Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA)) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in-depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501319306240819052840
2024-10-01
2024-11-16
Loading full text...

Full text loading...

/deliver/fulltext/cdt/25/13/CDT-25-13-02.html?itemId=/content/journals/cdt/10.2174/0113894501319306240819052840&mimeType=html&fmt=ahah

References

  1. QuintanaR.A. TaylorW.R. Cellular Mechanisms of Aortic Aneurysm Formation.Circ. Res.2019124460761810.1161/CIRCRESAHA.118.31318730763207
    [Google Scholar]
  2. ZhouY. WangT. FanH. LiuS. TengX. ShaoL. ShenZ. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism.Curr. Probl. Cardiol.20244911 Pt A10204010.1016/j.cpcardiol.2023.10204037595858
    [Google Scholar]
  3. TawkR.G. HasanT.F. D’SouzaC.E. PeelJ.B. FreemanW.D. Diagnosis and Treatment of Unruptured Intracranial Aneurysms and Aneurysmal Subarachnoid Hemorrhage.Mayo Clin. Proc.20219671970200010.1016/j.mayocp.2021.01.00533992453
    [Google Scholar]
  4. MalhotraA. WuX. GandhiD. Management of Unruptured Intracranial Aneurysms.Neuroimaging Clin. N. Am.202131213914610.1016/j.nic.2021.02.00133902869
    [Google Scholar]
  5. BeilerliA. GareevI. BeylerliO. YangG. PavlovV. AlievG. AhmadA. Circular RNAs as biomarkers and therapeutic targets in cancer.Semin. Cancer Biol.20228324225210.1016/j.semcancer.2020.12.02633434640
    [Google Scholar]
  6. GareevI. ShumadalovaA. IlyasovaT. BeilerliA. ShiH. Circular RNAs in intracranial aneurysms: Emerging roles in pathogenesis, diagnosis and therapeutic intervention.Noncoding RNA Res.20249121122010.1016/j.ncrna.2023.11.01238125753
    [Google Scholar]
  7. DingS. ZhuY. LiangY. HuangH. XuY. ZhongC. Circular RNAs in Vascular Functions and Diseases.Adv. Exp. Med. Biol.2018108728729710.1007/978‑981‑13‑1426‑1_2330259375
    [Google Scholar]
  8. HussainM.S. MogladE. BansalP. KaurH. DeorariM. almalkiW.H. KazmiI. AlzareaS.I. SinghM. KukretiN. Exploring the oncogenic and tumor-suppressive roles of Circ-ADAM9 in cancer.Pathol. Res. Pract.202425615525710.1016/j.prp.2024.15525738537524
    [Google Scholar]
  9. HussainM.S. ShaikhN.K. AgrawalM. TufailM. BishtA.S. KhuranaN. KumarR. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding.Pathol. Res. Pract.202425515518610.1016/j.prp.2024.15518638350169
    [Google Scholar]
  10. HussainM.S. MogladE. AfzalM. SharmaS. GuptaG. SivaprasadG.V. DeorariM. AlmalkiW.H. KazmiI. AlzareaS.I. ShahwanM. PantK. AliH. SinghS.K. DuaK. SubramaniyanV. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson’s disease pathogenesis.CNS Neurosci. Ther.2024305e1476310.1111/cns.1476338790149
    [Google Scholar]
  11. HussainM.S. MogladE. AfzalM. GuptaG. Hassan AlmalkiW. KazmiI. AlzareaS.I. KukretiN. GuptaS. KumarD. ChellappanD.K. SinghS.K. DuaK. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives.Pathol. Res. Pract.202425815530310.1016/j.prp.2024.15530338728793
    [Google Scholar]
  12. HussainM.S. MogladE. AfzalM. BansalP. KaurH. DeorariM. AliH. ShahwanM. Hassan almalkiW. KazmiI. AlzareaS.I. SinghS.K. DuaK. GuptaG. Circular RNAs in the KRAS pathway: Emerging players in cancer progression.Pathol. Res. Pract.202425615525910.1016/j.prp.2024.15525938503004
    [Google Scholar]
  13. StaarmannB. SmithM. PrestigiacomoC.J. Shear stress and aneurysms: a review.Neurosurg. Focus2019471E210.3171/2019.4.FOCUS1922531261124
    [Google Scholar]
  14. LiuH.J. ZhouH. LuD.L. JiaoY.B. ChenS.F. ChengJ. YaoX.J. RenJ.Y. LiS.F. LiuW. GaoJ.C. YueY. XuJ.X. ZhangP.N. FengY.G. Intracranial Mirror Aneurysm: Epidemiology, Rupture Risk, New Imaging, Controversies, and Treatment Strategies.World Neurosurg.201912716517510.1016/j.wneu.2019.03.27530954748
    [Google Scholar]
  15. SrinivasD. BabuR.A. PaulP. PurushottamM. SomannaS. JainS. Differential expression levels of collagen 1A2, tissue inhibitor of metalloproteinase 4, and cathepsin B in intracranial aneurysms.Neurol. India201664466367010.4103/0028‑3886.18535027381111
    [Google Scholar]
  16. PortelliS.S. HamblyB.D. JeremyR.W. RobertsonE.N. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities.Redox Rep.2021261455210.1080/13510002.2021.189947333715602
    [Google Scholar]
  17. TakagiH. HariY. NakashimaK. KunoT. AndoT. Matrix metalloproteinases and acute aortic dissection: Et Tu, Brute?Interact. Cardiovasc. Thorac. Surg.202030346547610.1093/icvts/ivz28631808522
    [Google Scholar]
  18. MoughalS. BashirM. Correlation of intracranial and aortic aneurysms: current trends and evidence.Asian Cardiovasc. Thorac. Ann.202028525025710.1177/021849232093084832486829
    [Google Scholar]
  19. GolledgeJ. Abdominal aortic aneurysm: update on pathogenesis and medical treatments.Nat. Rev. Cardiol.201916422524210.1038/s41569‑018‑0114‑930443031
    [Google Scholar]
  20. BrinjikjiW. ZhuY.Q. LanzinoG. CloftH.J. MuradM.H. WangZ. KallmesD.F. Risk Factors for Growth of Intracranial Aneurysms: A Systematic Review and Meta-Analysis.AJNR Am. J. Neuroradiol.201637461562010.3174/ajnr.A457526611992
    [Google Scholar]
  21. AfsarB. AfsarR.E. Hypertension and cellular senescence.Biogerontology202324445747810.1007/s10522‑023‑10031‑437010665
    [Google Scholar]
  22. Ghafouri-FardS. Shirvani-FarsaniZ. HussenB.M. TaheriM. SamsamiM. The key roles of non-coding RNAs in the pathophysiology of hypertension.Eur. J. Pharmacol.202293117522010.1016/j.ejphar.2022.17522035995213
    [Google Scholar]
  23. ZaiouM. Circular RNAs in hypertension: challenges and clinical promise.Hypertens. Res.201942111653166310.1038/s41440‑019‑0294‑731239534
    [Google Scholar]
  24. XiangR. ChenJ. LiS. YanH. MengY. CaiJ. CuiQ. YangY. XuM. GengB. YangJ. VSMC-Specific Deletion of FAM3A Attenuated Ang II-Promoted Hypertension and Cardiovascular Hypertrophy.Circ. Res.2020126121746175910.1161/CIRCRESAHA.119.31555832279581
    [Google Scholar]
  25. ShiJ. YangY. ChengA. XuG. HeF. Metabolism of vascular smooth muscle cells in vascular diseases.Am. J. Physiol. Heart Circ. Physiol.20203193H613H63110.1152/ajpheart.00220.202032762559
    [Google Scholar]
  26. LinJJ. ChenR. YangLY. GongM. DuMY. MuSQ. JiangZA. LiHH. YangY. WangXH. WangSF. LiuKX. CaoSH. WangZY. ZhaoAQ. YangSY. LiC. SunSG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy.J Adv Res.20232023S20901232(23)00201-110.1016/j.jare.2023.07.010
    [Google Scholar]
  27. LiuC. LiN. LiF. DengW. DaiG. TangY. ZhangY. JiangJ. FangH. CircHIPK2 facilitates phenotypic switching of vascular smooth muscle cells in hypertension.J. Hum. Hypertens.202337111021102710.1038/s41371‑023‑00834‑w37100987
    [Google Scholar]
  28. MaY. ZhengB. ZhangX.H. NieZ.Y. YuJ. ZhangH. WangD.D. ShiB. BaiY. YangZ. WenJ.K. circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA.Aging2021138116101162810.18632/aging.20285533885378
    [Google Scholar]
  29. ZhangJ.R. SunH.J. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction.Hypertens. Res.202144212914610.1038/s41440‑020‑00553‑632985618
    [Google Scholar]
  30. GongX. TianM. CaoN. YangP. XuZ. ZhengS. LiaoQ. ChenC. ZengC. JoseP.A. WangD.Z. JianZ. XiaoY. JiangD.S. WeiX. ZhangB. WangY. ChenK. WuG. ZengC. Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation.J. Clin. Invest.202113124e14703110.1172/JCI14703134907911
    [Google Scholar]
  31. ChenJ. CuiL. YuanJ. ZhangY. SangH. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124.Biochem. Biophys. Res. Commun.20174941-212613210.1016/j.bbrc.2017.10.06829042195
    [Google Scholar]
  32. ZhangJ.R. SunH.J. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential.Mol. Biol. Rep.20204775535554710.1007/s11033‑020‑05601‑532567025
    [Google Scholar]
  33. XieQ. MaY. RenZ. GuT. JiangZ. Circular RNA: A new expectation for cardiovascular diseases.J. Cell. Biochem.202320233051210.1002/jcb.3051238098251
    [Google Scholar]
  34. YangJ. RongS. The Emerging Role of CircRNAs in Atherosclerosis.Curr. Vasc. Pharmacol.2023211264110.2174/157016112166623010615385736617710
    [Google Scholar]
  35. LiuQ. WangY. ZhangT. FangJ. MengS. Circular RNAs in vascular diseases.Front. Cardiovasc. Med.202310124743410.3389/fcvm.2023.124743437840954
    [Google Scholar]
  36. CaiW. LiJ. SuJ. Effects of renal denervation on the expression profile of circular RNA in the serum of patients with resistant hypertension.Hellenic J. Cardiol.202263667410.1016/j.hjc.2021.06.00734147676
    [Google Scholar]
  37. WilliamsonP.N. DochertyP.D. YazdiS.G. KhanaferA. KabaliukN. JermyM. GeogheganP.H. Review of the Development of Hemodynamic Modeling Techniques to Capture Flow Behavior in Arteries Affected by Aneurysm, Atherosclerosis, and Stenting.J. Biomech. Eng.2022144404080210.1115/1.405308234802061
    [Google Scholar]
  38. PeshkovaI.O. SchaeferG. KoltsovaE.K. Atherosclerosis and aortic aneurysm – is inflammation a common denominator?FEBS J.201628391636165210.1111/febs.1363426700480
    [Google Scholar]
  39. TrollopeA.F. GolledgeJ. Angiopoietins, abdominal aortic aneurysm and atherosclerosis.Atherosclerosis2011214223724310.1016/j.atherosclerosis.2010.08.05120832800
    [Google Scholar]
  40. ChenG. LiY. ZhangA. GaoL. Circular RNA Circ-BANP Regulates Oxidized Low-density Lipoprotein-induced Endothelial Cell Injury Through Targeting the miR-370/Thioredoxin-interacting Protein Axis.J. Cardiovasc. Pharmacol.202177334935910.1097/FJC.000000000000096433298736
    [Google Scholar]
  41. DuN. LiM. YangD. Hsa_circRNA_102541 regulates the development of atherosclerosis by targeting miR-296-5p/PLK1 pathway.Ir. J. Med. Sci.202219131153115910.1007/s11845‑021‑02708‑x34251586
    [Google Scholar]
  42. LuoX. ZhouX. CircRNA-PTPRA Knockdown Inhibits Atherosclerosis Progression by Repressing ox-LDL-Induced Endothelial Cell Injury via Sponging of miR-671-5p.Biochem. Genet.202361118720110.1007/s10528‑022‑10256‑x35817886
    [Google Scholar]
  43. YangL. LinY. WangC. FanP. circSnd1 promotes atherosclerosis progression through the miR-485-3p/Olr1 signaling pathway.Heliyon202396e1736610.1016/j.heliyon.2023.e1736637426804
    [Google Scholar]
  44. ChenW. XuJ. WuY. LiangB. YanM. SunC. WangD. HuX. LiuL. HuW. ShaoY. XingD. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis.Int. J. Biol. Sci.20231992879289610.7150/ijbs.8499437324939
    [Google Scholar]
  45. FrösenJ. CebralJ. RobertsonA.M. AokiT. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.Neurosurg. Focus2019471E2110.3171/2019.5.FOCUS1923431261126
    [Google Scholar]
  46. SughimotoK. TakaharaY. MogiK. YamazakiK. TsubotaK. LiangF. LiuH. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.Heart Vessels201429340441210.1007/s00380‑013‑0381‑723852404
    [Google Scholar]
  47. ShiG. XuS. GareevI. JiZ. PeiW. ZhangG. QiJ. ChenR. LiangS. GuY. WangC. Overlapping stent-assisted coil embolization for vertebrobasilar dissecting aneurysms: a single-center study.Neurol. Res.202143970170710.1080/01616412.2021.192217234278976
    [Google Scholar]
  48. HoA.L. LinN. FrerichsK.U. DuR. Smoking and Intracranial Aneurysm Morphology.Neurosurgery2015771596610.1227/NEU.000000000000073525839377
    [Google Scholar]
  49. KarhunenV. BakkerM.K. RuigrokY.M. GillD. LarssonS.C. Modifiable Risk Factors for Intracranial Aneurysm and Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study.J. Am. Heart Assoc.20211022e02227710.1161/JAHA.121.02227734729997
    [Google Scholar]
  50. YaylaÇ. KaranfilM. ErtemA.G. AçarB. UnalS. AkboğaM.K. Inflammation Parameters in Aortic Aneurysm.Angiology201970328010.1177/000331971878932430033739
    [Google Scholar]
  51. TexakalidisP. SweidA. MouchtourisN. PetersonE.C. SiokaC. Rangel-CastillaL. Reavey-CantwellJ. JabbourP. Aneurysm Formation, Growth, and Rupture: The Biology and Physics of Cerebral Aneurysms.World Neurosurg.201913027728410.1016/j.wneu.2019.07.09331323409
    [Google Scholar]
  52. SuzukiT. StapletonC.J. KochM.J. TanakaK. FujimuraS. SuzukiT. YanagisawaT. YamamotoM. FujiiY. MurayamaY. PatelA.B. Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms.J. Neurosurg.202013241116112210.3171/2018.12.JNS18289730875692
    [Google Scholar]
  53. AkutsuK. Etiology of aortic dissection.Gen. Thorac. Cardiovasc. Surg.201967327127610.1007/s11748‑019‑01066‑x30689200
    [Google Scholar]
  54. XieH. HuangY. ZhanY. Construction of a novel circRNA-miRNA-ferroptosis related mRNA network in ischemic stroke.Sci. Rep.20231311507710.1038/s41598‑023‑41028‑137699956
    [Google Scholar]
  55. ChenY. WangJ. WangC. LiuM. ZouQ. Deep learning models for disease-associated circRNA prediction: a review.Brief. Bioinform.2022236bbac36410.1093/bib/bbac36436130259
    [Google Scholar]
  56. AsanoK. CantalupoA. SedesL. RamirezF. Pathophysiology and Therapeutics of Thoracic Aortic Aneurysm in Marfan Syndrome.Biomolecules202212112810.3390/biom1201012835053276
    [Google Scholar]
  57. MaY. ZhangB. ZhangD. WangS. LiM. ZhaoJ. Differentially Expressed Circular RNA Profile in an Intracranial Aneurysm Group Compared with a Healthy Control Group.Dis. Markers202120211810.1155/2021/888956933574968
    [Google Scholar]
  58. HuangQ. HuangQ.Y. SunY. WuS. High-Throughput Data Reveals Novel Circular RNAs via Competitive Endogenous RNA Networks Associated with Human Intracranial Aneurysms.Med. Sci. Monit.2019254819483010.12659/MSM.91708131254341
    [Google Scholar]
  59. ZhangZ. SuiR. GeL. XiaD. CircRNA_0079586 and circRNA_RanGAP1 are involved in the pathogenesis of intracranial aneurysms rupture by regulating the expression of MPO.Sci. Rep.20211111980010.1038/s41598‑021‑99062‑w34611229
    [Google Scholar]
  60. CaoH. ChenJ. LaiX. LiuT. QiuP. QueS. HuangY. Circular RNA expression profile in human primary multiple intracranial aneurysm.Exp. Ther. Med.202121323910.3892/etm.2021.967033603847
    [Google Scholar]
  61. WangH. YanH. WangC. LiM. LvX. WuH. FangZ. MoD. ZhangZ. LiangB. LaiK. BaoJ. YangX. ZhaoH. ChenS. FanY. TongX. circAFF1 Aggravates Vascular Endothelial Cell Dysfunction Mediated by miR-516b/SAV1/YAP1 Axis.Front. Physiol.20201189910.3389/fphys.2020.0089932848851
    [Google Scholar]
  62. CaiL. GeB. XuS. ChenX. YangH. Up-regulation of circARF3 reduces blood-brain barrier damage in rat subarachnoid hemorrhage model via miR-31-5p/MyD88/NF-κB axis.Aging (Albany NY)20211317213452136310.18632/aging.20346834511434
    [Google Scholar]
  63. WangY. WangY. LiY. WangB. MiaoZ. LiuX. MaY. Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression.Cell Adhes. Migr.201913121922710.1080/19336918.2019.161943231096819
    [Google Scholar]
  64. ChenX. YangS. YangJ. LiuQ. LiM. WuJ. WangH. WangS. The Potential Role of hsa_circ_0005505 in the Rupture of Human Intracranial Aneurysm.Front. Mol. Biosci.2021867069110.3389/fmolb.2021.67069134336924
    [Google Scholar]
  65. WangC. LuoY. TangH. YanY. ChangX. ZhaoR. LiQ. YangP. HongB. XuY. HuangQ. LiuJ. Hsa_circ_0031608: A Potential Modulator of VSMC Phenotype in the Rupture of Intracranial Aneurysms.Front. Mol. Neurosci.20221584286510.3389/fnmol.2022.84286535359572
    [Google Scholar]
  66. ChenX. YangS. YangJ. LiuQ. LiM. WuJ. WangH. WangS. Circular RNA circDUS2 Is a Potential Biomarker for Intracranial Aneurysm.Front. Aging Neurosci.20211363244810.3389/fnagi.2021.63244834093163
    [Google Scholar]
  67. ZhangH. ZhangB. ChenC. ChenJ. Circular RNA circLIFR regulates the proliferation, migration, invasion and apoptosis of human vascular smooth muscle cells via the miR-1299/KDR axis.Metab. Brain Dis.202237125326310.1007/s11011‑021‑00853‑x34705228
    [Google Scholar]
  68. YueP.D. LuY.N. ZhangL. MaZ.F. Circ_FOXO3 regulates KLF6 through sponge adsorption of miR-122-5p to repress H2O2-induced HBVSMC proliferation, thus promoting IA development in vitro model.Acta Biochim. Pol.202269476777210.18388/abp.2020_602136272155
    [Google Scholar]
  69. DingX. WangX. HanL. ZhaoZ. JiaS. TuoY. CircRNA DOCK1 Regulates miR-409-3p/MCL1 Axis to Modulate Proliferation and Apoptosis of Human Brain Vascular Smooth Muscle Cells.Front. Cell Dev. Biol.2021965562810.3389/fcell.2021.65562834109173
    [Google Scholar]
  70. QinK. TianG. ZhouD. ChenG. Circular RNA circ-ARFIP2 regulates proliferation, migration and invasion in human vascular smooth muscle cells via miR-338-3p-dependent modulation of KDR.Metab. Brain Dis.20213661277128810.1007/s11011‑021‑00726‑333837886
    [Google Scholar]
  71. YinK. LiuX. Circ_0020397 regulates the viability of vascular smooth muscle cells by up-regulating GREM1 expression via miR-502-5p in intracranial aneurysm.Life Sci.202126511880010.1016/j.lfs.2020.11880033242525
    [Google Scholar]
  72. WangK. TanG. TianR. ZhouH. XiangC. PanK. Circular RNA circ_0021001 regulates miR-148b-3p/GREM1 axis to modulate proliferation and apoptosis of vascular smooth muscle cells.Metab. Brain Dis.20223762027203810.1007/s11011‑022‑01014‑435689751
    [Google Scholar]
  73. XuJ. FangC. Circ-ATL1 silencing reverses the activation effects of SIRT5 on smooth muscle cellular proliferation, migration and contractility in intracranial aneurysm by adsorbing miR-455.BMC Mol. Cell Biol.2023241310.1186/s12860‑022‑00461‑236717793
    [Google Scholar]
  74. SongH. YangY. SunY. WeiG. ZhengH. ChenY. CaiD. LiC. MaY. LinZ. ShiX. LiaoW. LiaoY. ZhongL. BinJ. CircularR.N.A. Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation.Mol. Ther.202230291593110.1016/j.ymthe.2021.09.01734547461
    [Google Scholar]
  75. ZhouM. ShiZ. CaiL. LiX. DingY. XieT. FuW. Circular RNA expression profile and its potential regulative role in human abdominal aortic aneurysm.BMC Cardiovasc. Disord.20202017010.1186/s12872‑020‑01374‑832039711
    [Google Scholar]
  76. YangR. WangZ. MengG. HuaL. Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66.Cell Biochem. Funct.202038783083810.1002/cbf.349431997404
    [Google Scholar]
  77. WangS. YuanQ. ZhaoW. ZhouW. Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm.PeerJ20219e1223210.7717/peerj.1223234820156
    [Google Scholar]
  78. WangJ. SunH. ZhouY. HuangK. QueJ. PengY. WangJ. LinC. XueY. JiK. Circular RNA microarray expression profile in 3,4-benzopyrene/angiotensin II-induced abdominal aortic aneurysm in mice.J. Cell. Biochem.20191206104841049410.1002/jcb.2833330614051
    [Google Scholar]
  79. ChenL. WangS. WangZ. LiuY. XuY. YangS. XueG. Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm.Front. Cardiovasc. Med.2022995583810.3389/fcvm.2022.95583835990982
    [Google Scholar]
  80. WeiJ. WangH. ZhaoQ. RETRACTED: Circular RNA suppression of vascular smooth muscle apoptosis through the miR-545-3p/CKAP4 axis during abdominal aortic aneurysm formation.Vasc. Med.202328210411210.1177/1358863X22113259136847199
    [Google Scholar]
  81. FasoloF. WinskiG. LiZ. WuZ. WinterH. RitzerJ. GlukhaN. RoyJ. HultgrenR. PauliJ. BuschA. SachsN. KnappichC. EcksteinH.H. BoonR.A. PaloschiV. MaegdefesselL. The circular RNA Ataxia Telangiectasia Mutated regulates oxidative stress in smooth muscle cells in expanding abdominal aortic aneurysms.Mol. Ther. Nucleic Acids20233384886510.1016/j.omtn.2023.08.01737680984
    [Google Scholar]
  82. ZhengC. NiuH. LiM. ZhangH. YangZ. TianL. WuZ. LiD. ChenX. Cyclic RNA has-circ-000595 regulates apoptosis of aortic smooth muscle cells.Mol. Med. Rep.20151256656666210.3892/mmr.2015.426426324352
    [Google Scholar]
  83. HeX. LiX. HanY. ChenG. XuT. CaiD. SunY. WangS. LaiY. TengZ. HuangS. LiaoW. LiaoY. BinJ. XiuJ. CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells.Mol. Ther. Nucleic Acids202227819810.1016/j.omtn.2021.11.00534938608
    [Google Scholar]
  84. YueJ. ZhuT. YangJ. SiY. XuX. FangY. FuW. CircCBFB-mediated miR-28-5p facilitates abdominal aortic aneurysm via LYPD3 and GRIA4.Life Sci.202025311753310.1016/j.lfs.2020.11753332151690
    [Google Scholar]
  85. LiT. WangT. YanL. MaC. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks.Exp. Ther. Med.2021226146810.3892/etm.2021.1090334737808
    [Google Scholar]
  86. MaX. XuJ. LuQ. FengX. LiuJ. CuiC. SongC. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p.Int. Immunopharmacol.202210710869110.1016/j.intimp.2022.10869135286916
    [Google Scholar]
  87. SiK. LuD. TianJ. Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm.PeerJ20219e1268210.7717/peerj.1268235036156
    [Google Scholar]
  88. LiuY. ZhongZ. XiaoL. LiW. WangZ. DuanZ. LiX. Identification of Circ-FNDC3B, an Overexpressed circRNA in Abdominal Aortic Aneurysm, as a Regulator of Vascular Smooth Muscle Cells.Int. Heart J.20216261387139810.1536/ihj.21‑18634789642
    [Google Scholar]
  89. ZhaoF. ChenT. JiangN. CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells.Exp. Ther. Med.20201963760376610.3892/etm.2020.862232346440
    [Google Scholar]
  90. ZhangL. ZhaoZ. QuanX. XieZ. ZhaoJ. Circ_0008285 silencing suppresses angiotensin II -induced vascular smooth muscle cell apoptosis in thoracic aortic aneurysm via miR -150-5p/ BASP1 axis.Thorac. Cancer202314222158216710.1111/1759‑7714.1500237337843
    [Google Scholar]
  91. WangH. WangH. LiuK. QinX. Circ_0000595 knockdown alleviates CoCl2-mediated effects in VSMCs by regulating the miR-582-3p/ADAM10 axis.Vascular20231708538123115697410.1177/1708538123115697436905137
    [Google Scholar]
  92. MaM. YangX. HanF. WangH. Circ_0092291 attenuates angiotensin II–induced cell damages in human aortic vascular smooth muscle cells via mediating the miR-626/COL4A1 signal axis.J. Physiol. Biochem.202278124525610.1007/s13105‑021‑00859‑034997455
    [Google Scholar]
  93. LvP. YinY.J. KongP. CaoL. XiH. WangN. YangH.C. LvY.H. ChenN. WangR. DouY.Q. WangH.Y. MaX.T. LinY.L. NieL. ZhangY. ZhangF. HanM. SM22α Loss Contributes to Apoptosis of Vascular Smooth Muscle Cells via Macrophage-Derived circRasGEF1B.Oxid. Med. Cell. Longev.2021202112010.1155/2021/556488433859778
    [Google Scholar]
  94. ZouM. HuangC. LiX. HeX. ChenY. LiaoW. LiaoY. SunJ. LiuZ. ZhongL. BinJ. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection.Oncotarget2017847818258183710.18632/oncotarget.1899829137225
    [Google Scholar]
  95. LiangQ. ZhouZ. LiH. TaoQ. WangY. LinA. XuJ. ZhangB. WuY. MinH. WangL. SongS. WangD. GaoQ. Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection.Front. Cardiovasc. Med.20239107483510.3389/fcvm.2022.107483536712253
    [Google Scholar]
  96. XuZ. ZhongK. GuoG. XuC. SongZ. WangD. PanJ. circ_TGFBR2 Inhibits Vascular Smooth Muscle Cells Phenotypic Switch and Suppresses Aortic Dissection Progression by Sponging miR-29a.J. Inflamm. Res.2021145877589010.2147/JIR.S33609434795497
    [Google Scholar]
  97. HuangM.X. PiaoH.L. WangY. ZhuZ.C. XuR.H. WangT.C. LiD. LiuK.X. Circ_0022920 Maintains the Contractile Phenotype of Human Aortic Vascular Smooth Muscle Cells via Sponging microRNA-650 and Promoting Transforming Growth Factor Beta Receptor 1 Expression in Angiotensin II-Induced Models for Aortic Dissection.J. Am. Heart Assoc.2023127e02742510.1161/JAHA.122.02742536974747
    [Google Scholar]
  98. ShenT. ZhangY. MeiL. ZhangX.B. ZhuG. Single-stranded circular DNA theranostics.Theranostics2022121354710.7150/thno.6646634987632
    [Google Scholar]
  99. GareevI. BeylerliO. YangG. IzmailovA. ShiH. SunJ. ZhaoB. LiuB. ZhaoS. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms.Neurosurg. Rev.20214442025203910.1007/s10143‑020‑01427‑833094424
    [Google Scholar]
  100. GareevI. BeylerliO. AlievG. PavlovV. IzmailovA. ZhangY. LiangY. YangG. The Role of Long Non-Coding RNAs in Intracranial Aneurysms and Subarachnoid Hemorrhage.Life (Basel)202010915510.3390/life1009015532825276
    [Google Scholar]
  101. ZhaoC. LvY. DuanY. LiG. ZhangZ. Circulating Non-coding RNAs and Cardiovascular Diseases.Adv. Exp. Med. Biol.2020122935736710.1007/978‑981‑15‑1671‑9_2232285424
    [Google Scholar]
  102. WuX.B. WuY.T. GuoX.X. XiangC. ChenP.S. QinW. ShiZ.S. Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement.Front. Immunol.202213106159210.3389/fimmu.2022.106159236466848
    [Google Scholar]
  103. TengL. ChenY. ChenH. HeX. WangJ. PengY. DuanH. LiH. LinD. ShaoB. Circular RNA hsa_circ_0021001 in peripheral blood: a potential novel biomarker in the screening of intracranial aneurysm.Oncotarget201786310712510713310.18632/oncotarget.2234929291016
    [Google Scholar]
  104. HuangY. CaoH. QiX. GuanC. QueS. Circular RNA hsa_circ_0000690 as a potential biomarker for diagnosis and prognosis of intracranial aneurysm: Closely relating to the volume of hemorrhage.Brain Behav.2023134e292910.1002/brb3.292936879365
    [Google Scholar]
  105. TianC. TangX. ZhuX. ZhouQ. GuoY. ZhaoR. WangD. GongB. Expression profiles of circRNAs and the potential diagnostic value of serum circMARK3 in human acute Stanford type A aortic dissection.PLoS One2019146e021901310.1371/journal.pone.021901331251793
    [Google Scholar]
  106. WuJ. GareevI. BeylerliO. MukhamedzyanovA. PavlovV. KhasanovD. KhasanovaG. Circulating miR-126 as a Potential Non-invasive Biomarker for Intracranial Aneurysmal Rupture: A Pilot Study.Curr. Neurovasc. Res.202118552553410.2174/156720261966621121714211634923944
    [Google Scholar]
  107. NeifertS.N. ChapmanE.K. MartiniM.L. ShumanW.H. SchupperA.J. OermannE.K. MoccoJ. MacdonaldR.L. Aneurysmal Subarachnoid Hemorrhage: the Last Decade.Transl. Stroke Res.202112342844610.1007/s12975‑020‑00867‑033078345
    [Google Scholar]
  108. DiniaL. VertC. GramegnaL.L. ArikanF. HernándezD. CoscojuelaP. Martinez-SaezE. Ramón y CajalS. LuziM. Sarria-EstradaS. SalernoA. De BarrosA. GandaraD. QuintanaM. RoviraA. TomaselloA. TomaselloA. Wall enhancement as a biomarker of intracranial aneurysm instability: a histo-radiological study.Acta Neurochir. (Wien)2023165102783279110.1007/s00701‑023‑05739‑837589724
    [Google Scholar]
  109. QureshiM.I. GrecoM. VorkasP.A. HolmesE. DaviesA.H. Application of Metabolic Profiling to Abdominal Aortic Aneurysm Research.J. Proteome Res.20171672325233210.1021/acs.jproteome.6b0089428287739
    [Google Scholar]
  110. HussainS. BarbariteE. ChaudhryN.S. GuptaK. DellaroleA. PetersonE.C. ElhammadyM.S. Search for biomarkers of intracranial aneurysms: A systematic review.World Neurosurg.20158451473148310.1016/j.wneu.2015.06.03426117089
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501319306240819052840
Loading
/content/journals/cdt/10.2174/0113894501319306240819052840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test