: The role of prostacyclin and prostaglandin analogs.Respir. Med.2011105681882710.1016/j.rmed.2010.12.01821273054
    [Google Scholar]
  44. MitchellJ.A. KirkbyN.S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system.Br. J. Pharmacol.201917681038105010.1111/bph.1416729468666
    [Google Scholar]
  45. SatohT. IshikawaY. KataokaY. CuiY. YanaseH. KatoK. WatanabeY. NakadateK. MatsumuraK. HatanakaH. KataokaK. NoyoriR. SuzukiM. WatanabeY. CNS-specific prostacyclin ligands as neuronal survival-promoting factors in the brain.Eur. J. Neurosci.19991193115312410.1046/j.1460‑9568.1999.00791.x10510175
    [Google Scholar]
  46. GryglewskiR.J. Prostacyclin as a circulatory hormone.Biochem. Pharmacol.197928213161316610.1016/0006‑2952(79)90055‑8393267
    [Google Scholar]
  47. MillerV.T. CoullB.M. YatsuF.M. ShahA.B. BeamerN.B. Prostacyclin infusion in acute cerebral infarction.Neurology198434111431143510.1212/WNL.34.11.14316387533
    [Google Scholar]
  48. TakechiH. MatsumuraK. WatanabeY. KatoK. NoyoriR. SuzukiM. WatanabeY. A novel subtype of the prostacyclin receptor expressed in the central nervous system.J. Biol. Chem.1996271105901590610.1074/jbc.271.10.59018621463
    [Google Scholar]
  49. TakahashiC. MuramatsuR. FujimuraH. MochizukiH. YamashitaT. Prostacyclin promotes oligodendrocyte precursor recruitment and remyelination after spinal cord demyelination.Cell Death Dis.201349e795e79510.1038/cddis.2013.33524030147
    [Google Scholar]
  50. YuL. YangB. WangJ. ZhaoL. LuoW. JiangQ. YangJ. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus.Behav. Brain Funct.20141014210.1186/1744‑9081‑10‑4225388440
    [Google Scholar]
  51. JungnerM. BentzerP. GrändeP.O. Prostacyclin reduces elevation of intracranial pressure and plasma volume loss in lipopolysaccharide-induced meningitis in the cat.J. Trauma20096761345135110.1097/TA.0b013e3181a5f21120009688
    [Google Scholar]
  52. WomackT.R. VollertC.T. Ohia-NwokoO. SchmittM. MontazariS. BeckettT.L. MayerichD. MurphyM.P. EriksenJ.L. Prostacyclin promotes degenerative pathology in a model of Alzheimer’s disease.Front. Cell. Neurosci.20221676934710.3389/fncel.2022.76934735197825
    [Google Scholar]
  53. LimaI.V.A. BastosL.F.S. Limborço-FilhoM. FiebichB.L. de OliveiraA.C.P. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases.Mediators Inflamm.2012201211310.1155/2012/94681322778499
    [Google Scholar]
  54. BasuS. Bioactive eicosanoids: Role of prostaglandin F(2α) and F₂-isoprostanes in inflammation and oxidative stress related pathology.Mol. Cells201030538339210.1007/s10059‑010‑0157‑121113821
    [Google Scholar]
  55. SakamotoK. EzashiT. MiwaK. Okuda-AshitakaE. HoutaniT. SugimotoT. ItoS. HayaishiO. Molecular cloning and expression of a cDNA of the bovine prostaglandin F2 α receptor.J. Biol. Chem.199426953881388610.1016/S0021‑9258(17)41942‑97508922
    [Google Scholar]
  56. SugimotoY. HasumotoK. NambaT. IrieA. KatsuyamaM. NegishiM. KakizukaA. NarumiyaS. IchikawaA. Cloning and expression of a cDNA for mouse prostaglandin F receptor.J. Biol. Chem.199426921356136010.1016/S0021‑9258(17)42265‑48288601
    [Google Scholar]
  57. MukhopadhyayP. BianL. YinH. BhattacherjeeP. PatersonC. Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization.Invest. Ophthalmol. Vis. Sci.200142242442811157877
    [Google Scholar]
  58. AdamsJ.W. MigitaD.S. YuM.K. YoungR. HellicksonM.S. Castro-VargasF.E. DomingoJ.D. LeeP.H. BuiJ.S. HendersonS.A. Prostaglandin F2 α stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes.J. Biol. Chem.199627121179118610.1074/jbc.271.2.11798557648
    [Google Scholar]
  59. İnceH. AydinÖ.F. AlaçamH. AydinT. AzakE. ÖzyürekH. Urinary leukotriene E4 and prostaglandin F2a concentrations in children with migraine: A randomized study.Acta Neurol. Scand.2014130318819210.1111/ane.1226324828386
    [Google Scholar]
  60. GlushakovA.V. RobbinsS.W. BracyC.L. NarumiyaS. DoréS. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury.J. Neuroinflammation201310113210.1186/1742‑2094‑10‑13224172576
    [Google Scholar]
  61. WandererS. AndereggenL. MrosekJ. KashefiolaslS. SchubertG.A. MarbacherS. KonczallaJ. Levosimendan as a therapeutic strategy to prevent neuroinflammation after aneurysmal subarachnoid hemorrhage?J. Neurointerv. Surg.202214440841210.1136/neurintsurg‑2021‑01750434039684
    [Google Scholar]
  62. WalkerK.A. FicekB.N. WestbrookR. Understanding the role of systemic inflammation in Alzheimer’s disease.ACS Chem. Neurosci.20191083340334210.1021/acschemneuro.9b0033331241312
    [Google Scholar]
  63. MatthewsP.M. Chronic inflammation in multiple sclerosis — seeing what was always there.Nat. Rev. Neurol.2019151058259310.1038/s41582‑019‑0240‑y31420598
    [Google Scholar]
  64. McCombeP.A. HendersonR.D. The role of immune and inflammatory mechanisms in ALS.Curr. Mol. Med.201111324625410.2174/15665241179524345021375489
    [Google Scholar]
  65. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.01620303880
    [Google Scholar]
  66. ChenW.W. ZhangX. HuangW.J. Role of neuroinflammation in neurodegenerative diseases (Review).Mol. Med. Rep.20161343391339610.3892/mmr.2016.494826935478
    [Google Scholar]
  67. YagamiT. KomaH. YamamotoY. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system.Mol. Neurobiol.20165374754477110.1007/s12035‑015‑9355‑326328537
    [Google Scholar]
  68. FamitafreshiH. KarimianM. Prostaglandins as the agents that modulate the course of brain disorders.Degener. Neurol. Neuromuscul. Dis.20201011310.2147/DNND.S24080032021549
    [Google Scholar]
  69. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  70. BiringerR.G. A Review of prostanoid receptors: Expression, characterization, regulation, and mechanism of action.J. Cell Commun. Signal.202115215518410.1007/s12079‑020‑00585‑032970276
    [Google Scholar]
  71. OwS.Y. DunstanD.E. A brief overview of amyloids and Alzheimer’s disease.Protein Sci.201423101315133110.1002/pro.252425042050
    [Google Scholar]
  72. IttnerL.M. GötzJ. Amyloid-β and tau — A toxic pas de deux in Alzheimer’s disease.Nat. Rev. Neurosci.2011122677210.1038/nrn296721193853
    [Google Scholar]
  73. DongY. YuH. LiX. BianK. ZhengY. DaiM. FengX. SunY. HeY. YuB. ZhangH. WuJ. YuX. WuH. KongW. Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease.J. Neuroinflammation202219120510.1186/s12974‑022‑02567‑y35971179
    [Google Scholar]
  74. KerriganT.L. RandallA.D. A new player in the “synaptopathy” of Alzheimer’s disease - arc/arg 3.1.Front. Neurol.20134910.3389/fneur.2013.0000923407382
    [Google Scholar]
  75. GoelP. ChakrabartiS. GoelK. BhutaniK. ChopraT. BaliS. Neuronal cell death mechanisms in Alzheimer’s disease: An insight.Front. Mol. Neurosci.20221593713310.3389/fnmol.2022.93713336090249
    [Google Scholar]
  76. ApostolovaL.G. GreenA.E. BabakchanianS. HwangK.S. ChouY.Y. TogaA.W. ThompsonP.M. Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease.Alzheimer Dis. Assoc. Disord.2012261172710.1097/WAD.0b013e3182163b6222343374
    [Google Scholar]
  77. Andrade-MoraesC.H. Oliveira-PintoA.V. Castro-FonsecaE. da SilvaC.G. GuimarãesD.M. SzczupakD. Parente-BrunoD.R. CarvalhoL.R.B. PolichisoL. GomesB.V. OliveiraL.M. RodriguezR.D. LeiteR.E.P. Ferretti-RebustiniR.E.L. Jacob-FilhoW. PasqualucciC.A. GrinbergL.T. LentR. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles.Brain2013136123738375210.1093/brain/awt27324136825
    [Google Scholar]
  78. HanF. LiuC. HuangJ. ChenJ. WeiC. GengX. LiuY. HanD. LiM. The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer’s disease.Brain. Sci. Advan.201951214010.1177/2096595819896178
    [Google Scholar]
  79. ParnettiL. ChipiE. SalvadoriN. D’AndreaK. EusebiP. Prevalence and risk of progression of preclinical Alzheimer’s disease stages: A systematic review and meta-analysis.Alzheimers Res. Ther.2019111710.1186/s13195‑018‑0459‑730646955
    [Google Scholar]
  80. RobinsonM. LeeB.Y. HaneF.T. Recent progress in Alzheimer’s disease research, part 2: Genetics and epidemiology.J. Alzheimers Dis.201757231733010.3233/JAD‑16114928211812
    [Google Scholar]
  81. KarranE. MerckenM. StrooperB.D. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics.Nat. Rev. Drug Discov.201110969871210.1038/nrd350521852788
    [Google Scholar]
  82. RicciarelliR. FedeleE. The amyloid cascade hypothesis in Alzheimer’s disease: It’s time to change our mind.Curr. Neuropharmacol.201715692693528093977
    [Google Scholar]
  83. WangZ. WeaverD.F. Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer’s disease.Int. Immunopharmacol.202211010907010.1016/j.intimp.2022.10907035978514
    [Google Scholar]
  84. TzengS.F. HsiaoH.Y. MakO.T. Prostaglandins and cyclooxygenases in glial cells during brain inflammation.Curr. Drug Targets Inflamm. Allergy20054333534010.2174/156801005402205116101543
    [Google Scholar]
  85. DhapolaR. HotaS.S. SarmaP. BhattacharyyaA. MedhiB. ReddyD.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease.Inflammopharmacology20212961669168110.1007/s10787‑021‑00889‑634813026
    [Google Scholar]
  86. JanssenB. VugtsD.J. FunkeU. MolenaarG.T. KruijerP.S. van BerckelB.N.M. LammertsmaA.A. WindhorstA.D. Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: Recent developments in positron emission tomography.Biochim. Biophys. Acta Mol. Basis Dis.20161862342544110.1016/j.bbadis.2015.11.01126643549
    [Google Scholar]
  87. ZimmerE.R. LeuzyA. BenedetA.L. BreitnerJ. GauthierS. Rosa-NetoP. Tracking neuroinflammation in Alzheimer’s disease: The role of positron emission tomography imaging.J. Neuroinflammation201411112010.1186/1742‑2094‑11‑12025005532
    [Google Scholar]
  88. SudduthT.L. SchmittF.A. NelsonP.T. WilcockD.M. Neuroinflammatory phenotype in early Alzheimer’s disease.Neurobiol. Aging20133441051105910.1016/j.neurobiolaging.2012.09.01223062700
    [Google Scholar]
  89. Gomez-NicolaD. BocheD. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease.Alzheimers Res. Ther.2015714210.1186/s13195‑015‑0126‑125904988
    [Google Scholar]
  90. ZotovaE. NicollJ.A.R. KalariaR. HolmesC. BocheD. Inflammation in Alzheimer’s disease: Relevance to pathogenesis and therapy.Alzheimers Res. Ther.201021110.1186/alzrt2420122289
    [Google Scholar]
  91. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement. (N. Y.)20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  92. CummingsJ. AisenP.S. DuBoisB. FrölichL. JackC.R.Jr JonesR.W. MorrisJ.C. RaskinJ. DowsettS.A. ScheltensP. Drug development in Alzheimer’s disease: The path to 2025.Alzheimers Res. Ther.2016813910.1186/s13195‑016‑0207‑927646601
    [Google Scholar]
  93. YermakovaA.V. RollinsJ. CallahanL.M. RogersJ. OʼBanionM.K. Cyclooxygenase-1 in human Alzheimer and control brain: Quantitative analysis of expression by microglia and CA3 hippocampal neurons.J. Neuropathol. Exp. Neurol.199958111135114610.1097/00005072‑199911000‑0000310560656
    [Google Scholar]
  94. FujimiK. NodaK. SasakiK. WakisakaY. TanizakiY. IidaM. KiyoharaY. KanbaS. IwakiT. Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer’s disease: The Hisayama Study.Dement. Geriatr. Cogn. Disord.200723642343110.1159/00010195717457030
    [Google Scholar]
  95. KenouB.V. ManlyL.S. RubovitsS.B. UmeozuluS.A. Van BuskirkM.G. ZhangA.S. PikeV.W. Zanotti-FregonaraP. HenterI.D. InnisR.B. Cyclooxygenases as potential PET imaging biomarkers to explore neuroinflammation in dementia.J. Nucl. Med.20226353S59S10.2967/jnumed.121.26319935649646
    [Google Scholar]
  96. HoozemansJ. O’BanionM. The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs.Curr. Drug Targets CNS Neurol. Disord.20054330731510.2174/156800705403820115975032
    [Google Scholar]
  97. GuanP.P. WangP. Integrated communications between cyclooxygenase-2 and Alzheimer’s disease.FASEB J.2019331133310.1096/fj.201800355RRRR30020833
    [Google Scholar]
  98. LiuN. ZhuangY. ZhouZ. ZhaoJ. ChenQ. ZhengJ. NF-κB dependent up-regulation of TRPC6 by Aβ in BV-2 microglia cells increases COX-2 expression and contributes to hippocampus neuron damage.Neurosci. Lett.20176511810.1016/j.neulet.2017.04.05628458019
    [Google Scholar]
  99. HoozemansJ.J.M. RozemullerA.J.M. JanssenI. De GrootC.J.A. VeerhuisR. EikelenboomP. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain.Acta Neuropathol.200110112810.1007/s00401000025111194936
    [Google Scholar]
  100. Montero-CosmeT.G. Pascual-MatheyL.I. Hernández-AguilarM.E. Herrera-CovarrubiasD. Rojas-DuránF. Aranda-AbreuG.E. Potential drugs for the treatment of Alzheimer’s disease.Pharmacol. Rep.202375354455910.1007/s43440‑023‑00481‑537005970
    [Google Scholar]
  101. El-MalahA.A. GineinahM.M. DebP.K. KhayyatA.N. BansalM. VenugopalaK.N. AljahdaliA.S. Selective COX-2 inhibitors: Road from success to controversy and the quest for repurposing.Pharmaceuticals (Basel)202215782710.3390/ph1507082735890126
    [Google Scholar]
  102. MoussaN. DayoubN. Exploring the role of COX-2 in Alzheimer’s disease: Potential therapeutic implications of COX-2 inhibitors.Saudi Pharm. J.202331910172910.1016/j.jsps.2023.10172937638222
    [Google Scholar]
  103. EtminanM. GillS. SamiiA. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: Systematic review and meta-analysis of observational studies.BMJ2003327740712810.1136/bmj.327.7407.12812869452
    [Google Scholar]
  104. ArvanitakisZ. GrodsteinF. BieniasJ.L. SchneiderJ.A. WilsonR.S. KellyJ.F. EvansD.A. BennettD.A. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology.Neurology200870232219222510.1212/01.wnl.0000313813.48505.8618519870
    [Google Scholar]
  105. JordanF. QuinnT.J. McGuinnessB. PassmoreP. KellyJ.P. Tudur SmithC. MurphyK. DevaneD. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia.Cochrane Database Syst. Rev.202044CD01145932352165
    [Google Scholar]
  106. JaturapatpornD. IsaacM.G.E.K.N. McCleeryJ. TabetN. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease.Cochrane Libr.20122CD00637810.1002/14651858.CD006378.pub222336816
    [Google Scholar]
  107. ImbimboB.P. SolfrizziV. PanzaF. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment?Front. Aging Neurosci.201021910.3389/fnagi.2010.0001920725517
    [Google Scholar]
  108. McGeerP.L. GuoJ.P. LeeM. KennedyK. McGeerE.G. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs.J. Alzheimers Dis.20186231219122210.3233/JAD‑17070629103042
    [Google Scholar]
  109. BreitnerJ.C.S. MartinB.K. MeinertC.L. The suspension of treatments in ADAPT: Concerns beyond the cardiovascular safety of celecoxib or naproxen.PLoS Clin. Trials200618e4110.1371/journal.pctr.001004117192795
    [Google Scholar]
  110. BiringerR.G. The role of eicosanoids in Alzheimer’s disease.Int. J. Environ. Res. Public Health20191614256010.3390/ijerph1614256031323750
    [Google Scholar]
  111. DoK.V. HjorthE. WangY. JunB. KautzmannM.A.I. OhshimaM. EriksdotterM. SchultzbergM. BazanN.G. Cerebrospinal fluid profile of lipid mediators in Alzheimer’s disease.Cell. Mol. Neurobiol.202343279781110.1007/s10571‑022‑01216‑535362880
    [Google Scholar]
  112. ZhuM. WangX. HjorthE. ColasR.A. SchroederL. GranholmA.C. SerhanC.N. SchultzbergM. Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis.Mol. Neurobiol.20165342733274910.1007/s12035‑015‑9544‑026650044
    [Google Scholar]
  113. EbrightB. AssanteI. PobleteR.A. WangS. DuroM.V. BennettD.A. ArvanitakisZ. LouieS.G. YassineH.N. Eicosanoid lipidome activation in post-mortem brain tissues of individuals with APOE4 and Alzheimer’s dementia.Alzheimers Res. Ther.202214115210.1186/s13195‑022‑01084‑736217192
    [Google Scholar]
  114. MohriI. KadoyamaK. KanekiyoT. SatoY. Kagitani-ShimonoK. SaitoY. SuzukiK. KudoT. TakedaM. UradeY. MurayamaS. TaniikeM. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease.J. Neuropathol. Exp. Neurol.200766646948010.1097/01.jnen.0000240472.43038.2717549007
    [Google Scholar]
  115. LiangX. WuL. HandT. AndreassonK. Prostaglandin D 2 mediates neuronal protection via the DP1 receptor.J. Neurochem.200592347748610.1111/j.1471‑4159.2004.02870.x15659218
    [Google Scholar]
  116. LiY. KimW.M. KimS.H. YouH.E. KangD.H. LeeH.G. ChoiJ.I. YoonM.H. Prostaglandin D 2 contributes to cisplatin-induced neuropathic pain in rats via DP2 receptor in the spinal cord.Korean J. Pain2021341273410.3344/kjp.2021.34.1.2733380565
    [Google Scholar]
  117. KanekiyoT. BanT. AritakeK. HuangZ.L. QuW.M. OkazakiI. MohriI. MurayamaS. OzonoK. TaniikeM. GotoY. UradeY. Lipocalin-type prostaglandin D synthase/β-trace is a major amyloid β-chaperone in human cerebrospinal fluid.Proc. Natl. Acad. Sci. USA2007104156412641710.1073/pnas.070158510417404210
    [Google Scholar]
  118. KannaianB. SharmaB. PhillipsM. ChowdhuryA. ManimekalaiM.S.S. AdavS.S. NgJ.T.Y. KumarA. LimS. MuY. SzeS.K. GrüberG. PervushinK. Abundant neuroprotective chaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid-β fibrils.Sci. Rep.2019911257910.1038/s41598‑019‑48819‑531467325
    [Google Scholar]
  119. MaesakaJ.K. SodamB. PalaiaT. RagoliaL. BatumanV. MiyawakiN. ShastryS. YoumansS. El-SabbanM. Prostaglandin D2 synthase: Apoptotic factor in alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia.J. Nephropathol.20132316618024475446
    [Google Scholar]
  120. XuJ. BargerS.W. DrewP.D. The PPAR-gamma agonist 15-deoxy-delta-prostaglandin J(2) attenuates microglial production of IL-12 family cytokines: potential relevance to Alzheimer’s disease.PPAR Res.20082008134918510.1155/2008/34918518615183
    [Google Scholar]
  121. DrewP.D. ChavisJ.A. The cyclopentone prostaglandin 15-deoxy-Δ12,14 prostaglandin J2 represses nitric oxide, TNF-α, and IL-12 production by microglial cells.J. Neuroimmunol.20011151-2283510.1016/S0165‑5728(01)00267‑311282151
    [Google Scholar]
  122. CombrinckM. WilliamsJ. De BerardinisM.A. WardenD. PuopoloM. SmithA.D. MinghettiL. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry2006771858810.1136/jnnp.2005.06313115944180
    [Google Scholar]
  123. AkitakeY. NakataniY. KameiD. HosokawaM. AkatsuH. UematsuS. AkiraS. KudoI. HaraS. TakahashiM. Microsomal prostaglandin E synthase-1 is induced in alzheimer’s disease and its deletion mitigates alzheimer’s disease-like pathology in a mouse model.J. Neurosci. Res.201391790991910.1002/jnr.2321723553915
    [Google Scholar]
  124. ChaudhryU.A. ZhuangH. CrainB.J. DoréS. Elevated microsomal prostaglandin-E synthase-1 in Alzheimer’s disease.Alzheimers Dement.20084161310.1016/j.jalz.2007.10.01518631945
    [Google Scholar]
  125. ChaudhryU. ZhuangH. DoréS. Microsomal prostaglandin E synthase-2: Cellular distribution and expression in Alzheimer’s disease.Exp. Neurol.2010223235936510.1016/j.expneurol.2009.07.02719664621
    [Google Scholar]
  126. SluterM.N. LiQ. YasmenN. ChenY. LiL. HouR. YuY. YangC.Y. MeibohmB. JiangJ. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders.Exp. Biol. Med. (Maywood)2023248981181910.1177/1535370223117992637515545
    [Google Scholar]
  127. JohanssonJ.U. WoodlingN.S. WangQ. PanchalM. LiangX. Trueba-SaizA. BrownH.D. MhatreS.D. LouiT. AndreassonK.I. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models.J. Clin. Invest.2015125135036410.1172/JCI7748725485684
    [Google Scholar]
  128. LiangX. WangQ. HandT. WuL. BreyerR.M. MontineT.J. AndreassonK. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease.J. Neurosci.20052544101801018710.1523/JNEUROSCI.3591‑05.200516267225
    [Google Scholar]
  129. XiaY. XiaoY. WangZ.H. LiuX. AlamA.M. HaranJ.P. McCormickB.A. ShuX. WangX. YeK. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice.Nat. Commun.2023141547110.1038/s41467‑023‑41283‑w37673907
    [Google Scholar]
  130. CiminoP. KeeneC. BreyerR. MontineK. MontineT. Therapeutic targets in prostaglandin E2 signaling for neurologic disease.Curr. Med. Chem.200815191863186910.2174/09298670878513291518691044
    [Google Scholar]
  131. WeiL.L. ShenY.D. ZhangY.C. HuX.Y. LuP.L. WangL. ChenW. Roles of the prostaglandin E2 receptors EP subtypes in Alzheimer’s disease.Neurosci. Bull.2010261778410.1007/s12264‑010‑0703‑z20101275
    [Google Scholar]
  132. WoodlingN.S. AndreassonK.I. Untangling the web: Toxic and protective effects of neuroinflammation and PGE2 signaling in Alzheimer’s disease.ACS Chem. Neurosci.20167445446310.1021/acschemneuro.6b0001626979823
    [Google Scholar]
  133. ZhenG. KimY.T. LiR. YocumJ. KapoorN. LangerJ. DobrowolskiP. MaruyamaT. NarumiyaS. DoréS. PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer’s disease.Neurobiol. Aging20123392215221910.1016/j.neurobiolaging.2011.09.01722015313
    [Google Scholar]
  134. ShiJ. WangQ. JohanssonJ.U. LiangX. WoodlingN.S. PriyamP. LouiT.M. MerchantM. BreyerR.M. MontineT.J. AndreassonK. Inflammatory prostaglandin E 2 signaling in a mouse model of Alzheimer disease.Ann. Neurol.201272578879810.1002/ana.2367722915243
    [Google Scholar]
  135. HoshinoT. NambaT. TakeharaM. MuraoN. MatsushimaT. SugimotoY. NarumiyaS. SuzukiT. MizushimaT. Improvement of cognitive function in Alzheimer’s disease model mice by genetic and pharmacological inhibition of the EP 4 receptor.J. Neurochem.2012120579580510.1111/j.1471‑4159.2011.07567.x22044482
    [Google Scholar]
  136. WoodlingN.S. WangQ. PriyamP.G. LarkinP. ShiJ. JohanssonJ.U. Zagol-IkapitteI. BoutaudO. AndreassonK.I. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling.J. Neurosci.201434175882589410.1523/JNEUROSCI.0410‑14.201424760848
    [Google Scholar]
  137. FattahiM.J. MirshafieyA. Positive and negative effects of prostaglandins in Alzheimer’s disease.Psychiatry Clin. Neurosci.2014681506010.1111/pcn.1209223992456
    [Google Scholar]
  138. ZhuangJ. ZhangH. ZhouR. ChenL. ChenJ. ShenX. Regulation of prostaglandin F2α against β amyloid clearance and its inflammation induction through LXR/RXR heterodimer antagonism in microglia.Prostaglandins Other Lipid Mediat.2013106455210.1016/j.prostaglandins.2013.09.00224076168
    [Google Scholar]
  139. KimK.M. JungB.H. PaengK.J. KimI. ChungB.C. Increased urinary F2-isoprostanes levels in the patients with Alzheimer’s disease.Brain Res. Bull.2004641475110.1016/j.brainresbull.2004.04.01615275956
    [Google Scholar]
  140. TraresK. GàoX. PernaL. RujescuD. StockerH. MöllersT. BeyreutherK. BrennerH. SchöttkerB. Associations of urinary 8-iso-prostaglandin F 2α levels with all-cause dementia, Alzheimer’s disease, and vascular dementia incidence: results from a prospective cohort study.Alzheimers Dement.202016580481310.1002/alz.1208132281305
    [Google Scholar]
  141. TraresK. ChenL.J. SchöttkerB. Association of F2-isoprostane levels with Alzheimer’s disease in observational studies: A systematic review and meta-analysis.Ageing Res. Rev.20227410155210.1016/j.arr.2021.10155234954419
    [Google Scholar]
  142. WomackT. EriksenJ.L. Effects of prostacyclin signaling on Alzheimer’s disease associated pathologies.FASEB J.202034S11110.1096/fasebj.2020.34.s1.05459
    [Google Scholar]
  143. WeiG. KiblerK.K. KoehlerR.C. MaruyamaT. NarumiyaS. DoréS. Prostacyclin receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion in mouse.Neuroscience200815641111111710.1016/j.neuroscience.2008.07.07318790018
    [Google Scholar]
  144. LingQ.L. AkasakaH. ChenC. HaileC.N. WinoskeK. RuanK.H. The protective effects of up-regulating prostacyclin biosynthesis on neuron survival in hippocampus.J. Neuroimmune Pharmacol.202015229230810.1007/s11481‑019‑09896‑531897976
    [Google Scholar]
  145. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  146. BanikA. AmaradhiR. LeeD. SauM. WangW. DingledineR. GaneshT. Prostaglandin EP2 receptor antagonist ameliorates neuroinflammation in a two-hit mouse model of Alzheimer’s disease.J. Neuroinflammation202118127310.1186/s12974‑021‑02297‑734801055
    [Google Scholar]
  147. LiuQ. LiangX. WangQ. WilsonE.N. LamR. WangJ. KongW. TsaiC. PanT. LarkinP.B. ShamlooM. AndreassonK.I. PGE 2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia.Proc. Natl. Acad. Sci. USA201911620100191002410.1073/pnas.181854411631036664
    [Google Scholar]
  148. AmaradhiR. BanikA. MohammedS. PatroV. RojasA. WangW. MotatiD.R. DingledineR. GaneshT. Potent, selective, water soluble, brain-permeable EP2 receptor antagonist for use in central nervous system disease models.J. Med. Chem.20206331032105010.1021/acs.jmedchem.9b0121831904232
    [Google Scholar]
  149. SluterM.N. HouR. LiL. YasmenN. YuY. LiuJ. JiangJ. EP2 Antagonists (2011-2021): A decade’s journey from discovery to therapeutics.J. Med. Chem.20216416118161183610.1021/acs.jmedchem.1c0081634352171
    [Google Scholar]
  150. SchlicherL. GreenL.G. RomagnaniA. RennerF. Small molecule inhibitors for cancer immunotherapy and associated biomarkers – The current status.Front. Immunol.202314129717510.3389/fimmu.2023.129717538022587
    [Google Scholar]
  151. MorofujiY. NakagawaS. Drug development for central nervous system diseases using in vitro blood-brain barrier models and drug repositioning.Curr. Pharm. Des.202026131466148510.2174/138161282666620022411253432091330
    [Google Scholar]
  152. WallaceC.H. OliverosG. SerranoP.A. RockwellP. XieL. Figueiredo-PereiraM. Timapiprant, a prostaglandin D2 receptor antagonist, ameliorates pathology in a rat Alzheimer’s model.Life Sci. Alliance2022512e20220155510.26508/lsa.20220155536167438
    [Google Scholar]
  153. HenekaM.T. SastreM. Dumitrescu-OzimekL. HankeA. DewachterI. KuiperiC. O’BanionK. KlockgetherT. Van LeuvenF. LandrethG.E. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice.Brain200512861442145310.1093/brain/awh45215817521
    [Google Scholar]
  154. ChamberlainS. GabrielH. StrittmatterW. DidsburyJ. An exploratory phase IIa study of the PPAR delta/gamma agonist T3D-959 assessing metabolic and cognitive function in subjects with mild to moderate Alzheimer’s disease.J. Alzheimers Dis.20207331085110310.3233/JAD‑19086431884472
    [Google Scholar]
  155. AlhowailA. AlsikhanR. AlsaudM. AldubayanM. RabbaniS.I. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: A review of literature.Drug Des. Devel. Ther.2022162919293110.2147/DDDT.S36722936068789
    [Google Scholar]
  156. ChenY.C. WuJ.S. TsaiH.D. HuangC.Y. ChenJ.J. SunG.Y. LinT.N. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders.Mol. Neurobiol.201246111412410.1007/s12035‑012‑8259‑822434581
    [Google Scholar]
  157. SteinkeI. GovindarajuluM. PinkyP.D. BloemerJ. YooS. WardT. SchaedigT. YoungT. WibowoF.S. SuppiramaniamV. AminR.H. Selective PPAR-delta/PPAR-gamma activation improves cognition in a model of Alzheimer’s disease.Cells2023128111610.3390/cells1208111637190025
    [Google Scholar]
  158. SaundersA.M. BurnsD.K. GottschalkW.K. Reassessment of Pioglitazone for Alzheimer’s Disease.Front. Neurosci.20211566695810.3389/fnins.2021.66695834220427
    [Google Scholar]
  159. DobsonR. GiovannoniG. Multiple sclerosis – A review.Eur. J. Neurol.2019261274010.1111/ene.1381930300457
    [Google Scholar]
  160. HendersonA.P.D. BarnettM.H. ParrattJ.D.E. PrineasJ.W. Multiple sclerosis: Distribution of inflammatory cells in newly forming lesions.Ann. Neurol.200966673975310.1002/ana.2180020035511
    [Google Scholar]
  161. HemmerB. KerschensteinerM. KornT. Role of the innate and adaptive immune responses in the course of multiple sclerosis.Lancet Neurol.201514440641910.1016/S1474‑4422(14)70305‑925792099
    [Google Scholar]
  162. RuizF. VigneS. PotC. Resolution of inflammation during multiple sclerosis.Semin. Immunopathol.201941671172610.1007/s00281‑019‑00765‑031732775
    [Google Scholar]
  163. BuchmanA.L. Side effects of corticosteroid therapy.J. Clin. Gastroenterol.200133428929410.1097/00004836‑200110000‑0000611588541
    [Google Scholar]
  164. BakerD. HerrodS.S. Alvarez-GonzalezC. GiovannoniG. SchmiererK. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of Alemtuzumab.JAMA Neurol.201774896196910.1001/jamaneurol.2017.067628604916
    [Google Scholar]
  165. ComiG. Disease-modifying treatments for progressive multiple sclerosis.Mult. Scler.201319111428143610.1177/135245851350257224062415
    [Google Scholar]
  166. CorrealeJ. GaitánM.I. YsrraelitM.C. FiolM.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment.Brain2017140352754627794524
    [Google Scholar]
  167. WingerchukD.M. CarterJ.L. Multiple sclerosis: Current and emerging disease-modifying therapies and treatment strategies.Mayo Clin. Proc.201489222524010.1016/j.mayocp.2013.11.00224485135
    [Google Scholar]
  168. WeinerH.L. The challenge of multiple sclerosis: How do we cure a chronic heterogeneous disease?Ann. Neurol.200965323924810.1002/ana.2164019334069
    [Google Scholar]
  169. GajofattoA. BenedettiM.D. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop?World J. Clin. Cases20153754555510.12998/wjcc.v3.i7.54526244148
    [Google Scholar]
  170. HauserS.L. CreeB.A.C. Treatment of multiple sclerosis: A review.Am. J. Med.20201331213801390.e210.1016/j.amjmed.2020.05.04932682869
    [Google Scholar]
  171. HoxhaM. SpahiuE. PrendiE. ZappacostaB. A systematic review on the role of arachidonic acid pathway in multiple sclerosis.CNS Neurol. Disord. Drug Targets202221216018710.2174/187152731966620082516412332842948
    [Google Scholar]
  172. MirshafieyA. Jadidi-NiaraghF. Prostaglandins in pathogenesis and treatment of multiple sclerosis.Immunopharmacol. Immunotoxicol.201032454355410.3109/0892397100366762720233088
    [Google Scholar]
  173. PalumboS. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis.Codon Publications201710.15586/codon.multiplesclerosis.2017.
    [Google Scholar]
  174. PalumboS. BosettiF. Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelination: Role of cyclooxygenase-2.Prostaglandins Leukot. Essent. Fatty Acids201389527327810.1016/j.plefa.2013.08.00824095587
    [Google Scholar]
  175. BroosJ.Y. van der BurgtR.T.M. KoningsJ. RijnsburgerM. WerzO. de VriesH.E. GieraM. KooijG. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: Fueling or dampening disease progression?J. Neuroinflammation20242112110.1186/s12974‑023‑02981‑w38233951
    [Google Scholar]
  176. RobinsonA.P. HarpC.T. NoronhaA. MillerS.D. The experimental autoimmune encephalomyelitis (EAE) model of MS.Handb. Clin. Neurol.201412217318910.1016/B978‑0‑444‑52001‑2.00008‑X24507518
    [Google Scholar]
  177. VantaggiatoL. ShabaE. CarleoA. BezziniD. PannuzzoG. LuddiA. PiomboniP. BiniL. BianchiL. Neurodegenerative disorder risk in Krabbe disease carriers.Int. J. Mol. Sci.202223211353710.3390/ijms23211353736362324
    [Google Scholar]
  178. CodaA.R. AnzilottiS. BosciaF. GrecoA. PanicoM. GargiuloS. GramanziniM. ZannettiA. AlbaneseS. PignataroG. AnnunziatoL. SalvatoreM. BrunettiA. De BerardinisP. QuarantelliM. PalmaG. PappatàS. in vivo imaging of CNS microglial activation/macrophage infiltration with combined [18F]DPA-714-PET and SPIO-MRI in a mouse model of relapsing remitting experimental autoimmune encephalomyelitis.Eur. J. Nucl. Med. Mol. Imaging2021481405210.1007/s00259‑020‑04842‑732378022
    [Google Scholar]
  179. WuY.P. McMahonE.J. MatsudaJ. SuzukiK. MatsushimaG.K. SuzukiK. Expression of immune-related molecules is downregulated in twitcher mice following bone marrow transplantation.J. Neuropathol. Exp. Neurol.200160111062107410.1093/jnen/60.11.106211706936
    [Google Scholar]
  180. Kagitani-ShimonoK. MohriI. FujitaniY. SuzukiK. OzonoK. UradeY. TaniikeM. Anti-inflammatory therapy by ibudilast, a phosphodiesterase inhibitor, in demyelination of twitcher, a genetic demyelination model.J. Neuroinflammation2005211010.1186/1742‑2094‑2‑1015813970
    [Google Scholar]
  181. ZhengJ. SariolA. MeyerholzD. ZhangQ. Abrahante LlorénsJ.E. NarumiyaS. PerlmanS. Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE.J. Autoimmun.202011410250810.1016/j.jaut.2020.10250832624353
    [Google Scholar]
  182. TaniikeM. MohriI. EguchiN. BeuckmannC.T. SuzukiK. UradeY. Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model.J. Neurosci.200222124885489610.1523/JNEUROSCI.22‑12‑04885.200212077186
    [Google Scholar]
  183. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x21371012
    [Google Scholar]
  184. TakeuchiC. MatsumotoY. KohyamaK. UematsuS. AkiraS. YamagataK. TakemiyaT. Microsomal prostaglandin E synthase-1 aggravates inflammation and demyelination in a mouse model of multiple sclerosis.Neurochem. Int.201362327128010.1016/j.neuint.2012.12.00723266396
    [Google Scholar]
  185. KiharaY. MatsushitaT. KitaY. UematsuS. AkiraS. KiraJ. IshiiS. ShimizuT. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis.Proc. Natl. Acad. Sci. USA200910651218072181210.1073/pnas.090689110619995978
    [Google Scholar]
  186. EsakiY. LiY. SakataD. YaoC. Segi-NishidaE. MatsuokaT. FukudaK. NarumiyaS. Dual roles of PGE 2 -EP4 signaling in mouse experimental autoimmune encephalomyelitis.Proc. Natl. Acad. Sci. USA201010727122331223810.1073/pnas.091511210720566843
    [Google Scholar]
  187. Singh BahiaM. Kumar KatareY. SilakariO. VyasB. SilakariP. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates.Med. Res. Rev.201434482585510.1002/med.2130625019142
    [Google Scholar]
  188. BergqvistF. MorgensternR. JakobssonP.J. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications.Prostaglandins Other Lipid Mediat.202014710638310.1016/j.prostaglandins.2019.10638331698145
    [Google Scholar]
  189. LaBordeK. LuR. RuanK.H. Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E2 synthase-1.Future Med. Chem.202214638538810.4155/fmc‑2021‑031734985304
    [Google Scholar]
  190. NatarajanC. BrightJ.J. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation.Genes Immun.200232597010.1038/sj.gene.636383211960303
    [Google Scholar]
  191. StorerP.D. XuJ. ChavisJ. DrewP.D. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: Implications for multiple sclerosis.J. Neuroimmunol.20051611-211312210.1016/j.jneuroim.2004.12.01515748950
    [Google Scholar]
  192. RaineC.S. Multiple sclerosis: The resolving lesion revealed.J. Neuroimmunol.20173042610.1016/j.jneuroim.2016.05.02127265754
    [Google Scholar]
  193. MorelA. MillerE. BijakM. SalukJ. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.Mol. Cell. Biochem.20164201-2859410.1007/s11010‑016‑2770‑627507559
    [Google Scholar]
  194. BoltonC. TurnerA.M. TurkJ.L. Prostaglandin levels in cerebrospinal fluid from multiple sclerosis patients in remission and relapse.J. Neuroimmunol.19846315115910.1016/0165‑5728(84)90002‑X6586729
    [Google Scholar]
  195. Dore-DuffyP. HoS.Y. DonovanC. Cerebrospinal fluid eicosanoid levels.Neurology1991412_part_132232410.1212/WNL.41.2_Part_1.3221992386
    [Google Scholar]
  196. EggD. HeroldM. RumplE. GüntherR. Prostaglandin F2 α levels in human cerebrospinal fluid in normal and pathological conditions.J. Neurol.1980222423924810.1007/BF003131536154783
    [Google Scholar]
  197. Dore-DuffyP. DonaldsonJ.O. KoffT. LongoM. PerryW. Prostaglandin release in multiple sclerosis.Neurology198636121587159010.1212/WNL.36.12.15873785673
    [Google Scholar]
  198. KooijG. TrolettiC.D. LeutiA. NorrisP.C. RileyI. AlbaneseM. RuggieriS. LibrerosS. van der PolS.M.A. van het HofB. SchellY. GuerreraG. ButtariF. MercuriN.B. CentonzeD. GasperiniC. BattistiniL. de VriesH.E. SerhanC.N. ChiurchiùV. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction.Haematologica202010582056207010.3324/haematol.2019.21951931780628
    [Google Scholar]
  199. MattssonN. YaongM. RosengrenL. BlennowK. MånssonJ.E. AndersenO. ZetterbergH. HaghighiS. ZhoI. PraticoD. Elevated cerebrospinal fluid levels of prostaglandin E2 and 15 -(S)- hydroxyeicosatetraenoic acid in multiple sclerosis.J. Intern. Med.2009265445946410.1111/j.1365‑2796.2008.02035.x19019188
    [Google Scholar]
  200. Paz SoldanM. SchmidtL. WoodB. RoseJ. CarlsonN. Prostaglandin F2α receptor mediates oligodendrocyte precursor injury/death: Potential role in multiple sclerosis.Neurology201584P5.21010.1212/WNL.84.14_supplement.P5.210.
    [Google Scholar]
  201. LamM.A. MaghzalG.J. KhademiM. PiehlF. RatzerR. Romme ChristensenJ. SellebjergF.T. OlssonT. StockerR. Absence of systemic oxidative stress and increased CSF prostaglandin F 2α in progressive MS.Neurol. Neuroimmunol. Neuroinflamm.201634e25610.1212/NXI.000000000000025627386506
    [Google Scholar]
  202. ReiberH. Dynamics of brain-derived proteins in cerebrospinal fluid.Clin. Chim. Acta2001310217318610.1016/S0009‑8981(01)00573‑311498083
    [Google Scholar]
  203. Kagitani-ShimonoK. MohriI. OdaH. OzonoK. SuzukiK. UradeY. TaniikeM. Lipocalin-type prostaglandin D synthase (β-trace) is upregulated in the αB-crystallin- positive oligodendrocytes and astrocytes in the chronic multiple sclerosis.Neuropathol. Appl. Neurobiol.2006321647310.1111/j.1365‑2990.2005.00690.x16409554
    [Google Scholar]
  204. ComabellaM. PradilloJ.M. FernándezM. RíoJ. LizasoainI. JuliàE. MoroM.A. Sastre-GarrigaJ. MontalbanX. Plasma levels of 15d-PGJ 2 are not altered in multiple sclerosis.Eur. J. Neurol.200916111197120110.1111/j.1468‑1331.2009.02696.x19538219
    [Google Scholar]
  205. BergmanJ. SvenningssonA. LivP. BergenheimT. BurmanJ. Location matters: highly divergent protein levels in samples from different CNS compartments in a clinical trial of rituximab for progressive MS.Fluids Barriers CNS20201714910.1186/s12987‑020‑00205‑432727487
    [Google Scholar]
  206. Talanki ManjunathaR. HabibS. SangarajuS.L. YepezD. GrandesX.A. Multiple sclerosis: Therapeutic strategies on the horizon.Cureus2022145e2489510.7759/cureus.2489535706718
    [Google Scholar]
  207. PershadsinghH.A. HenekaM.T. SainiR. AminN.M. BroeskeD.J. FeinsteinD.L. Effect of pioglitazone treatment in a patient with secondary multiple sclerosis.J. Neuroinflammation200411310.1186/1742‑2094‑1‑315285799
    [Google Scholar]
  208. IwasaK. YamamotoS. TakahashiM. SuzukiS. YagishitaS. AwajiT. MaruyamaK. YoshikawaK. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model.Prostaglandins Leukot. Essent. Fatty Acids201491517518210.1016/j.plefa.2014.08.00425224839
    [Google Scholar]
  209. DaviaudN. ChenE. EdwardsT. SadiqS.A. Cerebral organoids in primary progressive multiple sclerosis reveal stem cell and oligodendrocyte differentiation defect.Biol. Open2023123bio05984510.1242/bio.05984536744877
    [Google Scholar]
  210. MasroriP. Van DammeP. Amyotrophic lateral sclerosis: A clinical review.Eur. J. Neurol.202027101918192910.1111/ene.1439332526057
    [Google Scholar]
  211. McCombeP.A. HendersonR.D. Effects of gender in amyotrophic lateral sclerosis.Gend. Med.20107655757010.1016/j.genm.2010.11.01021195356
    [Google Scholar]
  212. RothsteinJ.D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis.Ann. Neurol.200965S1S3S910.1002/ana.2154319191304
    [Google Scholar]
  213. LiangX. WangQ. ShiJ. LoktevaL. BreyerR.M. MontineT.J. AndreassonK. The prostaglandin E 2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis.Ann. Neurol.200864330431410.1002/ana.2143718825663
    [Google Scholar]
  214. LeeJ.D. LevinS.C. WillisE.F. LiR. WoodruffT.M. NoakesP.G. Complement components are upregulated and correlate with disease progression in the TDP-43Q331K mouse model of amyotrophic lateral sclerosis.J. Neuroinflammation201815117110.1186/s12974‑018‑1217‑229859100
    [Google Scholar]
  215. LeeJ.D. KumarV. FungJ.N.T. RuitenbergM.J. NoakesP.G. WoodruffT.M. Pharmacological inhibition of complement C5a-C5a 1 receptor signalling ameliorates disease pathology in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis.Br. J. Pharmacol.2017174868969910.1111/bph.1373028128456
    [Google Scholar]
  216. OskarssonB. HortonD.K. MitsumotoH. Potential environmental factors in amyotrophic lateral sclerosis.Neurol. Clin.201533487788810.1016/j.ncl.2015.07.00926515627
    [Google Scholar]
  217. RosenD.R. SiddiqueT. PattersonD. FiglewiczD.A. SappP. HentatiA. DonaldsonD. GotoJ. O’ReganJ.P. DengH.X. RahmaniZ. KrizusA. McKenna-YasekD. CayabyabA. GastonS.M. BergerR. TanziR.E. HalperinJ.J. HerzfeldtB. Van den BerghR. HungW-Y. BirdT. DengG. MulderD.W. SmythC. LaingN.G. SorianoE. Pericak-VanceM.A. HainesJ. RouleauG.A. GusellaJ.S. HorvitzH.R. BrownR.H.Jr Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature19933626415596210.1038/362059a08446170
    [Google Scholar]
  218. RutherfordN.J. ZhangY.J. BakerM. GassJ.M. FinchN.A. XuY.F. StewartH. KelleyB.J. KuntzK. CrookR.J.P. SreedharanJ. VanceC. SorensonE. LippaC. BigioE.H. GeschwindD.H. KnopmanD.S. MitsumotoH. PetersenR.C. CashmanN.R. HuttonM. ShawC.E. BoylanK.B. BoeveB. Graff-RadfordN.R. WszolekZ.K. CaselliR.J. DicksonD.W. MackenzieI.R. PetrucelliL. RademakersR. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.PLoS Genet.200849e100019310.1371/journal.pgen.100019318802454
    [Google Scholar]
  219. GurneyM.E. PuH. ChiuA.Y. Dal CantoM.C. PolchowC.Y. AlexanderD.D. CaliendoJ. HentatiA. KwonY.W. DengH.X. ChenW. ZhaiP. SufitR.L. SiddiqueT. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation.Science199426451661772177510.1126/science.82092588209258
    [Google Scholar]
  220. Van Den BoschL. Genetic rodent models of amyotrophic lateral sclerosis.J. Biomed. Biotechnol.2011201134876521274268
    [Google Scholar]
  221. JoyceP.I. FrattaP. FisherE.M.C. Acevedo-ArozenaA. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: Recent advances in understanding disease toward the development of clinical treatments.Mamm. Genome2011227-842044810.1007/s00335‑011‑9339‑121706386
    [Google Scholar]
  222. BellinghamM.C. Pre- and postsynaptic mechanisms underlying inhibition of hypoglossal motor neuron excitability by riluzole.J. Neurophysiol.201311051047106110.1152/jn.00587.201223741042
    [Google Scholar]
  223. MillerR.G. MitchellJ.D. MooreD.H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND).Cochrane Libr.201220123CD00144710.1002/14651858.CD001447.pub322419278
    [Google Scholar]
  224. LeeH. LeeJ.J. ParkN.Y. DubeyS.K. KimT. RuanK. LimS.B. ParkS.H. HaS. KovlyaginaI. KimK. KimS. OhY. KimH. KangS.U. SongM.R. LloydT.E. MaragakisN.J. HongY.B. EohH. LeeG. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS.Nat. Neurosci.202124121673168510.1038/s41593‑021‑00944‑z34782793
    [Google Scholar]
  225. ConsilvioC. VincentA.M. FeldmanE.L. Neuroinflammation, COX-2, and ALS—a dual role?Exp. Neurol.2004187111010.1016/j.expneurol.2003.12.00915081582
    [Google Scholar]
  226. MinghettiL. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases.J. Neuropathol. Exp. Neurol.200463990191010.1093/jnen/63.9.90115453089
    [Google Scholar]
  227. HannaL. PoluyiE. IkwuegbuenyiC. MorganE. ImaguezegieG. Peripheral inflammation and neurodegeneration; A potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS).Egypt j. neurosurg.20223711510.1186/s41984‑022‑00150‑4
    [Google Scholar]
  228. KukharskyM.S. SkvortsovaV.I. BachurinS.O. BuchmanV.L. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches.Med. Res. Rev.20214152804282210.1002/med.2172532815157
    [Google Scholar]
  229. AgrawalI. LimY.S. NgS.Y. LingS.C. Deciphering lipid dysregulation in ALS: From mechanisms to translational medicine.Transl. Neurodegener.20221114810.1186/s40035‑022‑00322‑036345044
    [Google Scholar]
  230. AlmerG. GuéganC. TeismannP. NainiA. RosoklijaG. HaysA.P. ChenC. PrzedborskiS. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis.Ann. Neurol.200149217618510.1002/1531‑8249(20010201)49:2<176::AID‑ANA37>3.0.CO;2‑X11220737
    [Google Scholar]
  231. YasojimaK. TourtellotteW.W. McGeerE.G. McGeerP.L. Marked increase in cyclooxygenase-2 in ALS spinal cord.Neurology200157695295610.1212/WNL.57.6.95211571316
    [Google Scholar]
  232. PomplP.N. HoL. BianchiM. McManusT. QinW. PasinettiG.M. A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis.FASEB J.200317672572710.1096/fj.02‑0876fje12586733
    [Google Scholar]
  233. ZouY.H. GuanP.P. ZhangS.Q. GuoY.S. WangP. Rofecoxib attenuates the pathogenesis of amyotrophic lateral sclerosis by alleviating cyclooxygenase-2-mediated mechanisms.Front. Neurosci.20201481710.3389/fnins.2020.0081732903591
    [Google Scholar]
  234. BorerJ.S. SimonL.S. Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: achieving a balance.Arthritis Res. Ther.20057Suppl 4S14S2210.1186/ar179416168077
    [Google Scholar]
  235. LucasG.N.C. LeitãoA.C.C. AlencarR.L. XavierR.M.F. DaherE.D.F. Silva JuniorG.B. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs.J. Bras. Nefrol.201941112413010.1590/2175‑8239‑jbn‑2018‑010730281062
    [Google Scholar]
  236. PetrovaT.V. AkamaK.T. Van EldikL.J. Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction.J. Biol. Chem.199927440288232882710.1074/jbc.274.40.2882310497256
    [Google Scholar]
  237. KimE.J. LeeJ.E. KwonK.J. LeeS.H. MoonC.H. BaikE.J. Differential roles of cyclooxygenase isoforms after kainic acid-induced prostaglandin E2 production and neurodegeneration in cortical and hippocampal cell cultures.Brain Res.200190811910.1016/S0006‑8993(01)02432‑511457426
    [Google Scholar]
  238. AlmerG. TeismannP. StevicZ. Halaschek-WienerJ. DeeckeL. KosticV. PrzedborskiS. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients.Neurology20025881277127910.1212/WNL.58.8.127711971099
    [Google Scholar]
  239. NangoH. TsurutaK. MiyagishiH. AonoY. SaigusaT. KosugeY. Update on the pathological roles of prostaglandin E2 in neurodegeneration in amyotrophic lateral sclerosis.Transl. Neurodegener.20231213210.1186/s40035‑023‑00366‑w37337289
    [Google Scholar]
  240. IłżeckaJ. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients.Acta Neurol. Scand.2003108212512910.1034/j.1600‑0404.2003.00102.x12859290
    [Google Scholar]
  241. KosugeY. MiyagishiH. YoneokaY. YonedaK. NangoH. IshigeK. ItoY. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.Neurochem. Int.201811913213910.1016/j.neuint.2017.06.01328687401
    [Google Scholar]
  242. MiyagishiH. KosugeY. YoneokaY. OzoneM. EndoM. OsadaN. IshigeK. Kusama-EguchiK. ItoY. Prostaglandin E2-induced cell death is mediated by activation of EP2 receptors in motor neuron-like NSC-34 cells.J. Pharmacol. Sci.2013121434735010.1254/jphs.12274SC23514786
    [Google Scholar]
  243. AmaradhiR. MohammedS. BanikA. FranklinR. DingledineR. GaneshT. Second-generation prostaglandin receptor EP2 antagonist, TG8-260, with high potency, selectivity, oral bioavailability, and anti-inflammatory properties.ACS Pharmacol. Transl. Sci.20225211813310.1021/acsptsci.1c0025535187419
    [Google Scholar]
  244. JiangJ. YuY. KinjoE.R. DuY. NguyenH.P. DingledineR. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury.Neuropharmacology201914914916010.1016/j.neuropharm.2019.02.01130763657
    [Google Scholar]
  245. MinhasP.S. Latif-HernandezA. McReynoldsM.R. DurairajA.S. WangQ. RubinA. JoshiA.U. HeJ.Q. GaubaE. LiuL. WangC. LindeM. SugiuraY. MoonP.K. MajetiR. SuematsuM. Mochly-RosenD. WeissmanI.L. LongoF.M. RabinowitzJ.D. AndreassonK.I. Restoring metabolism of myeloid cells reverses cognitive decline in ageing.Nature2021590784412212810.1038/s41586‑020‑03160‑033473210
    [Google Scholar]
  246. ShinozawaT. UradeY. MaruyamaT. WatabeD. Tetranor PGDM analyses for the amyotrophic lateral sclerosis: Positive and simple diagnosis and evaluation of drug effect.Biochem. Biophys. Res. Commun.2011415453954410.1016/j.bbrc.2011.10.04522027143
    [Google Scholar]
  247. KondoM. ShibataT. KumagaiT. OsawaT. ShibataN. KobayashiM. SasakiS. IwataM. NoguchiN. UchidaK. 15-Deoxy-Δ 12,14 -prostaglandin J 2 : The endogenous electrophile that induces neuronal apoptosis.Proc. Natl. Acad. Sci. USA200299117367737210.1073/pnas.11221259912032289
    [Google Scholar]
  248. ThonhoffJ.R. GaoJ. DunnT.J. OjedaL. WuP. Mutant SOD1 microglia-generated nitroxidative stress promotes toxicity to human fetal neural stem cell-derived motor neurons through direct damage and noxious interactions with astrocytes.Am. J. Stem Cells20111122123671793
    [Google Scholar]
  249. Di GiorgioF.P. BoultingG.L. BobrowiczS. EgganK.C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation.Cell Stem Cell20083663764810.1016/j.stem.2008.09.01719041780
    [Google Scholar]
  250. de BoerA. S. Genetic validation of a therapeutic target in a mouse model of ALS.Sci Transl Med.20146248248ra10410.1126/scitranslmed.3009351
    [Google Scholar]
  251. OkuboK. HashiguchiK. TakedaT. BabaK. KitagohH. MihoH. TomomatsuH. YamaguchiS. OdaniM. YamamotoyaH. A randomized controlled phase II clinical trial comparing ONO -4053, a novel DP 1 antagonist, with a leukotriene receptor antagonist pranlukast in patients with seasonal allergic rhinitis.Allergy201772101565157510.1111/all.1317428378369
    [Google Scholar]
  252. TakahashiG. AsanumaF. SuzukiN. HattoriM. SakamotoS. KugimiyaA. TomitaY. KuwajimaG. AbrahamW.M. DeguchiM. ArimuraA. ShichijoM. Effect of the potent and selective DP1 receptor antagonist, asapiprant (S-555739), in animal models of allergic rhinitis and allergic asthma.Eur. J. Pharmacol.2015765152310.1016/j.ejphar.2015.08.00326277322
    [Google Scholar]
  253. YarlagaddaS. KulisC. NoakesP.G. SmytheM.L. Hematopoietic prostaglandin D synthase inhibitor PK007 decreases muscle necrosis in DMD mdx model mice.Life (Basel)202111999410.3390/life1109099434575143
    [Google Scholar]
  254. LoefflerJ.P. PicchiarelliG. DupuisL. Gonzalez De AguilarJ.L. The role of skeletal muscle in amyotrophic lateral sclerosis.Brain Pathol.201626222723610.1111/bpa.1235026780251
    [Google Scholar]
  255. TadaS. OkunoT. ShimizuM. SakaiY. Sumi-AkamaruH. KinoshitaM. YamashitaK. SandaE. ChoongC.J. NambaA. SasakiT. KodaT. TakataK. MiyagawaS. SawaY. NakatsujiY. MochizukiH. Single injection of sustained-release prostacyclin analog ONO-1301-MS ameliorates hypoxic toxicity in the murine model of amyotrophic lateral sclerosis.Sci. Rep.201991525210.1038/s41598‑019‑41771‑430918303
    [Google Scholar]
  256. LangI.M. GaineS.P. Recent advances in targeting the prostacyclin pathway in pulmonary arterial hypertension.Eur. Respir. Rev.20152413863064110.1183/16000617.0067‑201526621977
    [Google Scholar]
  257. BenatarM. Lost in translation: Treatment trials in the SOD1 mouse and in human ALS.Neurobiol. Dis.200726111310.1016/j.nbd.2006.12.01517300945
    [Google Scholar]
  258. FisherE.M.C. GreensmithL. MalaspinaA. FrattaP. HannaM.G. SchiavoG. IsaacsA.M. OrrellR.W. CunninghamT.J. ArozenaA.A. Opinion: more mouse models and more translation needed for ALS.Mol. Neurodegener.20231813010.1186/s13024‑023‑00619‑237143081
    [Google Scholar]
  259. DingQ. KesavanK. LeeK.M. WimbergerE. RobertsonT. GillM. PowerD. ChangJ. FardA.T. MarJ.C. HendersonR.D. HeggieS. McCombeP.A. JeffreeR.L. ColditzM.J. HilliardM.A. NgD.C.H. SteynF.J. PhillipsW.D. WolvetangE.J. NgoS.T. NoakesP.G. Impaired signaling for neuromuscular synaptic maintenance is a feature of motor neuron disease.Acta Neuropathol. Commun.20221016110.1186/s40478‑022‑01360‑535468848
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501323980240815113851
Loading
/content/journals/cdt/10.2174/0113894501323980240815113851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test