Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

In recent years, mitochondria have gained significant interest in the field of biomedical research due to their impact on aging, human health, and other advanced findings in metabolic functions. The latest finding shows that metabolic interventions are a leading cause of several diseases, which has sparked interest in finding new therapeutic treatments. Apart from this, the unique inheritance of genetic material from mother to offspring can help scientists find ways to prevent mitochondrial inherited diseases. Additionally, the anti-aging benefits of controlling mitochondrial functions are also being researched. The present study aims to provide a cohesive overview of the latest findings in mitochondrial research, focusing on the role of DRP1 (Dynamin-related protein 1), a member of the GTPase family, in mediating mitochondrial fission. The first section of this paper provides a concise explanation of how DRP1 controls processes such as mitophagy and mitochondrial fission. Subsequently, the paper delves into the topic of inflammation, discussing the current findings regarding the inflammatory response mediated by DRP1. Finally, the role of mitochondrial fission mediated by DRP1 in cancer is examined, reviewing ongoing research on various types of cancer and their recurrence. Moreover, this review also covers the epigenetic regulation of mitochondrial fission. The studies were selected, and evaluated, and the information was collected to present an overview of the key findings. By exploring various aspects of research and potential links, we hope to contribute to a deeper understanding of the intricate relationship between the fields of cancer research and inflammation studies with respect to mitochondrial-based research.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501304751240819111831
2024-10-01
2024-11-16
Loading full text...

Full text loading...

References

  1. ChinneryP.F. SchonE.A. Mitochondria.J. Neurol. Neurosurg. Psychiatry20037491188119910.1136/jnnp.74.9.118812933917
    [Google Scholar]
  2. OsellameL.D. BlackerT.S. DuchenM.R. Cellular and molecular mechanisms of mitochondrial function.Best Pract. Res. Clin. Endocrinol. Metab.201226671172310.1016/j.beem.2012.05.00323168274
    [Google Scholar]
  3. SpinelliJ.B. HaigisM.C. The multifaceted contributions of mitochondria to cellular metabolism.Nat. Cell Biol.201820774575410.1038/s41556‑018‑0124‑129950572
    [Google Scholar]
  4. SusinS.A. LorenzoH.K. ZamzamiN. MarzoI. SnowB.E. BrothersG.M. MangionJ. JacototE. CostantiniP. LoefflerM. LarochetteN. GoodlettD.R. AebersoldR. SiderovskiD.P. PenningerJ.M. KroemerG. Molecular characterization of mitochondrial apoptosis-inducing factor.Nature1999397671844144610.1038/171359989411
    [Google Scholar]
  5. YouleR.J. van der BliekA.M. Mitochondrial fission, fusion, and stress.Science201233760981062106510.1126/science.121985522936770
    [Google Scholar]
  6. ElgassK. PakayJ. RyanM.T. PalmerC.S. Recent advances into the understanding of mitochondrial fission.Biochim. Biophys. Acta Mol. Cell Res.20131833115016110.1016/j.bbamcr.2012.05.00222580041
    [Google Scholar]
  7. ZhaoX.Y. LuM.H. YuanD.J. XuD.E. YaoP.P. JiW.L. ChenH. LiuW.L. YanC.X. XiaY.Y. LiS. TaoJ. MaQ.H. Mitochondrial Dysfunction in Neural Injury.Front. Neurosci.201913FEB3010.3389/fnins.2019.0003030778282
    [Google Scholar]
  8. PicklesS. VigiéP. YouleR.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance.Curr. Biol.2018284R170R18510.1016/j.cub.2018.01.00429462587
    [Google Scholar]
  9. GretenF.R. GrivennikovS.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  10. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  11. TongM. ZablockiD. SadoshimaJ. The role of Drp1 in mitophagy and cell death in the heart.J. Mol. Cell. Cardiol.202014213814510.1016/j.yjmcc.2020.04.01532302592
    [Google Scholar]
  12. RenL. ChenX. ChenX. LiJ. ChengB. XiaJ. Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells.Front. Cell Dev. Biol.2020858007010.3389/fcell.2020.58007033178694
    [Google Scholar]
  13. OliverD. Hemachandra ReddyP. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases.Cells20198996110.3390/cells8090961
    [Google Scholar]
  14. CribbsJ.T. StrackS. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death.EMBO Rep.200781093994410.1038/sj.embor.740106217721437
    [Google Scholar]
  15. LiY. BNIP3L/NIX-mediated mitophagy: Molecular mechanisms and implications for human disease.Cell Death Dis.20211311410.1038/s41419‑021‑04469‑y
    [Google Scholar]
  16. ClarkI.E. DodsonM.W. JiangC. CaoJ.H. HuhJ.R. SeolJ.H. YooS.J. HayB.A. GuoM. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.Nature200644170971162116610.1038/nature0477916672981
    [Google Scholar]
  17. ZerihunM. SukumaranS. QvitN. The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy.Int. J. Mol. Sci.2023246578510.3390/ijms2406578536982862
    [Google Scholar]
  18. TangM. YangM. WuG. MoS. WuX. ZhangS. YuR. HuY. XuY. LiZ. LiaoX. LiJ. SongL. Epigenetic induction of mitochondrial fission is required for maintenance of liver cancer⇓initiating cells.Cancer Res.202181143835384810.1158/0008‑5472.CAN‑21‑043634049973
    [Google Scholar]
  19. ChenK.H. DasguptaA. LinJ. PotusF. BonnetS. IremongerJ. FuJ. MewburnJ. WuD. Dunham-SnaryK. TheilmannA.L. JingZ.C. HindmarchC. OrmistonM.L. LawrieA. ArcherS.L. Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension.Circulation2018138328730410.1161/CIRCULATIONAHA.117.03125829431643
    [Google Scholar]
  20. ZhangS. X. WangJ. J. KowluruR. A. Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy.Cells.202312230010.3390/cells12020300
    [Google Scholar]
  21. KowluruR.A. MohammadG. Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy.Sci. Rep.2020101665510.1038/s41598‑020‑63527‑132313015
    [Google Scholar]
  22. ChaffeyN. Ann. Bot.200391340140110.1093/aob/mcg02312881405
    [Google Scholar]
  23. KimM.J. BaeS.H. RyuJ.C. KwonY. OhJ.H. KwonJ. MoonJ.S. KimK. MiyawakiA. LeeM.G. ShinJ. KimY.S. KimC.H. RyterS.W. ChoiA.M.K. RheeS.G. RyuJ.H. YoonJ.H. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.Autophagy20161281272129110.1080/15548627.2016.118308127337507
    [Google Scholar]
  24. ArayaJ. TsubouchiK. SatoN. ItoS. MinagawaS. HaraH. HosakaY. IchikawaA. SaitoN. KadotaT. YoshidaM. FujitaY. UtsumiH. KobayashiK. YanagisawaH. HashimotoM. WakuiH. IshikawaT. NumataT. KanekoY. AsanoH. YamashitaM. OdakaM. MorikawaT. NishimuraS.L. NakayamaK. KuwanoK. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.Autophagy201915351052610.1080/15548627.2018.153225930290714
    [Google Scholar]
  25. AyyappanJ.P. lizardoK. WangS. YurkowE. NagajyothiJ.F. Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model.Biomol. Ther. (Seoul)201927438639410.4062/biomolther.2018.19330879276
    [Google Scholar]
  26. YaoR.Q. RenC. XiaZ.F. YaoY.M. Organelle-specific autophagy in inflammatory diseases: A potential therapeutic target underlying the quality control of multiple organelles.Autophagy202117238540110.1080/15548627.2020.172537732048886
    [Google Scholar]
  27. GaoF. ReynoldsM.B. PassalacquaK.D. SextonJ.Z. AbuaitaB.H. O’RiordanM.X.D. The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional Regulation of TNF-α.Front. Cell. Infect. Microbiol.20211059380510.3389/fcimb.2020.59380533520735
    [Google Scholar]
  28. ForresterS.J. PrestonK.J. CooperH.A. BoyerM.J. EscotoK.M. PoltronettiA.J. ElliottK.J. KurodaR. MiyaoM. SesakiH. AkiyamaT. KimuraY. RizzoV. ScaliaR. EguchiS. Mitochondrial Fission Mediates Endothelial Inflammation.Hypertension202076126727610.1161/HYPERTENSIONAHA.120.1468632389075
    [Google Scholar]
  29. YuW. WangX. ZhaoJ. LiuR. LiuJ. WangZ. PengJ. WuH. ZhangX. LongZ. KongD. LiW. HaiC. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages.Redox Biol.20203710176110.1016/j.redox.2020.10176133080440
    [Google Scholar]
  30. CastanierC. GarcinD. VazquezA. ArnoultD. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway.EMBO Rep.201011213313810.1038/embor.2009.25820019757
    [Google Scholar]
  31. JhunB.S. O-UchiJ. AdaniyaS.M. CypressM.W. YoonY. Adrenergic Regulation of Drp1-Driven Mitochondrial Fission in Cardiac Physio-Pathology.Antioxidants201871219510.3390/antiox712019530567380
    [Google Scholar]
  32. IkedaY. ShirakabeA. MaejimaY. ZhaiP. SciarrettaS. ToliJ. NomuraM. MiharaK. EgashiraK. OhishiM. AbdellatifM. SadoshimaJ. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress.Circ. Res.2015116226427810.1161/CIRCRESAHA.116.30335625332205
    [Google Scholar]
  33. Rovira-LlopisS. BañulsC. Diaz-MoralesN. Hernandez-MijaresA. RochaM. VictorV.M. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.Redox Biol.20171163764510.1016/j.redox.2017.01.01328131082
    [Google Scholar]
  34. BonnetS. MichelakisE.D. PorterC.J. Andrade-NavarroM.A. ThébaudB. BonnetS. HaromyA. HarryG. MoudgilR. McMurtryM.S. WeirE.K. ArcherS.L. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension.Circulation2006113222630264110.1161/CIRCULATIONAHA.105.60900816735674
    [Google Scholar]
  35. MarsboomG. TothP.T. RyanJ.J. HongZ. WuX. FangY.H. ThenappanT. PiaoL. ZhangH.J. PogorilerJ. ChenY. MorrowE. WeirE.K. RehmanJ. ArcherS.L. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension.Circ. Res.2012110111484149710.1161/CIRCRESAHA.111.26384822511751
    [Google Scholar]
  36. GivvimaniS. PushpakumarS.B. MetreveliN. VeerankiS. KunduS. TyagiS.C. Role of mitochondrial fission and fusion in cardiomyocyte contractility.Int. J. Cardiol.201518732533310.1016/j.ijcard.2015.03.35225841124
    [Google Scholar]
  37. ShenY. JiangW.L. LiX. CaoA.L. LiD. LiS.Z. YangJ. QianJ. Mitochondrial dynamics in neurological diseases: A narrative review.Ann. Transl. Med.202311626410.21037/atm‑22‑240137082676
    [Google Scholar]
  38. WangX. SuB. SiedlakS.L. MoreiraP.I. FujiokaH. WangY. CasadesusG. ZhuX. Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.Proc. Natl. Acad. Sci. USA200810549193181932310.1073/pnas.080487110519050078
    [Google Scholar]
  39. BidoS. SoriaF.N. FanR.Z. BezardE. TieuK. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease.Sci. Rep.201771749510.1038/s41598‑017‑07181‑028790323
    [Google Scholar]
  40. ChangC.R. BlackstoneC. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology.J. Biol. Chem.200728230215832158710.1074/jbc.C70008320017553808
    [Google Scholar]
  41. CereghettiG.M. StangherlinA. de BritoO.M. ChangC.R. BlackstoneC. BernardiP. ScorranoL. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria.Proc. Natl. Acad. Sci. USA200810541158031580810.1073/pnas.080824910518838687
    [Google Scholar]
  42. HeJ. ChengJ. WangT. SUMOylation-Mediated Response to Mitochondrial Stress.Int. J. Mol. Sci.20202116565710.3390/ijms2116565732781782
    [Google Scholar]
  43. NakamuraN. KimuraY. TokudaM. HondaS. HiroseS. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology.EMBO Rep.20067101019102210.1038/sj.embor.740079016936636
    [Google Scholar]
  44. KarbowskiM. NeutznerA. YouleR.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division.J. Cell Biol.20071781718410.1083/jcb.20061106417606867
    [Google Scholar]
  45. ChoD.H. NakamuraT. FangJ. CieplakP. GodzikA. GuZ. LiptonS.A. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.Science2009324592310210510.1126/science.117109119342591
    [Google Scholar]
  46. KashatusJ.A. NascimentoA. MyersL.J. SherA. ByrneF.L. HoehnK.L. CounterC.M. KashatusD.F. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth.Mol. Cell201557353755110.1016/j.molcel.2015.01.00225658205
    [Google Scholar]
  47. DuanC. KuangL. XiangX. ZhangJ. ZhuY. WuY. YanQ. LiuL. LiT. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways.Cell Death Dis.202011425110.1038/s41419‑020‑2461‑932312970
    [Google Scholar]
  48. FanK. DingX. ZangZ. ZhangY. TangX. PeiX. ChenQ. YinH. ZhengX. ChenY. LiS. YangH. Drp1-Mediated Mitochondrial Metabolic Dysfunction Inhibits the Tumor Growth of Pituitary Adenomas.Oxid. Med. Cell. Longev.2022202212310.1155/2022/565258635368865
    [Google Scholar]
  49. PooleL.P. MacleodK.F. Mitophagy in tumorigenesis and metastasis.Cell. Mol. Life Sci.20217883817385110.1007/s00018‑021‑03774‑133580835
    [Google Scholar]
  50. TanwarD.K. ParkerD.J. GuptaP. SpurlockB. AlvarezR.D. BasuM.K. MitraK. Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients.Oncotarget2016737600216003710.18632/oncotarget.1104727509055
    [Google Scholar]
  51. HuangC. Y. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer.Cell Death Dis2018910100410.1038/s41419‑018‑1019‑6
    [Google Scholar]
  52. LinX. H. Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia.Oncogenesis2020976710.1038/s41389‑020‑00251‑5
    [Google Scholar]
  53. ZhangL. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: A review.J Exp Clin Cancer Res.202241122710.1186/s13046‑022‑02439‑6
    [Google Scholar]
  54. ZouG.P. YuC.X. ShiS.L. LiQ.G. WangX.H. QuX.H. YangZ.J. YaoW.R. YanD.D. JiangL.P. WanY.Y. HanX.J. Mitochondrial Dynamics Mediated by DRP1 and MFN2 Contributes to Cisplatin Chemoresistance in Human Ovarian Cancer SKOV3 cells.J. Cancer202112247358737310.7150/jca.6137935003356
    [Google Scholar]
  55. AdhikaryA. MukherjeeA. BanerjeeR. NagotuS. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells.ACS Omega2023848452084522310.1021/acsomega.3c0654738075775
    [Google Scholar]
  56. YuL. XiaoZ. TuH. TongB. ChenS. The expression and prognostic significance of Drp1 in lung cancer.Medicine (Baltimore)20199848e1822810.1097/MD.000000000001822831770286
    [Google Scholar]
  57. PadderR.A. BhatZ.I. AhmadZ. SinghN. HusainM. DRP1 Promotes BRAFV600E-Driven Tumor Progression and Metabolic Reprogramming in Colorectal Cancer.Front. Oncol.20211059213010.3389/fonc.2020.59213033738242
    [Google Scholar]
  58. HuangT.L. ChangC.R. ChienC.Y. HuangG.K. ChenY.F. SuL.J. TsaiH.T. LinY.S. FangF.M. ChenC.H. DRP1 contributes to head and neck cancer progression and induces glycolysis through modulated FOXM1/MMP12 axis.Mol. Oncol.202216132585260610.1002/1878‑0261.1321235313071
    [Google Scholar]
  59. WangY. Targeting DRP1 mediated mitochondrial metabolism as a novel treatment strategy for triple negative breast cancer (TNBC).Preprint202310.21203/rs.3.rs‑2801568/v1
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501304751240819111831
Loading
/content/journals/cdt/10.2174/0113894501304751240819111831
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cytokine; GTPase; inflammation; metastasis; mitochondrial fission; mitophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test