Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

is a globally disseminated Gram-negative bacterium that causes several types of serious nosocomial infections, the most worrisome being ventilator-associated pneumonia and bacteremia related to using venous catheters. Due to its great ability to form biofilms, combined with its survival for prolonged periods on abiotic surfaces and its potential to acquire and control the genes that determine antibiotic resistance, is at the top of the World Health Organization’s priority list of pathogens in urgent need of new therapies. In this sense, this review aimed to present and discuss new molecular targets present in with potential for promising treatment approaches. This review highlights crucial molecular targets, including cell division proteins, membrane synthesis enzymes, and biofilm-associated components, offering promising targets for novel antimicrobial drug development against infections.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501319269240819060245
2024-09-02
2024-11-22
Loading full text...

Full text loading...

References

  1. AntunesL.C.S. ViscaP. TownerK.J. Acinetobacter baumannii : Evolution of a global pathogen.Pathog. Dis.201471329230110.1111/2049‑632X.1212524376225
    [Google Scholar]
  2. MojicaM.F. RossiM.A. VilaA.J. BonomoR.A. The urgent need for metallo-β-lactamase inhibitors: An unattended global threat.Lancet Infect. Dis.2022221e28e3410.1016/S1473‑3099(20)30868‑934246322
    [Google Scholar]
  3. KokC.R. BramZ. ThissenJ.B. HorsemanT.S. FongK.S.K. Reichert-ScrivnerS.A. PaguiriganC. O’ConnorK. ThompsonK. ScheiberA.E. MaberyS. NgauyV. UyeharaC.F. BeN.A. The military gear microbiome: Risk factors surrounding the warfighter.Appl. Environ. Microbiol.2024901e01176-2310.1128/aem.01176‑2338170999
    [Google Scholar]
  4. RadóJ. KaszabE. BenedekT. KrisztB. SzoboszlayS. First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample.Acta Microbiol. Immunol. Hung.201966111313010.1556/030.66.2019.00430816807
    [Google Scholar]
  5. Goic-BarisicI. HrenovicJ. KovacicA. MusićM.Š. Emergence of oxacillinases in environmental carbapenem-resistant Acinetobacter baumannii associated with clinical isolates.Microb. Drug Resist.201622755956310.1089/mdr.2015.027527705609
    [Google Scholar]
  6. DekicS. HrenovicJ. IvankovicT. van WilpeE. Survival of ESKAPE pathogen Acinetobacter baumannii in water of different temperatures and pH.Water Sci. Technol.20187861370137610.2166/wst.2018.40930388093
    [Google Scholar]
  7. IbrahimS. Al-SaryiN. Al-KadmyI.M.S. AzizS.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals.Mol. Biol. Rep.202148106987699810.1007/s11033‑021‑06690‑634460060
    [Google Scholar]
  8. ČiginskienėA. DambrauskienėA. RelloJ. AdukauskienėD. Ventilator-associated pneumonia due to drug-resistant Acinetobacter baumannii: Risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality.Medicina (Kaunas)20195524910.3390/medicina5502004930781896
    [Google Scholar]
  9. DantasL.F. DalmasB. AndradeR.M. HamacherS. BozzaF.A. Predicting acquisition of carbapenem-resistant Gram-negative pathogens in intensive care units.J. Hosp. Infect.2019103212112710.1016/j.jhin.2019.04.01331039381
    [Google Scholar]
  10. MunierA.L. BiardL. LegrandM. RousseauC. LafaurieM. DonayJ.L. FlicoteauxR. MebazaaA. MimounM. MolinaJ.M. Incidence, risk factors and outcome of multi-drug resistant Acinetobacter baumannii nosocomial infections during an outbreak in a burn unit.Int. J. Infect. Dis.20197917918410.1016/j.ijid.2018.11.37130529108
    [Google Scholar]
  11. NowakP. PaluchowskaP. Acinetobacter baumannii: Biology and drug resistance - role of carbapenemases.Folia Histochem. Cytobiol.2016542617427270503
    [Google Scholar]
  12. VahhabiA. HasaniA. RezaeeM.A. BaradaranB. HasaniA. Samadi KafilH. AbbaszadehF. DehghaniL. A plethora of carbapenem resistance in Acinetobacter baumannii : No end to a long insidious genetic journey.J. Chemother.202133313715510.1080/1120009X.2020.184742133243098
    [Google Scholar]
  13. MeletisG. Carbapenem resistance: Overview of the problem and future perspectives.Ther. Adv. Infect. Dis.201631152110.1177/204993611562170926862399
    [Google Scholar]
  14. KimU.J. KimH.K. AnJ.H. ChoS.K. ParkK.H. JangH.C. Update on the epidemiology, treatment, and outcomes of carbapenem-resistant Acinetobacter infections.Chonnam Med. J.2014502374410.4068/cmj.2014.50.2.3725229014
    [Google Scholar]
  15. SulisG. SayoodS. GandraS. Antimicrobial resistance in low- and middle-income countries: Current status and future directions.Expert Rev. Anti Infect. Ther.202220214716010.1080/14787210.2021.195170534225545
    [Google Scholar]
  16. AyobamiO. BrinkwirthS. EckmannsT. MarkwartR. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis.Emerg. Microbes Infect.202211144345110.1080/22221751.2022.203019635034585
    [Google Scholar]
  17. VidermanD. BrotfainE. KhamzinaY. KapanovaG. ZhumadilovA. PoddigheD. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan.J. Glob. Antimicrob. Resist.201917353810.1016/j.jgar.2018.11.01030448518
    [Google Scholar]
  18. TranG.M. Ho-LeT.P. HaD.T. Tran-NguyenC.H. NguyenT.S.M. PhamT.T.N. NguyenT.A. NguyenD.A. HoangH.Q. TranN.V. NguyenT.V. Patterns of antimicrobial resistance in intensive care unit patients: A study in Vietnam.BMC Infect. Dis.201717142910.1186/s12879‑017‑2529‑z28619105
    [Google Scholar]
  19. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  20. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.201951728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  21. SimoensS. HuysI. R&D costs of new medicines: A landscape analysis.Front. Med. (Lausanne)2021876076210.3389/fmed.2021.760762
    [Google Scholar]
  22. Food and Drug AdministrationAccelerated Approval Program.2023Available From: https://www.fda.gov/drugs/nda-and-bla-approvals/accelerated-approval-program
  23. IslerB. DoiY. BonomoR.A. PatersonD.L. New treatment options against carbapenem-resistant Acinetobacter baumannii infections.Antimicrob. Agents Chemother.2018631e01110e0111830323035
    [Google Scholar]
  24. MengX. FuJ. ZhengY. QinW. YangH. CaoD. LuH. ZhangL. DuZ. PangJ. LiW. GuoH. DuJ. LiC. WuD. WangH. Ten-year changes in bloodstream infection with Acinetobacter baumannii complex in intensive care units in eastern China: A retrospective cohort study.Front. Med. (Lausanne)2021871521310.3389/fmed.2021.71521334422870
    [Google Scholar]
  25. IovlevaA. MustaphaM.M. GriffithM.P. KomarowL. LuterbachC. EvansD.R. CoberE. RichterS.S. RydellK. AriasC.A. JacobJ.T. SalataR.A. SatlinM.J. WongD. BonomoR.A. van DuinD. CooperV.S. Van TyneD. DoiY. Carbapenem-resistant Acinetobacter baumannii in U.S. hospitals: Diversification of circulating lineages and antimicrobial resistance.MBio2022132e02759-2110.1128/mbio.02759‑2135311529
    [Google Scholar]
  26. TammaP.D. AitkenS.L. BonomoR.A. MathersA.J. van DuinD. ClancyC.J. Infectious Diseases Society of America.2022Available From: https://www.idsociety.org/practice-guideline/amr-guidance-2.0/
  27. TsujiB.T. PogueJ.M. ZavasckiA.P. PaulM. DaikosG.L. ForrestA. GiacobbeD.R. ViscoliC. GiamarellouH. KaraiskosI. KayeD. MoutonJ.W. TamV.H. ThamlikitkulV. WunderinkR.G. LiJ. NationR.L. KayeK.S. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP).Pharmacotherapy2019391103910.1002/phar.220930710469
    [Google Scholar]
  28. PaulM. CarraraE. RetamarP. TängdénT. BittermanR. BonomoR.A. de WaeleJ. DaikosG.L. AkovaM. HarbarthS. PulciniC. Garnacho-MonteroJ. SemeK. TumbarelloM. LindemannP.C. GandraS. YuY. BassettiM. MoutonJ.W. TacconelliE. Rodríguez-BañoJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine).Clin. Microbiol. Infect.202228452154710.1016/j.cmi.2021.11.02534923128
    [Google Scholar]
  29. KarampatakisT. TsergouliK. RoilidesE. Infection control measures against multidrug-resistant Gram-negative bacteria in children and neonates.Future Microbiol.2023181175176510.2217/fmb‑2023‑007237584552
    [Google Scholar]
  30. FuP. XuH. JingC. DengJ. WangH. HuaC. ChenY. ChenX. ZhangT. ZhangH. ChenY. YangJ. LinA. WangS. CaoQ. WangX. DengH. CaoS. HaoJ. GaoW. HuangY. YuH. WangC. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020.Microbiol. Spectr.202193e00283-2110.1128/Spectrum.00283‑2134730410
    [Google Scholar]
  31. ZhangY. XuG. MiaoF. HuangW. WangH. WangX. Insights into the epidemiology, risk factors, and clinical outcomes of carbapenem-resistant Acinetobacter baumannii infections in critically ill children.Front. Public Health202311128241310.3389/fpubh.2023.128241338098829
    [Google Scholar]
  32. BradleyJ.S. NelsonJ.D. Nelson’s Pediatric Antimicrobial Therapy - 2023.29th edItascaAmerican Academy of Pediatrics Publishing Staff2023
    [Google Scholar]
  33. SyC.L. ChenP.Y. ChengC.W. HuangL.J. WangC.H. ChangT.H. ChangY.C. ChangC.J. HiiI.M. HsuY.L. HuY.L. HungP.L. KuoC.Y. LinP.C. LiuP.Y. LoC.L. LoS.H. TingP.J. TsengC.F. WangH.W. YangC.H. LeeS.S.J. ChenY.S. LiuY.C. WangF.D. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms.J. Microbiol. Immunol. Infect.202255335938610.1016/j.jmii.2022.02.00135370082
    [Google Scholar]
  34. EichenbergerE.M. ThadenJ.T. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria.Antibiotics (Basel)2019823710.3390/antibiotics802003730959901
    [Google Scholar]
  35. KyriakidisI. VasileiouE. PanaZ.D. TragiannidisA. Acinetobacter baumannii antibiotic resistance mechanisms.Pathogens202110337310.3390/pathogens1003037333808905
    [Google Scholar]
  36. AsifM. AlviI.A. RehmanS.U. Ur RehmanS. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities.Infect. Drug Resist.2018111249126010.2147/IDR.S16675030174448
    [Google Scholar]
  37. CastanheiraM. MendesR.E. GalesA.C. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex.Clin. Infect. Dis.2023762Suppl. 2S166S17810.1093/cid/ciad10937125466
    [Google Scholar]
  38. MunitaJM AriasCA Mechanisms of antibiotic resistance.Virulence Mechanisms of Bacterial Pathogens5th ed.Hoboken, New JerseyWiley201610.1128/9781555819286.ch17
    [Google Scholar]
  39. NoelH.R. PetreyJ.R. PalmerL.D. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination.Ann. N. Y. Acad. Sci.20221518116618210.1111/nyas.1491836316792
    [Google Scholar]
  40. WORLD HEALTH ORGANIZATIONGlobal Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021.2021Available From: https://www.who.int/publications/i/item/9789240027336 2020
  41. TacconelliE. CarraraE. SavoldiA. HarbarthS. MendelsonM. MonnetD.L. PulciniC. KahlmeterG. KluytmansJ. CarmeliY. OuelletteM. OuttersonK. PatelJ. CavaleriM. CoxE.M. HouchensC.R. GraysonM.L. HansenP. SinghN. TheuretzbacherU. MagriniN. AboderinA.O. Al-AbriS.S. Awang JalilN. BenzonanaN. BhattacharyaS. BrinkA.J. BurkertF.R. CarsO. CornagliaG. DyarO.J. FriedrichA.W. GalesA.C. GandraS. GiskeC.G. GoffD.A. GoossensH. GottliebT. Guzman BlancoM. HryniewiczW. KattulaD. JinksT. KanjS.S. KerrL. KienyM-P. KimY.S. KozlovR.S. LabarcaJ. LaxminarayanR. LederK. LeiboviciL. Levy-HaraG. LittmanJ. Malhotra-KumarS. ManchandaV. MojaL. NdoyeB. PanA. PatersonD.L. PaulM. QiuH. Ramon-PardoP. Rodríguez-BañoJ. SanguinettiM. SenguptaS. SharlandM. Si-MehandM. SilverL.L. SongW. SteinbakkM. ThomsenJ. ThwaitesG.E. van der MeerJ.W.M. Van KinhN. VegaS. VillegasM.V. Wechsler-FördösA. WertheimH.F.L. WesangulaE. WoodfordN. YilmazF.O. ZorzetA. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis.Lancet Infect. Dis.201818331832710.1016/S1473‑3099(17)30753‑329276051
    [Google Scholar]
  42. ScoffoneV.C. IrudalS. AbuAlshaarA. PiazzaA. TrespidiG. BarbieriG. MakarovV. MigliavaccaR. De RossiE. BuroniS. Bactericidal and anti-biofilm activity of the FtsZ inhibitor C109 against Acinetobacter baumannii. Antibiotics (Basel)20221111157110.3390/antibiotics1111157136358226
    [Google Scholar]
  43. ChaiW.C. WhittallJ.J. PolyakS.W. FooK. LiX. DutschkeC.J. OgunniyiA.D. MaS. SykesM.J. SempleS.J. VenterH. Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division.Front. Microbiol.20221396794910.3389/fmicb.2022.96794936106080
    [Google Scholar]
  44. ImaiY. MeyerK.J. IinishiA. Favre-GodalQ. GreenR. ManuseS. CaboniM. MoriM. NilesS. GhiglieriM. HonraoC. MaX. GuoJ.J. MakriyannisA. Linares-OtoyaL. BöhringerN. WuisanZ.G. KaurH. WuR. MateusA. TypasA. SavitskiM.M. EspinozaJ.L. O’RourkeA. NelsonK.E. HillerS. NoinajN. SchäberleT.F. D’OnofrioA. LewisK. A new antibiotic selectively kills Gram-negative pathogens.Nature2019576778745946410.1038/s41586‑019‑1791‑131747680
    [Google Scholar]
  45. RahmanL. MukhtarA. AhmadS. RahmanL. AliM. SaeedM. ShinwariZ.K. Endophytic bacteria of Fagonia indica Burm. f revealed to harbour rich secondary antibacterial metabolites.PLoS One20221712e027782510.1371/journal.pone.027782536520861
    [Google Scholar]
  46. BryanE.J. SagongH.Y. ParhiA.K. GrierM.C. RobergeJ.Y. LaVoieE.J. PilchD.S. TXH11106: A third-generation MreB inhibitor with enhanced activity against a broad range of Gram-negative bacterial pathogens.Antibiotics (Basel)202211569310.3390/antibiotics1105069335625337
    [Google Scholar]
  47. ParkerE.N. CainB.N. HajianB. UlrichR.J. GeddesE.J. BarkhoS. LeeH.Y. WilliamsJ.D. RaynorM. CaridhaD. ZainoA. ShekharM. MuñozK.A. RzasaK.M. TempleE.R. HuntD. JinX. VuongC. PannoneK. KellyA.M. MulliganM.P. LeeK.K. LauG.W. HungD.T. HergenrotherP.J. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant Gram-negative infections.ACS Cent. Sci.2022881145115810.1021/acscentsci.2c0059836032774
    [Google Scholar]
  48. TuoY. TangY. YangR. ZhaoX. LuoM. ZhouX. WangY. Virtual screening and biological activity evaluation of novel efflux pump inhibitors targeting AdeB.Int. J. Biol. Macromol.202325012610910.1016/j.ijbiomac.2023.12610937544561
    [Google Scholar]
  49. VermaP. TiwariM. TiwariV. Potentiate the activity of current antibiotics by naringin dihydrochalcone targeting the AdeABC efflux pump of multidrug-resistant Acinetobacter baumannii. Int. J. Biol. Macromol.202221759260510.1016/j.ijbiomac.2022.07.06535841965
    [Google Scholar]
  50. LiuG. CatacutanD.B. RathodK. SwansonK. JinW. MohammedJ.C. Chiappino-PepeA. SyedS.A. FragisM. RachwalskiK. MagolanJ. SuretteM.G. CoombesB.K. JaakkolaT. BarzilayR. CollinsJ.J. StokesJ.M. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol.202319111342135010.1038/s41589‑023‑01349‑837231267
    [Google Scholar]
  51. ZampaloniC. MatteiP. BleicherK. WintherL. ThäteC. BucherC. AdamJ.M. AlanineA. AmreinK.E. BaidinV. BieniossekC. BissantzC. BoessF. CantrillC. ClairfeuilleT. DeyF. Di GiorgioP. du CastelP. DylusD. DzygielP. FeliciA. García-AlcaldeF. HaldimannA. LeipnerM. LeynS. LouvelS. MissonP. OstermanA. PahilK. RigoS. SchäublinA. ScharfS. SchmitzP. StollT. TraunerA. ZoffmannS. KahneD. YoungJ.A.T. LobritzM.A. BradleyK.A. A novel antibiotic class targeting the lipopolysaccharide transporter.Nature2024625799556657110.1038/s41586‑023‑06873‑038172634
    [Google Scholar]
  52. PahilK.S. GilmanM.S.A. BaidinV. ClairfeuilleT. MatteiP. BieniossekC. DeyF. MuriD. BaettigR. LobritzM. BradleyK. KruseA.C. KahneD. A new antibiotic traps lipopolysaccharide in its intermembrane transporter.Nature2024625799557257710.1038/s41586‑023‑06799‑738172635
    [Google Scholar]
  53. RussoT.A. UmlandT.C. DengX. El MazouniF. KokkondaS. OlsonR. Carlino-MacDonaldU. BeananJ. AlvaradoC.L. TomchickD.R. HutsonA. ChenH. PosnerB. RathodP.K. CharmanS.A. PhillipsM.A. Repurposed dihydroorotate dehydrogenase inhibitors with efficacy against drug-resistant Acinetobacter baumannii.Proc. Natl. Acad. Sci. USA202211951e221311611910.1073/pnas.221311611936512492
    [Google Scholar]
  54. AnchanaS.R. GirijaS.A.S. GunasekaranS. PriyadharsiniV.J. Detection of csgA gene in carbapenem-resistant Acinetobacter baumannii strains and targeting with Ocimum sanctum biocompounds.Iran. J. Basic Med. Sci.202124569069834249272
    [Google Scholar]
  55. SeleemN.M. AtallahH. Abd El LatifH.K. ShaldamM.A. El- GaninyA.M. Could the analgesic drugs, paracetamol and indomethacin, function as quorum sensing inhibitors?Microb. Pathog.202115810509710.1016/j.micpath.2021.10509734284088
    [Google Scholar]
  56. UšjakD. DinićM. NovovićK. IvkovićB. FilipovićN. StevanovićM. MilenkovićM.T. Methoxy-substituted hydroxychalcone reduces biofilm production, adhesion and surface motility of Acinetobacter baumannii by inhibiting ompA gene expression.Chem. Biodivers.2021181e200078610.1002/cbdv.20200078633188577
    [Google Scholar]
  57. UšjakD. NovovićK. IvkovićB. TomićB. ĐorđevićV. MilenkovićM.T. Targeting outer membrane protein A (OmpA) – inhibitory effect of 2′-hydroxychalcone derivatives on Acinetobacter baumannii and Candida albicans dual-species biofilm formation.Biofouling202339331632610.1080/08927014.2023.221569337246932
    [Google Scholar]
  58. AbdelazizN.A. ElkhatibW.F. SherifM.M. AbourehabM.A.S. Al-RashoodS.T. EldehnaW.M. MostafaN.M. ElleboudyN.S. in silico docking, resistance modulation and biofilm gene expression in multidrug-resistant Acinetobacter baumannii via cinnamic and gallic acids.Antibiotics (Basel)202211787010.3390/antibiotics1107087035884124
    [Google Scholar]
  59. PourhajibagherM. BazarjaniF. BahadorA. in silico and in vitro insights into the prediction and analysis of natural photosensitive compounds targeting Acinetobacter baumannii biofilm-associated protein.Photodiagn. Photodyn. Ther.20224010313410.1016/j.pdpdt.2022.10313436240659
    [Google Scholar]
  60. van CharanteF. Martínez-PérezD. Guarch-PérezC. CourtensC. SassA. ChoińskaE. IdaszekJ. Van CalenberghS. RioolM. ZaatS.A.J. ŚwięszkowskiW. CoenyeT. 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation.iScience202326910755710.1016/j.isci.2023.10755737680458
    [Google Scholar]
  61. BallH.S. GirmaM.B. ZainabM. SoojhawonI. CouchR.D. NobleS.M. Characterization and inhibition of 1-deoxy-d-xylulose 5-phosphate reductoisomerase: A promising drug target in Acinetobacter baumannii and Klebsiella pneumoniae. ACS Infect. Dis.20217112987299810.1021/acsinfecdis.1c0013234672535
    [Google Scholar]
  62. BadieO.H. BasyonyA.F. SamirR. Computer-based identification of potential druggable targets in multidrug-resistant Acinetobacter baumannii: A combined in silico, in vitro and in vivo study.Microorganisms20221010197310.3390/microorganisms1010197336296249
    [Google Scholar]
  63. MartinJ.K.II SheehanJ.P. BrattonB.P. MooreG.M. MateusA. LiS.H.J. KimH. RabinowitzJ.D. TypasA. SavitskiM.M. WilsonM.Z. GitaiZ. A Dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance.Cell2020181715181532.e1410.1016/j.cell.2020.05.00532497502
    [Google Scholar]
  64. SkariyachanS. MuddebihalkarA.G. BadrinathV. UmashankarB. EramD. UttarkarA. NiranjanV. Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations.Infect. Genet. Evol.20208210431410.1016/j.meegid.2020.10431432268193
    [Google Scholar]
  65. HübnerI. ShapiroJ.A. HoßmannJ. DrechselJ. HackerS.M. RatherP.N. PieperD.H. WuestW.M. SieberS.A. Broad spectrum antibiotic xanthocillin x effectively kills Acinetobacter baumannii via dysregulation of heme biosynthesis.ACS Cent. Sci.20217348849810.1021/acscentsci.0c0162133791430
    [Google Scholar]
  66. CasiraghiA. SuigoL. ValotiE. StranieroV. Targeting bacterial cell division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ.Antibiotics (Basel)2020926910.3390/antibiotics902006932046082
    [Google Scholar]
  67. Bisson-FilhoA.W. HsuY.P. SquyresG.R. KuruE. WuF. JukesC. SunY. DekkerC. HoldenS. VanNieuwenhzeM.S. BrunY.V. GarnerE.C. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.Science2017355632673974310.1126/science.aak997328209898
    [Google Scholar]
  68. LiX. ShengJ. HuangG. MaR. YinF. SongD. ZhaoC. MaS. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ.Eur. J. Med. Chem.201597324110.1016/j.ejmech.2015.04.04825938986
    [Google Scholar]
  69. HoganA.M. ScoffoneV.C. MakarovV. GislasonA.S. TesfuH. StietzM.S. BrassingaA.K.C. DomaratzkiM. LiX. AzzalinA. BiggiogeraM. RiabovaO. MonakhovaN. ChiarelliL.R. RiccardiG. BuroniS. CardonaS.T. Competitive fitness of essential gene knockdowns reveals a broad-spectrum antibacterial inhibitor of the cell division protein FtsZ.Antimicrob. Agents Chemother.20186212e01231-1810.1128/AAC.01231‑1830297366
    [Google Scholar]
  70. KonovalovaA. KahneD.E. SilhavyT.J. Outer membrane biogenesis.Annu. Rev. Microbiol.201771153955610.1146/annurev‑micro‑090816‑09375428886680
    [Google Scholar]
  71. KahanF.M. KahanJ.S. CassidyP.J. KroppH. The mechanism of action of fosfomycin (phosphonomycin).Ann. N. Y. Acad. Sci.1974235136438610.1111/j.1749‑6632.1974.tb43277.x4605290
    [Google Scholar]
  72. HeijenoortJ. Recent advances in the formation of the bacterial peptidoglycan monomer unit (1985 to 2000).Nat. Prod. Rep.200118550351910.1039/a804532a11699883
    [Google Scholar]
  73. van den EntF. AmosL.A. LöweJ. Prokaryotic origin of the actin cytoskeleton.Nature20014136851394410.1038/3509250011544518
    [Google Scholar]
  74. van der PloegR. VerheulJ. VischerN.O.E. AlexeevaS. HoogendoornE. PostmaM. BanzhafM. VollmerW. den BlaauwenT. Colocalization and interaction between elongasome and divisome during a preparative cell division phase in E scherichia coli.Mol. Microbiol.20138751074108710.1111/mmi.1215023387922
    [Google Scholar]
  75. WittkeF. VincentC. ChenJ. HellerB. KablerH. OvercashJ.S. LeylavergneF. DieppoisG. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: Clinical noninferiority to vancomycin/linezolid.Antimicrob. Agents Chemother.20206410e00250-2010.1128/AAC.00250‑2032747361
    [Google Scholar]
  76. TemgouaF.T.D. WuL. Mechanisms efflux pumps of Acinetobacter baumannii (MDR): Increasing resistance to antibiotics.J. Biosci. Med.2019714870
    [Google Scholar]
  77. VermaP. TiwariM. TiwariV. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors.Microb. Pathog.202115210476610.1016/j.micpath.2021.10476633545327
    [Google Scholar]
  78. TangX. ChangS. ZhangK. LuoQ. ZhangZ. WangT. QiaoW. WangC. ShenC. ZhangZ. ZhuX. WeiX. DongC. ZhangX. DongH. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE.Nat. Struct. Mol. Biol.202128434735510.1038/s41594‑021‑00573‑x33782615
    [Google Scholar]
  79. BoschiD. PippioneA.C. SainasS. LolliM.L. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research.Eur. J. Med. Chem.201918311168110.1016/j.ejmech.2019.11168131557612
    [Google Scholar]
  80. ReisR.A.G. CalilF.A. FelicianoP.R. PinheiroM.P. NonatoM.C. The dihydroorotate dehydrogenases: Past and present.Arch. Biochem. Biophys.201763217519110.1016/j.abb.2017.06.01928666740
    [Google Scholar]
  81. OkesliA. KhoslaC. BassikM.C. Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy.Curr. Opin. Biotechnol.20174812713410.1016/j.copbio.2017.03.01028458037
    [Google Scholar]
  82. BhargavaN. SharmaP. CapalashN. Quorum sensing in Acinetobacter : An emerging pathogen.Crit. Rev. Microbiol.201036434936010.3109/1040841X.2010.51226920846031
    [Google Scholar]
  83. YangC.H. SuP.W. MoiS.H. ChuangL.Y. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation.Molecules20192410184910.3390/molecules2410184931091746
    [Google Scholar]
  84. ShenkutieA.M. YaoM.Z. SiuG.K. WongB.K.C. LeungP.H. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates.Antibiotics (Basel)202091181710.3390/antibiotics911081733212840
    [Google Scholar]
  85. LazarV. HolbanA.M. CurutiuC. ChifiriucM.C. Modulation of quorum sensing and biofilms in less investigated Gram-negative ESKAPE pathogens.Front. Microbiol.20211267651010.3389/fmicb.2021.67651034394026
    [Google Scholar]
  86. SaipriyaK. SwathiC.H. RatnakarK.S. SritharanV. Quorum-sensing system in Acinetobacter baumannii : A potential target for new drug development.J. Appl. Microbiol.20201281152710.1111/jam.1433031102552
    [Google Scholar]
  87. RobinsonL.S. AshmanE.M. HultgrenS.J. ChapmanM.R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein.Mol. Microbiol.200659387088110.1111/j.1365‑2958.2005.04997.x16420357
    [Google Scholar]
  88. GaddyJ.A. TomarasA.P. ActisL.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells.Infect. Immun.20097783150316010.1128/IAI.00096‑0919470746
    [Google Scholar]
  89. ColquhounJ.M. RatherP.N. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis.Front. Cell. Infect. Microbiol.20201025310.3389/fcimb.2020.0025332547965
    [Google Scholar]
  90. SilvaL.N. ZimmerK.R. MacedoA.J. TrentinD.S. Plant natural products targeting bacterial virulence factors.Chem. Rev.2016116169162923610.1021/acs.chemrev.6b0018427437994
    [Google Scholar]
  91. RastegariA.A. YadavA.N. YadavN. Tataei SarshariN. Bioengineering of secondary metabolites.New and future developments in microbial biotechnology and bioengineering.AmsterdamElsevier2019556810.1016/B978‑0‑444‑63504‑4.00004‑9
    [Google Scholar]
  92. LangeB.M. RujanT. MartinW. CroteauR. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes.Proc. Natl. Acad. Sci. USA20009724131721317710.1073/pnas.24045479711078528
    [Google Scholar]
  93. RuangweerayutR. LooareesuwanS. HutchinsonD. ChauemungA. BanmairuroiV. Na-BangchangK. Assessment of the pharmacokinetics and dynamics of two combination regimens of fosmidomycin-clindamycin in patients with acute uncomplicated falciparum malaria.Malar. J.20087122510.1186/1475‑2875‑7‑22518973702
    [Google Scholar]
  94. GopalP. SarathyJ.P. YeeM. RagunathanP. ShinJ. BhushanS. ZhuJ. AkopianT. KandrorO. LimT.K. GengenbacherM. LinQ. RubinE.J. GrüberG. DickT. Pyrazinamide triggers degradation of its target aspartate decarboxylase.Nat. Commun.2020111166110.1038/s41467‑020‑15516‑132245967
    [Google Scholar]
  95. ChoiC.H. LeeE.Y. LeeY.C. ParkT.I. KimH.J. HyunS.H. KimS.A. LeeS.K. LeeJ.C. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells.Cell. Microbiol.2005781127113810.1111/j.1462‑5822.2005.00538.x16008580
    [Google Scholar]
  96. CoxM.M. Regulation of bacterial RecA protein function.Crit. Rev. Biochem. Mol. Biol.2007421416310.1080/1040923070126025817364684
    [Google Scholar]
  97. TurnboughC.L.Jr SwitzerR.L. Regulation of pyrimidine biosynthetic gene expression in bacteria: Repression without repressors.Microbiol. Mol. Biol. Rev.200872226630010.1128/MMBR.00001‑0818535147
    [Google Scholar]
  98. TsunakawaM. OhkusaN. KobaruS. NaritaY. MurataS. SawadaY. OkiT. BU-4704, a new member of the xanthocillin class.J. Antibiot. (Tokyo)199346468768810.7164/antibiotics.46.6878501014
    [Google Scholar]
  99. TakatsukiA. TamuraG. ArimaK. New antiviral antibiotics; xanthocillin X mono- and dimethylether, and methoxy-xanthocillin X dimethylether. II. Biological aspects of antiviral activity. (Studies on antiviral and antitumor antibiotics. VI).J. Antibiot. (Tokyo)1968211267668010.7164/antibiotics.21.6765752383
    [Google Scholar]
  100. MiyaokaH. ShimomuraM. KimuraH. YamadaY. KimH.S. YusukeW. Antimalarial activity of kalihinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp.Tetrahedron19985444134671347410.1016/S0040‑4020(98)00818‑7
    [Google Scholar]
  101. WrightA.D. WangH. GurrathM. KönigG.M. KocakG. NeumannG. LoriaP. FoleyM. TilleyL. Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges.J. Med. Chem.200144687388510.1021/jm001072411300869
    [Google Scholar]
  102. GrabowiczM. SilhavyT.J. Redefining the essential trafficking pathway for outer membrane lipoproteins.Proc. Natl. Acad. Sci. USA2017114184769477410.1073/pnas.170224811428416660
    [Google Scholar]
  103. SabnisA. EdwardsA.M. Lipopolysaccharide as an antibiotic target.Biochim. Biophys. Acta Mol. Cell Res.20231870711950710.1016/j.bbamcr.2023.11950737268022
    [Google Scholar]
  104. WuT. MalinverniJ. RuizN. KimS. SilhavyT.J. KahneD. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell2005121223524510.1016/j.cell.2005.02.01515851030
    [Google Scholar]
  105. Llanos-CuentasA. CasapiaM. ChuquiyauriR. HinojosaJ.C. KerrN. RosarioM. TooveyS. ArchR.H. PhillipsM.A. RozenbergF.D. BathJ. NgC.L. CowellA.N. WinzelerE.A. FidockD.A. BakerM. MöhrleJ.J. Hooft van HuijsduijnenR. GobeauN. AraeipourN. AndenmattenN. RückleT. DuparcS. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: A proof-of-concept, open-label, phase 2a study.Lancet Infect. Dis.201818887488310.1016/S1473‑3099(18)30309‑829909069
    [Google Scholar]
  106. OliverJ.D. SibleyG.E.M. BeckmannN. DobbK.S. SlaterM.J. McEnteeL. du PréS. LivermoreJ. BromleyM.J. WiederholdN.P. HopeW.W. KennedyA.J. LawD. BirchM. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase.Proc. Natl. Acad. Sci. USA201611345128091281410.1073/pnas.160830411327791100
    [Google Scholar]
  107. UmlandT.C. SchultzL.W. MacDonaldU. BeananJ.M. OlsonR. RussoT.A. in vivo -validated essential genes identified in Acinetobacter baumannii by using human ascites overlap poorly with essential genes detected on laboratory media.MBio201234e00113-1210.1128/mBio.00113‑1222911967
    [Google Scholar]
  108. WangN. OzerE.A. MandelM.J. HauserA.R. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung.MBio201453e01163-1410.1128/mBio.01163‑1424895306
    [Google Scholar]
  109. GuoQ. WeiY. XiaB. JinY. LiuC. PanX. ShiJ. ZhuF. LiJ. QianL. LiuX. ChengZ. JinS. LinJ. WuW. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Sci. Rep.2016611914110.1038/srep1914126751736
    [Google Scholar]
  110. FerrarisD. MiggianoR. RossiF. RizziM. Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets.Pathogens2018711710.3390/pathogens701001729389854
    [Google Scholar]
  111. KhoshnoodS. SadeghifardN. MahdianN. HeidaryM. MahdianS. MohammadiM. MalekiA. HaddadiM.H. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia.J. Clin. Lab. Anal.2023371e2481410.1002/jcla.2481436573013
    [Google Scholar]
  112. Ayoub MoubareckC. Hammoudi HalatD. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen.Antibiotics (Basel)20209311910.3390/antibiotics903011932178356
    [Google Scholar]
  113. SalmaniA. ShakerimoghaddamA. PirouziA. DelkhoshY. EshraghiM. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients.Gene Rep.20202110081610.1016/j.genrep.2020.100816
    [Google Scholar]
  114. MendesS.G. ComboS.I. AllainT. DominguesS. BuretA.G. Da SilvaG.J. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: From mechanisms to therapeutic strategies.Eur. J. Clin. Microbiol. Infect. Dis.202342121405142310.1007/s10096‑023‑04677‑837897520
    [Google Scholar]
  115. Iswarya JaisankarA. Smiline GirijaA.S. GunasekaranS. Vijayashree PriyadharsiniJ. Molecular characterisation of csgA gene among ESBL strains of A. baumannii and targeting with essential oil compounds from Azadirachta indica.J. King Saud Univ. Sci.20203283380338710.1016/j.jksus.2020.09.025
    [Google Scholar]
  116. ChoiC.H. HyunS.H. LeeJ.Y. LeeJ.S. LeeY.S. KimS.A. ChaeJ.P. YooS.M. LeeJ.C. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity.Cell. Microbiol.200810230931917760880
    [Google Scholar]
  117. BarrowsJ.M. GoleyE.D. FtsZ dynamics in bacterial division: What, how, and why?Curr. Opin. Cell Biol.20216816317210.1016/j.ceb.2020.10.01333220539
    [Google Scholar]
  118. Muñoz-EspínD. Serrano-HerasG. SalasM. Role of host factors in bacteriophage φ29 DNA replication.Adv. Virus Res.20128235138310.1016/B978‑0‑12‑394621‑8.00020‑022420858
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501319269240819060245
Loading
/content/journals/cdt/10.2174/0113894501319269240819060245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test