Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Phytochemicals, the bioactive compounds in plants, possess therapeutic benefits, such as antimicrobial, antioxidant, and pharmacological activities. However, their clinical use is often hindered by poor bioavailability and stability. Phytosome technology enhances the absorption and efficacy of these compounds by integrating vesicular systems like liposomes, niosomes, transfersomes, and ethosomes. Phytosomes offer diverse biological benefits, including cardiovascular protection through improved endothelial function and oxidative stress reduction. They enhance cognitive function and protect against neurodegenerative diseases in the nervous system, aid digestion and reduce inflammation in the gastrointestinal system, and provide hepatoprotective effects by enhancing liver detoxification and protection against toxins. In the genitourinary system, phytosomes improve renal function and exhibit anti-inflammatory properties. They also modulate the immune system by enhancing immune responses and reducing inflammation and oxidative stress. Additionally, phytosomes promote skin health by protecting against UV radiation and improving hydration and elasticity. Recent patented phytosome technologies have led to innovative formulations that improve the stability, bioavailability, and therapeutic efficacy of phytochemicals, although commercialization challenges like manufacturing scalability and regulatory hurdles remain. Secondary metabolites from natural products are classified into primary and secondary metabolites, with a significant focus on terpenoids, phenolic compounds, and nitrogen-containing compounds. These metabolites have notable biological activities: antimicrobial, antioxidant, antibiotic, antiviral, anti-inflammatory, and anticancer effects. In summary, this review amalgamates the latest advancements in phytosome technology and secondary metabolite research, presenting a holistic view of their potential to advance therapeutic interventions and contribute to the ever-evolving landscape of natural product-based medicine.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501310832240815071618
2024-10-01
2024-11-16
Loading full text...

Full text loading...

References

  1. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Bio. Earth. Sci.20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  2. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. GangadharappaH.V. PardakhtyA. MehrbaniM. Dell’AgliM. NematollahiM.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S31841634703224
    [Google Scholar]
  3. HuseynovE. KhalilovR. MohamedAJ. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv. Bio. Earth. Sci.20249819110.62476/abes9s81.
    [Google Scholar]
  4. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Bio. Earth. Sci.20249113410.62476/abes9s11.
    [Google Scholar]
  5. ErdilN. Cardiovascular disease, signaling, gene/cell therapy and advanced nanobiomaterials.Adv. Bio. Earth. Sci.20249588010.62476/abes9s58.
    [Google Scholar]
  6. DodleT. MohantyD. TripathyB. PanigrahyA.B. SirikondaS. KumarL. KumarC.P. GobinathM. PatroC.S. BakshiV. MaharanaP. A critical review on phytosomes: advancement and research on emerging nanotechnological tools.Curr. Bioact. Compd.2023195e20092220896610.2174/1573407218666220920094352
    [Google Scholar]
  7. SalahshourP. AbdolmalekiS. MonemizadehS. GholizadehS. KhaksarS. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs.Adv. Bio. Earth. Sci.202499710410.62476/abes9s97.
    [Google Scholar]
  8. RajputA. SharmaR. BhartiR. Pharmacological activities and toxicities of alkaloids on human health.Mater. Today Proc.2022481407141510.1016/j.matpr.2021.09.189
    [Google Scholar]
  9. BhatlaS.C. LalM.A. Secondary metabolites.Plant physiology, development and metabolism.Springer202376580810.1007/978‑981‑99‑5736‑1_33
    [Google Scholar]
  10. GurnaniN. MehtaD. GuptaM. MehtaB. Natural products: source of potential drugs.Afr J Basic Appl Sci.201466171186
    [Google Scholar]
  11. KaberaJ.N. SemanaE. MussaA.R. HeX. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties.J. Pharm. Pharmacol.201427377392
    [Google Scholar]
  12. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.2013183063670369510.1016/j.bbagen.2013.02.008
    [Google Scholar]
  13. SachdevaV. RoyA. BharadvajaN. Current prospects of nutraceuticals: A review.Curr. Pharm. Biotechnol.2020211088489610.2174/138920102166620013011344132000642
    [Google Scholar]
  14. DesamNR. Al-RajabAJ. The importance of natural products in cosmetics.Bioactive Natural Products for Pharmaceutical Applications202164368510.1007/978‑3‑030‑54027‑2_19
    [Google Scholar]
  15. SoutoA.L. SylvestreM. TölkeE.D. TavaresJ.F. Barbosa-FilhoJ.M. Cebrián-TorrejónG. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges.Molecules20212616483510.3390/molecules2616483534443421
    [Google Scholar]
  16. WolfenderJ.L. MartiG. ThomasA. BertrandS. Current approaches and challenges for the metabolite profiling of complex natural extracts.J. Chromatogr. A2015138213616410.1016/j.chroma.2014.10.09125464997
    [Google Scholar]
  17. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  18. KurhekarJ.V. Ancient and modern practices in phytomedicine.Preparation of Phytopharmaceuticals for the Management of Disorders.Elsevier2021557510.1016/B978‑0‑12‑820284‑5.00019‑8.
    [Google Scholar]
  19. BusiaK. Fundamentals of Herbal Medicine: History, Phytopharmacology and Phytotherapeutics.Xlibris20161
    [Google Scholar]
  20. SaadB. SaidO. Natural drugs in greco-arabic and Islamic medicine.201110.1002/9780470944363.ch6
    [Google Scholar]
  21. ShephardRJ. The middle-ages: Monasteries, medical schools and the dawn of state health care.An Illustrated History of Health and Fitness, from Pre-History to our Post-Modern World201524134610.1007/978‑3‑319‑11671‑6_4
    [Google Scholar]
  22. RankinA. Secrets and knowledge in medicine and science, 1500–1800.Routledge201610.4324/9781315608006
    [Google Scholar]
  23. VenturaI. Classification Systems and Pharmacological Theory in Medieval Collections of materia medica: A Short History from the Antiquity to the End of the 12th Century.Classification from Antiquity to Modern Times2017101166
    [Google Scholar]
  24. JonesA.W. Early drug discovery and the rise of pharmaceutical chemistry.Drug Test. Anal.20113633734410.1002/dta.30121698778
    [Google Scholar]
  25. KopardeAA. DoijadRC. MagdumCS. Natural products in drug discovery.Pharmacognosy - Medicinal Plants201910.5772/intechopen.82860
    [Google Scholar]
  26. GhisalbertiE.L. Bioactive Natural Products Detection, Isolation, and Structural Determination, Second Edition.CRC Press2007259010.1201/9781420006889.
    [Google Scholar]
  27. DixitV. Joseph KamalSW. Bajrang CholeP. DayalD. ChaubeyKK PalAK Functional foods: Exploring the health benefits of bioactive compounds from plant and animal sources.J. Food Qual20232023112210.1155/2023/5546753.
    [Google Scholar]
  28. GuzmánE. LuciaA. Essential oils and their individual components in cosmetic products.Cosmetics20218411410.3390/cosmetics8040114
    [Google Scholar]
  29. ChopraB. DhingraA.K. Natural products: A lead for drug discovery and development.Phytother. Res.20213594660470210.1002/ptr.709933847440
    [Google Scholar]
  30. WarA.R. PaulrajM.G. AhmadT. BuhrooA.A. HussainB. IgnacimuthuS. SharmaH.C. Mechanisms of plant defense against insect herbivores.Plant Signal. Behav.20127101306132010.4161/psb.2166322895106
    [Google Scholar]
  31. ChengY. LiM. XuP. Allelochemicals: A source for developing economically and environmentally friendly plant growth regulators.Biochem. Biophys. Res. Commun.202469014924810.1016/j.bbrc.2023.14924837992526
    [Google Scholar]
  32. TiwariR. RanaC. Plant secondary metabolites: A review.Int. j. eng. res.gen. sci201535661670
    [Google Scholar]
  33. PagareS. BhatiaM. TripathiN. PagareS. BansalY. Secondary metabolites of plants and their role: Overview.Curr. Trends Biotechnol. Pharm.201593293304
    [Google Scholar]
  34. NavarroD.M.D.L. AbelillaJ.J. SteinH.H. Structures and characteristics of carbohydrates in diets fed to pigs: A review.J. Anim. Sci. Biotechnol.20191013910.1186/s40104‑019‑0345‑631049199
    [Google Scholar]
  35. HildebrandtT.M. Nunes NesiA. AraújoW.L. BraunH.P. Amino acid catabolism in plants.Mol. Plant20158111563157910.1016/j.molp.2015.09.00526384576
    [Google Scholar]
  36. ChandelN.S. Lipid Metabolism.Cold Spring Harb. Perspect. Biol.2021139a04057610.1101/cshperspect.a04057634470787
    [Google Scholar]
  37. LeshemY.A. The molecular and hormonal basis of plant-growth regulation.Elsevier1973
    [Google Scholar]
  38. ThollD. Biosynthesis and biological functions of terpenoids in plants.Adv Biochem Eng Biotechnol.20151486310610.1007/10_2014_295
    [Google Scholar]
  39. HolopainenJ.K. HimanenS.J. YuanJ. ChenF. StewartC.N. Ecological functions of terpenoids in changing climates.Handbook of Natural ProductsSpringer20132913294010.1007/978‑3‑642‑22144‑6_129
    [Google Scholar]
  40. VuoloM.M. LimaV.S. JuniorM.R.M. Phenolic compounds: Structure, classification, and antioxidant power.Bioactive Compounds Health Benefits and Potential ApplicationsElsevier2019335010.1016/B978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  41. AlamgirA. AlamgirA. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles.Therapeutic Use of Medicinal Plants and their Extracts2018216530910.1007/978‑3‑319‑92387‑1_3.
    [Google Scholar]
  42. MacíasF.A. MejíasF.J.R. MolinilloJ.M.G. Recent advances in allelopathy for weed control: From knowledge to applications.Pest Manag. Sci.20197592413243610.1002/ps.535530684299
    [Google Scholar]
  43. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo911025831683833
    [Google Scholar]
  44. PiaseckaA. Jedrzejczak-ReyN. BednarekP. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals.New Phytol.2015206394896410.1111/nph.1332525659829
    [Google Scholar]
  45. ThirumuruganD. CholarajanA. RajaS. VijayakumarR. An introductory chapter: Secondary metabolites.Secondary Metabolites - Sources and Applications201810.5772/intechopen.79766
    [Google Scholar]
  46. ZhangL. LiuC. LiD. ZhaoY. ZhangX. ZengX. YangZ. LiS. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88.Int. J. Biol. Macromol.20135427027510.1016/j.ijbiomac.2012.12.03723274679
    [Google Scholar]
  47. ChenH. JuY. LiJ. YuM. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention.Int. J. Biol. Macromol.201250121421810.1016/j.ijbiomac.2011.10.02722085754
    [Google Scholar]
  48. DumanovićJ. NepovimovaE. NatićM. KučaK. JaćevićV. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview.Front. Plant Sci.20211155296910.3389/fpls.2020.55296933488637
    [Google Scholar]
  49. GorlenkoC.L. KiselevH.Y. BudanovaE.V. ZamyatninA.A.Jr IkryannikovaL.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics?Antibiotics (Basel)20209417010.3390/antibiotics904017032290036
    [Google Scholar]
  50. PalD. LalP. Plants showing anti-viral activity with emphasis on secondary metabolites and biological screening.Anti-Viral Metabolites from Medicinal PlantsSpringer20232995
    [Google Scholar]
  51. GhildiyalR. PrakashV. ChaudharyV. GuptaV. GabraniR. Phytochemicals as antiviral agents: Recent updates.Plant-derived Bioactives202027929510.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  52. Ali RezaA.S.M. NasrinM.S. HossenM.A. RahmanM.A. JantanI. HaqueM.A. Sobarzo-SánchezE. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites.Crit. Rev. Food Sci. Nutr.202363225546557610.1080/10408398.2021.202113834955042
    [Google Scholar]
  53. SecaA. PintoD. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application.Int. J. Mol. Sci.201819126310.3390/ijms1901026329337925
    [Google Scholar]
  54. El OmariN. BakrimS. BakhaM. LorenzoJ.M. RebezovM. ShariatiM.A. AboulaghrasS. BalahbibA. KhayrullinM. BouyahyaA. Natural bioactive compounds targeting epigenetic pathways in cancer: A review on alkaloids, terpenoids, quinones, and isothiocyanates.Nutrients20211311371410.3390/nu1311371434835969
    [Google Scholar]
  55. Bailon-MoscosoN. Cevallos-SolorzanoG. Romero-BenavidesJ. Ramirez OrellanaM. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies.Curr. Genomics201718210613110.2174/138920291766616080812564528367072
    [Google Scholar]
  56. SenthilkumarK. ManivasaganP. VenkatesanJ. KimS.K. Brown seaweed fucoidan: Biological activity and apoptosis, growth signaling mechanism in cancer.Int. J. Biol. Macromol.20136036637410.1016/j.ijbiomac.2013.06.03023817097
    [Google Scholar]
  57. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J Pharm Sci.201914326527410.1016/j.ajps.2018.05.011.
    [Google Scholar]
  58. VeluG. PalanichamyV. RajanAP. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine.Bioorganic Phase in Natural Food: An OverviewSpringer201813515610.1007/978‑3‑319‑74210‑6_8
    [Google Scholar]
  59. KaushikB. SharmaJ. YadavK. KumarP. ShourieA. Phytochemical properties and pharmacological role of plants: Secondary metabolites.Biosci. Biotechnol. Res. Asia2021181233510.13005/bbra/2894
    [Google Scholar]
  60. AroraS. RanvirS. Phytochemicals: Benefits, concerns and challenges. Advancement in Functional Food IngredientsJaya Publishing House2020205227
    [Google Scholar]
  61. GuptaM.K. SansareV. ShrivastavaB. JadhavS. GuravP. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery.J. Liposome Res.202232321122310.1080/08982104.2021.196843034727833
    [Google Scholar]
  62. BaraniM. MirzaeiM. Torkzadeh-MahaniM. NematollahiM.H. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: A Nano-herbal treatment for Cancer.Daru2018261111710.1007/s40199‑018‑0207‑330159762
    [Google Scholar]
  63. BaraniM. MirzaeiM. Torkzadeh-MahaniM. Adeli-sardouM. Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay.Sci. Rep.201991713910.1038/s41598‑019‑43755‑w31073144
    [Google Scholar]
  64. RaafatK.M. El-ZahabyS.A. Niosomes of active Fumaria officinalis phytochemicals: Antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action.Chin. Med.20201514010.1186/s13020‑020‑00321‑132377229
    [Google Scholar]
  65. Abd-ElghanyA.A. MohamadE.A. Ex-vivo transdermal delivery of Annona squamosa entrapped in niosomes by electroporation. j. radiat. res. appl. sci.202013116417310.1080/16878507.2020.1719329
    [Google Scholar]
  66. OgbebaJ. Phytochemical and antibacterial property of finger millet ( Eleusine coracana ) on some selected clinical bacteria.2019Available from: https://www.microbiologyresearch.org/content/journal/acmi/10.1099/acmi.ac2019.po0037
  67. LeeC. NaK. Anthocyanin-loaded liposomes prepared by the pH-gradient loading method to enhance the anthocyanin stability, antioxidation effect and skin permeability.Macromol. Res.202028328929710.1007/s13233‑020‑8039‑7
    [Google Scholar]
  68. ShariareM.H. RahmanM. LubnaS.R. RoyR.S. AbedinJ. MarzanA.L. AltamimiM.A. AhamadS.R. AhmadA. AlanaziF.K. KaziM. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model.Sci. Rep.2020101693810.1038/s41598‑020‑63894‑932332809
    [Google Scholar]
  69. ChenM.H. ChiangB.H. Modification of curcumin-loaded liposome with edible compounds to enhance ability of crossing blood brain barrier.Colloids Surf. A Physicochem. Eng. Asp.202059912486210.1016/j.colsurfa.2020.124862
    [Google Scholar]
  70. ThapaB. PepicI. VanicZ. BasnetP. Skalko-BasnetN. Topical delivery system for phytochemicals: Capsaicin and capsicum tincture.J Pharm Drug Dev.20131217
    [Google Scholar]
  71. NasriS. Ebrahimi-HosseinzadehB. RahaieM. Hatamian-ZarmiA. SahraeianR. Thymoquinone-loaded ethosome with breast cancer potential: Optimization, in vitro and biological assessment.J. Nanostructure Chem.2020101193110.1007/s40097‑019‑00325‑w
    [Google Scholar]
  72. HarandiH. Falahati-pourS.K. MahmoodiM. FaramarzS. MalekiH. NasabF.B. ShiriH. FooladiS. NematollahiM.H. Nanoliposomal formulation of pistachio hull extract: Preparation, characterization and anti-cancer evaluation through Bax/Bcl2 modulation.Mol. Biol. Rep.20224942735274310.1007/s11033‑021‑07083‑535037194
    [Google Scholar]
  73. Grace XF. KS. SS. Development of Terminalia chebula loaded ethosomal gel for transdermal drug delivery.Asian J. Pharm. Clin. Res.2018111238038310.22159/ajpcr.2018.v11i12.20764
    [Google Scholar]
  74. NangareS. DhananjayB. MaliR. ShitoleM. Development of novel freeze-dried mulberry leaves extract-based transfersomal gel.Turk J Pharm Sci201910.4274/tjps.98624
    [Google Scholar]
  75. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.122871828155509
    [Google Scholar]
  76. LuK. XieS. HanS. ZhangJ. ChangX. ChaoJ. HuangQ. YuanQ. LinH. XuL. ShenC. TanM. QuS. WangC. SongX. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats.J. Transl. Med.20141217210.1186/1479‑5876‑12‑7224641917
    [Google Scholar]
  77. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.124785028050929
    [Google Scholar]
  78. RivaA. AllegriniP. FranceschiF. TogniS. GiacomelliL. EggenhoffnerR. A novel boswellic acids delivery form (Casperome®) in the management of musculoskeletal disorders: A review.Eur. Rev. Med. Pharmacol. Sci.201721225258526329228442
    [Google Scholar]
  79. YuF. LiY. ChenQ. HeY. WangH. YangL. GuoS. MengZ. CuiJ. XueM. ChenX.D. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency.Eur. J. Pharm. Biopharm.201610313614810.1016/j.ejpb.2016.03.01927020531
    [Google Scholar]
  80. DrobnicF. RieraJ. AppendinoG. TogniS. FranceschiF. ValleX. PonsA. TurJ. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): A randomised, placebo-controlled trial.J. Int. Soc. Sports Nutr.20141113110.1186/1550‑2783‑11‑3124982601
    [Google Scholar]
  81. BelcaroG. LeddaA. HuS. CesaroneM.R. FeragalliB. DugallM. Greenselect phytosome for borderline metabolic syndrome.Evid. Based Complement. Alternat. Med.20132013186906124348726
    [Google Scholar]
  82. GilardiniL. PasqualinottoL. Di PierroF. RissoP. InvittiC. Effects of Greenselect Phytosome® on weight maintenance after weight loss in obese women: A randomized placebo-controlled study.BMC Complement. Altern. Med.201616123310.1186/s12906‑016‑1214‑x27450231
    [Google Scholar]
  83. AlexanderA. Ajazuddin PatelR.J. SarafS. SarafS. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.J. Control. Release201624111012410.1016/j.jconrel.2016.09.01727663228
    [Google Scholar]
  84. KieferD. PantusoT. Panax ginseng.Am. Fam. Physician20036881539154214596440
    [Google Scholar]
  85. VignaG.B. CostantiniF. AldiniG. CariniM. CatapanoA. SchenaF. TangeriniA. ZancaR. BombardelliE. MorazzoniP. MezzettiA. FellinR. Maffei FacinoR. Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers.Metabolism200352101250125710.1016/S0026‑0495(03)00192‑614564675
    [Google Scholar]
  86. CesaroneM.R. BelcaroG. HuS. DugallM. HosoiM. LeddaA. FeragalliB. MaioneC. CotelleseR. Supplementary prevention and management of asthma with quercetin phytosome: A pilot registry.Minerva Med.2019110652452931578841
    [Google Scholar]
  87. YuZ. LiuX. ChenH. ZhuL. Naringenin-loaded dipalmitoylphosphatidylcholine phytosome dry powders for inhaled treatment of acute lung injury.J. Aerosol Med. Pulm. Drug Deliv.202033419420410.1089/jamp.2019.156932176552
    [Google Scholar]
  88. SindhumolP. ThomasM. MohanachandranP. Phytosomes: a novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals.Int. J. Pharm. Pharm. Sci.2010241014
    [Google Scholar]
  89. RivaA. LongoV. BerlandaD. AllegriniP. MasettiG. BottiS. Healthy protection of bergamot is linked to the modulation of microbiota.202010.21203/rs.3.rs‑25708/v1
    [Google Scholar]
  90. PetrangoliniG. RonchiM. FrattiniE. De CombarieuE. AllegriniP. RivaA. A new food-grade coenzyme Q10 formulation improves bioavailability: Single and repeated pharmacokinetic studies in healthy volunteers.Curr. Drug Deliv.201916875976710.2174/156720181666619090212314731475897
    [Google Scholar]
  91. MollaceV. ScicchitanoM. PaoneS. CasaleF CalandruccioC. GliozziM. Hypoglycemic and hypolipemic effects of a new lecithin formulation of bergamot polyphenolic fraction: A double blind, randomized, placebo- controlled study.Endocr Metab Immune Disord Drug Targets201819210.2174/1871530319666181203151513
    [Google Scholar]
  92. FarooqueF. WasiM. MugheesM.M. Liposomes as drug delivery system: An Updated Review.J. Drug Deliv. Ther.2021115-S14915810.22270/jddt.v11i5‑S.5063
    [Google Scholar]
  93. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics1102005530700021
    [Google Scholar]
  94. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.132570830410704
    [Google Scholar]
  95. DasS.K. ChakrabortyS. RoyC. RajabalayaR. MohaiminA.W. KhanamJ. NandaA. DavidS.R. Ethosomes as novel vesicular carrier: An overview of the principle, preparation and its applications.Curr. Drug Deliv.201815679581710.2174/156720181566618011609160429336262
    [Google Scholar]
  96. SaleemiM.A. LimV. Phytosomes used for herbal drug delivery.Pharmaceutical Nanobiotechnology for Targeted TherapySpringer202225527910.1007/978‑3‑031‑12658‑1_9
    [Google Scholar]
  97. ChivteP.S. PardhiV.S. JoshiV.A. RaniA. A review on therapeutic applications of phytosomes.J. Drug Deliv. Ther.201775172110.22270/jddt.v7i5.1513
    [Google Scholar]
  98. KhanA. JahanS. AlshahraniS. AlshehriB.M. SameerA.S. ArafahA. Phytotherapeutic agents for neurodegenerative disorders: A neuropharmacological review.Phytomedicine.Elsevier202158162010.1016/B978‑0‑12‑824109‑7.00012‑1.
    [Google Scholar]
  99. GuptaR.C. DossR.B. BanerjeeA. LallR. SrivastavaA. SinhaA. Nutraceuticals in gastrointestinal disorders.Nutraceuticals.Elsevier202114115510.1016/B978‑0‑12‑821038‑3.00010‑0.
    [Google Scholar]
  100. Di CostanzoA. AngelicoR. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art.Molecules20192411215510.3390/molecules2411215531181687
    [Google Scholar]
  101. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics1309147534575551
    [Google Scholar]
  102. JampilekJ. KralovaK. Potential of nanonutraceuticals in increasing immunity.Nanomaterials (Basel)20201011222410.3390/nano1011222433182343
    [Google Scholar]
  103. AhmedI.A. MikailM.A. ZamakshshariN.H. MustafaM.R. HashimN.M. OthmanR. Trends and challenges in phytotherapy and phytocosmetics for skin aging.Saudi J. Biol. Sci.202229810336310.1016/j.sjbs.2022.10336335813113
    [Google Scholar]
  104. TejaP.K. MithiyaJ. KateA.S. BairwaK. ChautheS.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview.Phytomedicine20229615389010.1016/j.phymed.2021.15389035026510
    [Google Scholar]
  105. JadhavN.R. NadafS.J. LoharD.A. GhagareP.S. PowarT.A. Phytochemicals formulated as nanoparticles: Inventions, recent patents and future prospects.Recent Pat. Drug Deliv. Formul.201811317318610.2174/187221131166617112010253129165100
    [Google Scholar]
  106. GioriA. FranceschiF. Phospholipid complexes of curcumin having improved bioavailability.US20090131373A12020
  107. FranceschiF. GioriA. Phospholipid complexes of olive fruits or leaves extracts having improved bioavailability.EP1844785A12007
  108. Di PierroF. Compositions comprising Ginko BiloBa derivatives for the treatment of asthmatic and allergic conditions.EP1813280A12007
  109. GuhaN. PaulA. IslamJ. DasM.K. ZamanM.K. Phytosomes in functional cosmetics.Nanocosmeceuticals.Academic Press202223727510.1016/B978‑0‑323‑91077‑4.00001‑6.
    [Google Scholar]
  110. EshacY. RedfernR.L. AakaluV.K. The role of endogenous antimicrobial peptides in modulating innate immunity of the ocular surface in dry eye diseases.Int. J. Mol. Sci.202122272110.3390/ijms2202072133450870
    [Google Scholar]
  111. BertelliV. Fatty acid monoesters of sorbityl furfural and compositions for cosmetic and dermatological use.EP16908622006
  112. DoeringT. TraegerA. Waldmann-LaueM. Cosmetic and dermatological composition for the treatment of aging or photodamaged skin.EP16400412006
  113. JankowiakL. TrifunovicO. BoomR.M. van der GootA.J. The potential of crude okara for isoflavone production.J. Food Eng.201412416617210.1016/j.jfoodeng.2013.10.011
    [Google Scholar]
  114. MerizziG. Anti-oxidant preparation based on plant extracts for the treatment of circulation and adiposity problems.US6756065B12004
  115. MorazzoniP. BombardelliE. Phospholipid complexes prepared from extracts of Vitis vinifera as anti-atherosclerotic agents.US6297218B12001
  116. BombardelliE. MustichG. Bilobalide derivatives, their applications and formulations containing them.US5202313A1991
  117. BombardelliE. PatriG. PozziR. Complexes of neolignane derivatives with phospholipids, the use thereof and pharmaceutical and cosmetic formulations containing them.EP0464297A11992
  118. BombardelliE. PatriG.F. PozziR. Complexes of saponins with phospholipids and pharmaceutical and cosmetic compositions containing them.EP0283713A21988
  119. GabettaB. BombardelliE. PifferiG. Complexes of flavanolignans with phospholipids, preparation thereof and associated pharmaceutical compositions.US4764508A1988
  120. BombardelliE. PatriG.F. Complex compounds of bioflavonoids with phospholipids, their preparation and use, and pharmaceutical and cosmetic compositions containing them.US5043323A1991
  121. AmbwaniS. TandonR. AmbwaniT.K. MalikY.S. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs.J. Exp. Biol. Agric. Sci.2018618710710.18006/2018.6(1).87.107
    [Google Scholar]
  122. RuchiS. Role of nutraceuticals in health care: A review.Int. J. Green Pharm.20171103
    [Google Scholar]
  123. SinghH. Recent development of novel drug delivery of herbal drugs.RPS Pharmacy and Pharmacology Reports202310.1093/rpsppr/rqad028
    [Google Scholar]
  124. SusilawatiY. ChaerunisaA. PurwaningsihH. Phytosome drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent.J. Adv. Pharm. Technol. Res.202112432733410.4103/japtr.JAPTR_100_2034820305
    [Google Scholar]
  125. SinghD. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents.Asian J. Pharm.201594[AJP].
    [Google Scholar]
  126. DhawanS. HoodaP. NandaS. Herbal Nano formulations: Patent and regulatory overview.Appl. Clin. Res. Clin. Trials Regul. Aff.20185315918010.2174/2213476X0501180528085407
    [Google Scholar]
  127. NaikG.G. SahuA.N. KaushikV. KaushikA. SarkarB.K. Phytopharmaceuticals and herbal drugs: Prospects and safety issues in the delivery of natural products.Elsevier202321524810.1016/B978‑0‑323‑99125‑4.00006‑8
    [Google Scholar]
  128. ElkordyA.A. Haj-AhmadR.R. AwaadA.S. ZakiR.M. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future.J. Drug Deliv. Sci. Technol.20216310245910.1016/j.jddst.2021.102459
    [Google Scholar]
  129. SantosA.C. RodriguesD. SequeiraJ.A.D. PereiraI. SimõesA. CostaD. PeixotoD. CostaG. VeigaF. Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations.Int. J. Pharm.201957211878710.1016/j.ijpharm.2019.11878731678376
    [Google Scholar]
  130. DangreP.V. MahapatraD.K. Nutraceutical Delivery Systems: Promising Strategies for Overcoming Delivery Challenges.Apple Academic Press202210.1201/9781003189671
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501310832240815071618
Loading
/content/journals/cdt/10.2174/0113894501310832240815071618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test