Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501316051240821060249
2024-09-04
2024-11-22
Loading full text...

Full text loading...

References

  1. A current view on inflammation.Nat. Immunol.201718882510.1038/ni.379828722714
    [Google Scholar]
  2. MedzhitovR. Inflammation 2010: New adventures of an old flame.Cell2010140677177610.1016/j.cell.2010.03.00620303867
    [Google Scholar]
  3. CastanheiraF.V.S. KubesP. Neutrophils and NETs in modulating acute and chronic inflammation.Blood2019133202178218510.1182/blood‑2018‑11‑84453030898862
    [Google Scholar]
  4. HannoodeeS. NasuruddinD.N. Acute inflammatory response.StatPearlsStatPearls PublishingTreasure Island (FL)202332310543
    [Google Scholar]
  5. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  6. CastellaniG. CroeseT. Peralta RamosJ.M. SchwartzM. Transforming the understanding of brain immunity.Science20233806640eabo764910.1126/science.abo764937023203
    [Google Scholar]
  7. BrandlS. ReindlM. Blood–brain barrier breakdown in neuroinflammation: Current in vitro models.Int. J. Mol. Sci.202324161269910.3390/ijms24161269937628879
    [Google Scholar]
  8. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑537433768
    [Google Scholar]
  9. Barbosa-SilvaM.C. LimaM.N. BattagliniD. RobbaC. PelosiP. RoccoP.R.M. Maron-GutierrezT. Infectious disease-associated encephalopathies.Crit. Care202125123610.1186/s13054‑021‑03659‑634229735
    [Google Scholar]
  10. YooH.J. KwonM.S. Aged microglia in neurodegenerative diseases: Microglia lifespan and culture methods.Front. Aging Neurosci.20221376626710.3389/fnagi.2021.76626735069173
    [Google Scholar]
  11. KwonM.S. Advanced therapeutic strategies targeting microglia: Beyond neuroinflammation.Arch. Pharm. Res.202245961863010.1007/s12272‑022‑01406‑136166145
    [Google Scholar]
  12. HeinzerlingK.G. BrionesM. ThamesA.D. HinkinC.H. ZhuT. WuY.N. ShoptawS.J. Randomized, placebo-controlled trial of targeting neuroinflammation with ibudilast to treat methamphetamine use disorder.J. Neuroimmune Pharmacol.202015223824810.1007/s11481‑019‑09883‑w31820289
    [Google Scholar]
  13. PetrovD. MansfieldC. MoussyA. HermineO. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment?Front. Aging Neurosci.201796810.3389/fnagi.2017.0006828382000
    [Google Scholar]
  14. SorrellsS.F. SapolskyR.M. An inflammatory review of glucocorticoid actions in the CNS.Brain Behav. Immun.200721325927210.1016/j.bbi.2006.11.00617194565
    [Google Scholar]
  15. OrihuelaR. McPhersonC.A. HarryG.J. Microglial M1/M2 polarization and metabolic states.Br. J. Pharmacol.2016173464966510.1111/bph.1313925800044
    [Google Scholar]
  16. ChiuI.M. MorimotoE.T.A. GoodarziH. LiaoJ.T. O’KeeffeS. PhatnaniH.P. MuratetM. CarrollM.C. LevyS. TavazoieS. MyersR.M. ManiatisT. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model.Cell Rep.20134238540110.1016/j.celrep.2013.06.01823850290
    [Google Scholar]
  17. GreenJ.M. SundmanM.H. ChouY. Opioid-induced microglia reactivity modulates opioid reward, analgesia, and behavior.Neurosci. Biobehav. Rev.202213510454410.1016/j.neubiorev.2022.10454435090951
    [Google Scholar]
  18. ZhangL. ZhangX. LiuY. WangS. JiaG. Vagus nerve stimulation promotes the M1-to-M2 transition via inhibition of TLR4/NF-κB in microglial to rescue the reperfusion injury.J Stroke Cerebrovasc Dis.202231910659610.1016/j.jstrokecerebrovasdis.2022.106596.
    [Google Scholar]
  19. ZhangY. LiangX. BaoX. XiaoW. ChenG. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective.Eur. J. Med. Chem.202223511429110.1016/j.ejmech.2022.11429135307617
    [Google Scholar]
  20. RahimifardM. MaqboolF. Moeini-NodehS. NiazK. AbdollahiM. BraidyN. NabaviS.M. NabaviS.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation.Ageing Res. Rev.201736111910.1016/j.arr.2017.02.00428235660
    [Google Scholar]
  21. KrügerC.L. ZeunerM.T. CottrellG.S. WideraD. HeilemannM. Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization.Sci. Signal.201710503eaan130810.1126/scisignal.aan130829089449
    [Google Scholar]
  22. MolteniM. GemmaS. RossettiC. The Role of toll-like receptor 4 in infectious and noninfectious inflammation.Mediators Inflamm.201620161910.1155/2016/697893627293318
    [Google Scholar]
  23. ParkB.S. SongD.H. KimH.M. ChoiB.S. LeeH. LeeJ.O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex.Nature200945872421191119510.1038/nature0783019252480
    [Google Scholar]
  24. LeitnerG.R. WenzelT.J. MarshallN. GatesE.J. KlegerisA. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders.Expert Opin. Ther. Targets2019231086588210.1080/14728222.2019.167641631580163
    [Google Scholar]
  25. WangM. PanW. XuY. ZhangJ. WanJ. JiangH. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases.J. Inflamm. Res.2022153083309410.2147/JIR.S35010935642214
    [Google Scholar]
  26. HuT. ZhaoY. LongY. MaX. ZengY. WuW. DengC. LiM. PengS. YangH. ZhouM. HuJ. ShenY. TLR4 promoted endoplasmic reticulum stress induced inflammatory bowel disease via the activation of p38 MAPK pathway.Biosci. Rep.2022424BSR2022030710.1042/BSR2022030735352794
    [Google Scholar]
  27. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a00165120457564
    [Google Scholar]
  28. YuC. WangD. YangZ. WangT. Pharmacological effects of polyphenol phytochemicals on the intestinal inflammation via targeting TLR4/NF-κB signaling pathway.Int. J. Mol. Sci.20222313693910.3390/ijms23136939
    [Google Scholar]
  29. LiQ. ZhaoT. MaoG. FengW. ChenY. ZouT. YangL. QianJ.Y. A Se-enriched Grifola frondosa polysaccharide induces macrophage activation by TLR4-mediated MAPK signaling pathway.Int. J. Biol. Macromol.202323812410810.1016/j.ijbiomac.2023.12410836958440
    [Google Scholar]
  30. ZhuK. ZhuX. SunS. YangW. LiuS. TangZ. ZhangR. LiJ. ShenT. HeiM. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats.Exp. Neurol.202134511382810.1016/j.expneurol.2021.11382834343528
    [Google Scholar]
  31. Akashi-TakamuraS. MiyakeK. TLR accessory molecules.Curr. Opin. Immunol.200820442042510.1016/j.coi.2008.07.00118625310
    [Google Scholar]
  32. LiZ. ChenA. WanH. GaoX. LiC. XiongL. LiangH. Immunohistochemical localization of MD2, a co-receptor of TLR4, in the adult mouse brain.ACS Chem. Neurosci.202314340041710.1021/acschemneuro.2c0054036657737
    [Google Scholar]
  33. NagaiY. AkashiS. NagafukuM. OgataM. IwakuraY. AkiraS. KitamuraT. KosugiA. KimotoM. MiyakeK. Essential role of MD-2 in LPS responsiveness and TLR4 distribution.Nat. Immunol.20023766767210.1038/ni80912055629
    [Google Scholar]
  34. ParkB.S. LeeJ.O. Recognition of lipopolysaccharide pattern by TLR4 complexes.Exp. Mol. Med.20134512e6610.1038/emm.2013.9724310172
    [Google Scholar]
  35. LiuY.W. LiuJ.H. TangJ. ZhaoQ. LiJ.J. ZhaoM.Z. LiZ.J. WangG.J. ZhongT.Y. DengP. JiangY. South. Med. J.200626200611011105
    [Google Scholar]
  36. ParkS.H. KimN.D. JungJ.K. LeeC.K. HanS.B. KimY. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders.Pharmacol. Ther.2012133329129810.1016/j.pharmthera.2011.11.00122119168
    [Google Scholar]
  37. ZhangY. ChenH. ZhangW. CaiY. ShanP. WuD. ZhangB. LiuH. KhanZ.A. LiangG. Arachidonic acid inhibits inflammatory responses by binding to myeloid differentiation factor-2 (MD2) and preventing MD2/toll-like receptor 4 signaling activation.Biochim. Biophys. Acta Mol. Basis Dis.20201866516568310.1016/j.bbadis.2020.16568331953218
    [Google Scholar]
  38. ChenL. FuW. ZhengL. WangY. LiangG. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases.Drug Discov. Today20182361187120210.1016/j.drudis.2018.01.01529330126
    [Google Scholar]
  39. LatzE. VisintinA. LienE. FitzgeraldK.A. MonksB.G. Kurt-JonesE.A. GolenbockD.T. EspevikT. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction.J. Biol. Chem.200227749478344784310.1074/jbc.M20787320012324469
    [Google Scholar]
  40. VasudevanS.O. RussoA.J. KumariP. VanajaS.K. RathinamV.A. A TLR4-independent critical role for CD14 in intracellular LPS sensing.Cell Rep.202239511075510.1016/j.celrep.2022.11075535508125
    [Google Scholar]
  41. ShireyK.A. LaiW. ScottA.J. LipskyM. MistryP. PletnevaL.M. KarpC.L. McAleesJ. GioanniniT.L. WeissJ. ChenW.H. ErnstR.K. RossignolD.P. GusovskyF. BlancoJ.C.G. VogelS.N. The TLR4 antagonist Eritoran protects mice from lethal influenza infection.Nature2013497745049850210.1038/nature1211823636320
    [Google Scholar]
  42. DivanovicS. TrompetteA. PetiniotL.K. AllenJ.L. FlickL.M. BelkaidY. MadanR. HakyJ.J. KarpC.L. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105.J. Leukoc. Biol.200782226527110.1189/jlb.010702117470533
    [Google Scholar]
  43. Ortiz-SuarezM.L. BondP.J. The structural basis for lipid and endotoxin binding in RP105-MD-1, and consequences for regulation of host lipopolysaccharide sensitivity.Structure201624120021110.1016/j.str.2015.10.02126671709
    [Google Scholar]
  44. DivanovicS. TrompetteA. AtabaniS.F. MadanR. GolenbockD.T. VisintinA. FinbergR.W. TarakhovskyA. VogelS.N. BelkaidY. Kurt-JonesE.A. KarpC.L. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105.Nat. Immunol.20056657157810.1038/ni119815852007
    [Google Scholar]
  45. SchultzT.E. BlumenthalA. The RP105/MD-1 complex: molecular signaling mechanisms and pathophysiological implications.J. Leukoc. Biol.2017101118319210.1189/jlb.2VMR1215‑582R27067450
    [Google Scholar]
  46. KiyokawaT. Akashi-TakamuraS. ShibataT. MatsumotoF. NishitaniC. KurokiY. SetoY. MiyakeK. A single base mutation in the PRAT4A gene reveals differential interaction of PRAT4A with Toll-like receptors.Int. Immunol.200820111407141510.1093/intimm/dxn09818780723
    [Google Scholar]
  47. BunnellE. LynnM. HabetK. NeumannA. PerdomoC.A. FriedhoffL.T. RogersS.L. ParrilloJ.E. A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia.Crit. Care Med.20002882713272010.1097/00003246‑200008000‑0000510966240
    [Google Scholar]
  48. BarochiaA. SolomonS. CuiX. NatansonC. EichackerP.Q. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies.Expert Opin. Drug Metab. Toxicol.20117447949410.1517/17425255.2011.55819021323610
    [Google Scholar]
  49. OpalS.M. LaterreP.F. FrancoisB. LaRosaS.P. AngusD.C. MiraJ.P. WitteboleX. DugernierT. PerrotinD. TidswellM. JaureguiL. KrellK. PachlJ. TakahashiT. PeckelsenC. CordascoE. ChangC.S. OeyenS. AikawaN. MaruyamaT. ScheinR. KalilA.C. Van NuffelenM. LynnM. RossignolD.P. GogateJ. RobertsM.B. WheelerJ.L. VincentJ.L. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial.JAMA2013309111154116210.1001/jama.2013.219423512062
    [Google Scholar]
  50. AttwoodM.M. JonssonJ. Rask-AndersenM. SchiöthH.B. Soluble ligands as drug targets.Nat. Rev. Drug Discov.2020191069571010.1038/s41573‑020‑0078‑432873970
    [Google Scholar]
  51. RomerioA. PeriF. Increasing the chemical variety of small-molecule-based TLR4 modulators: An overview.Front. Immunol.202011121010.3389/fimmu.2020.0121032765484
    [Google Scholar]
  52. ErridgeC. Endogenous ligands of TLR2 and TLR4: Agonists or assistants?J. Leukoc. Biol.201087698999910.1189/jlb.120977520179153
    [Google Scholar]
  53. GuptaN. ShyamasundarS. PatnalaR. KarthikeyanA. ArumugamT.V. LingE.A. DheenS.T. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies.Expert Opin. Ther. Targets201822976578110.1080/14728222.2018.151591730138572
    [Google Scholar]
  54. PaudelY.N. AngelopoulouE. AkyuzE. PiperiC. OthmanI. ShaikhM.F. Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis.Pharmacol. Res.202016010517210.1016/j.phrs.2020.10517232871246
    [Google Scholar]
  55. YuanS. LiuZ. XuZ. LiuJ. ZhangJ. High mobility group box 1 (HMGB1): A pivotal regulator of hematopoietic malignancies.J. Hematol. Oncol.20201319110.1186/s13045‑020‑00920‑332660524
    [Google Scholar]
  56. ŠtrosM. PolanskáE.V. HlaváčováT. SkládalP. Progress in assays of HMGB1 levels in human plasma—the potential prognostic value in COVID-19.Biomolecules202212454410.3390/biom1204054435454134
    [Google Scholar]
  57. ChenR. KangR. TangD. The mechanism of HMGB1 secretion and release.Exp. Mol. Med.20225429110210.1038/s12276‑022‑00736‑w35217834
    [Google Scholar]
  58. AnderssonU. AntoineD.J. TraceyK.J. The functions of HMGB1 depend on molecular localization and post-translational modifications.J. Intern. Med.2014276542042410.1111/joim.1230925346011
    [Google Scholar]
  59. YangH. WangH. JuZ. RagabA.A. LundbackP. LongW. Valdes-FerrerS.I. HeM. PribisJ.P. LiJ. LuB. GeroD. SzaboC. AntoineD.J. HarrisH.E. GolenbockD.T. MengJ. RothJ. ChavanS.S. AnderssonU. BilliarTR. TraceyKJ. Al-AbedY. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling.J Exp Med.2015212151410.1084/jem.20141318.
    [Google Scholar]
  60. SunS. HeM. VanPattenS. Al-AbedY. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation.J. Biomol. Struct. Dyn.201937143721373010.1080/07391102.2018.152671230238832
    [Google Scholar]
  61. XueJ. SuarezJ.S. MinaaiM. LiS. GaudinoG. PassH.I. CarboneM. YangH. HMGB1 as a therapeutic target in disease.J. Cell. Physiol.202123653406341910.1002/jcp.3012533107103
    [Google Scholar]
  62. WangL. RenW. WuQ. LiuT. WeiY. DingJ. ZhouC. XuH. YangS. NLRP3 inflammasome activation: A therapeutic target for cerebral ischemia–reperfusion injury.Front. Mol. Neurosci.20221584744010.3389/fnmol.2022.84744035600078
    [Google Scholar]
  63. AnderssonU. YangH. HarrisH. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells.Semin. Immunol.201838404810.1016/j.smim.2018.02.01129530410
    [Google Scholar]
  64. WangC. JiangJ. ZhangX. SongL. SunK. XuR. Inhibiting HMGB1 reduces cerebral ischemia reperfusion injury in diabetic mice.Inflammation20163961862187010.1007/s10753‑016‑0418‑z27596007
    [Google Scholar]
  65. YangJ. ZhaoY.H. YinK.W. ZhangX. LiuJ. Dexmedetomidine inhibits inflammatory response and oxidative stress through regulating miR-205-5p by targeting HMGB1 in cerebral ischemic/reperfusion.Immunopharmacol. Immunotoxicol.202143447848610.1080/08923973.2021.194290134196265
    [Google Scholar]
  66. LiuA. ZhuW. SunL. HanG. LiuH. ChenZ. ZhuangL. JiangW. XueX. Ginsenoside Rb1 administration attenuates focal cerebral ischemic reperfusion injury through inhibition of HMGB1 and inflammation signals.Exp. Ther. Med.20181643020302610.3892/etm.2018.652330214520
    [Google Scholar]
  67. YanS. FangC. CaoL. WangL. DuJ. SunY. TongX. LuY. WuX. Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated TLR4/NF-κB pathway.Biotechnol. Appl. Biochem.20196661024103010.1002/bab.182531545873
    [Google Scholar]
  68. ParvezS. KaushikM. AliM. AlamM.M. AliJ. TabassumH. KaushikP. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke.Theranostics202212268971910.7150/thno.6480634976208
    [Google Scholar]
  69. KimJ.B. Sig ChoiJ. YuY.M. NamK. PiaoC.S. KimS.W. LeeM.H. HanP.L. ParkJ. LeeJ.K. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain.J. Neurosci.200626246413642110.1523/JNEUROSCI.3815‑05.200616775128
    [Google Scholar]
  70. FamakinB.M. TsymbalyukO. TsymbalyukN. IvanovaS. WooS.K. KwonM.S. GerzanichV. SimardJ.M. HMGB1 is a potential mediator of astrocytic TLR4 signaling activation following acute and chronic focal cerebral ischemia.Neurol. Res. Int.202020201910.1155/2020/392943832148958
    [Google Scholar]
  71. LiuK. MoriS. TakahashiH.K. TomonoY. WakeH. KankeT. SatoY. HiragaN. AdachiN. YoshinoT. NishiboriM. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats.FASEB J.200721143904391610.1096/fj.07‑8770com17628015
    [Google Scholar]
  72. SunJ.M. YenT.L. JanJ.S. MwaleP.F. TengR.D. TaliyanR. HsiehC.T. YangC.H. Advances in antibody-based therapeutics for cerebral ischemia.Pharmaceutics202215114510.3390/pharmaceutics1501014536678774
    [Google Scholar]
  73. XuY. ZhangJ. GaoF. ChengW. ZhangY. WeiC. ZhangS. GaoX. Engeletin alleviates cerebral ischemia reperfusion-induced neuroinflammation via the HMGB1/TLR4/NF-κB network.J. Cell. Mol. Med.202327121653166310.1111/jcmm.1775837132060
    [Google Scholar]
  74. LinC.H. ChenH.Y. WeiK.C. Role of HMGB1/TLR4 axis in ischemia/reperfusion-impaired extracellular glutamate clearance in primary astrocytes.Cells2020912258510.3390/cells9122585
    [Google Scholar]
  75. HwangY.H. LeeY. PaikM.J. YeeS.T. Inhibitions of HMGB1 and TLR4 alleviate DINP-induced asthma in mice.Toxicol. Res. (Camb.)20198562162910.1039/c9tx00048h31588340
    [Google Scholar]
  76. ZhangW. SongJ. LiW. KongD. LiangY. ZhaoX. DuG. Salvianolic acid D alleviates cerebral ischemia-reperfusion injury by suppressing the cytoplasmic translocation and release of HMGB1-triggered NF- κ B activation to inhibit inflammatory response.Mediators Inflamm.2020202011510.1155/2020/904961432410871
    [Google Scholar]
  77. ChengX. YangY.L. YangH. WangY.H. DuG.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.Int. Immunopharmacol.201856293510.1016/j.intimp.2018.01.00229328946
    [Google Scholar]
  78. ManivannanS. MareiO. ElalfyO. ZabenM. Neurogenesis after traumatic brain injury - The complex role of HMGB1 and neuroinflammation.Neuropharmacology202118310840010.1016/j.neuropharm.2020.10840033189765
    [Google Scholar]
  79. ManivannanS. WalesE. ZabenM. The role of HMGB1 in Traumatic brain injury—bridging the gap between the laboratory and clinical studies.Curr. Neurol. Neurosci. Rep.202121127510.1007/s11910‑021‑01158‑334870759
    [Google Scholar]
  80. PaudelY.N. ShaikhM.F. ChakrabortiA. KumariY. Aledo-SerranoÁ. AleksovskaK. AlvimM.K.M. OthmanI. HMGB1: A common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction.Front. Neurosci.20181262810.3389/fnins.2018.0062830271319
    [Google Scholar]
  81. ManivannanS. HarariB. MuzaffarM. ElalfyO. HettipathirannahelageS. JamesZ. SharoufF. OrmondeC. AlsaqatiM. GrayW. ZabenM. Glycyrrhizin blocks the detrimental effects of hmgb1 on cortical neurogenesis after traumatic neuronal injury.Brain Sci.2020101076010.3390/brainsci1010076033096930
    [Google Scholar]
  82. WebsterK.M. ShultzS.R. OzturkE. DillL.K. SunM. Casillas-EspinosaP. JonesN.C. CrackP.J. O’BrienT.J. SempleB.D. Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences.Exp. Neurol.201932011297910.1016/j.expneurol.2019.11297931229637
    [Google Scholar]
  83. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi SalmanR. AlahdabF. AleneK.A. AljunidS.M. AltirkawiK. Alvis-GuzmanN. AnberN.H. AntonioC.A.T. ArablooJ. AremuO. ÄrnlövJ. AsayeshH. AsgharR.J. AtalayH.T. AwasthiA. Ayala QuintanillaB.P. AyukT.B. BadawiA. BanachM. BanoubJ.A.M. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BauneB.T. BediN. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BelachewA.B. BennettD.A. BensenorI.M. BerhaneA. BeuranM. BhattacharyyaK. BhuttaZ.A. BiadgoB. BijaniA. BililignN. Bin SayeedM.S. BlazesC.K. BrayneC. ButtZ.A. Campos-NonatoI.R. Cantu-BritoC. CarM. CárdenasR. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChangJ-C. ChatziralliI. ChiangP.P-C. ChristensenH. ChristopherD.J. CooperC. CortesiP.A. CostaV.M. CriquiM.H. CroweC.S. DamascenoA.A.M. DaryaniA. De la Cruz-GóngoraV. De la HozF.P. De LeoD. DemozG.T. DeribeK. DharmaratneS.D. DiazD. DinberuM.T. DjalaliniaS. DokuD.T. DubeyM. DubljaninE. DukenE.E. EdvardssonD. El-KhatibZ. EndresM. EndriesA.Y. EskandariehS. EsteghamatiA. EsteghamatiS. FarhadiF. FaroA. FarzadfarF. FarzaeiM.H. FatimaB. FereshtehnejadS-M. FernandesE. FeyissaG.T. FilipI. FischerF. FukumotoT. GanjiM. GankpeF.G. Garcia-GordilloM.A. GebreA.K. GebremichaelT.G. GelawB.K. GeleijnseJ.M. GeremewD. GezaeK.E. Ghasemi-KasmanM. GideyM.Y. GillP.S. GillT.K. GirmaE.T. GnedovskayaE.V. GoulartA.C. GradaA. GrossoG. GuoY. GuptaR. GuptaR. HaagsmaJ.A. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HankeyG.J. HaoY. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayS.I. HegazyM.I. HeidariB. HenokA. HeydarpourF. HoangC.L. HoleM.K. Homaie RadE. HosseiniS.M. HuG. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JavanbakhtM. JhaR.P. JobanputraY.B. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KaramiM. KarchA. KarimiN. KasaeianA. KassaT.D. KassaZ.Y. KaulA. KefaleA.T. KeiyoroP.N. KhaderY.S. KhafaieM.A. KhalilI.A. KhanE.A. KhangY-H. KhazaieH. KiadaliriA.A. KiirithioD.N. KimA.S. KimD. KimY-E. KimY.J. KisaA. KokuboY. KoyanagiA. KrishnamurthiR.V. Kuate DefoB. Kucuk BicerB. KumarM. LaceyB. LafranconiA. LansinghV.C. LatifiA. LeshargieC.T. LiS. LiaoY. LinnS. LoW.D. LopezJ.C.F. LorkowskiS. LotufoP.A. LucasR.M. LuneviciusR. MackayM.T. MahotraN.B. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. ManafiN. MansourniaM.A. MantovaniL.G. MärzW. Mashamba-ThompsonT.P. MassenburgB.B. MateK.K.V. McAlindenC. McGrathJ.J. MehtaV. MeierT. MelesH.G. MeleseA. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohajerB. Mohammad Gholi MezerjiN. MohammadiM. Mohammadi-KhanaposhtaniM. MohammadibakhshR. Mohammadnia-AfrouziM. MohammedS. MohebiF. MokdadA.H. MonastaL. MondelloS. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. Moreno VelásquezI. MorrisonS.D. MousaviS.M. MuhammedO.S. MuruetW. MusaK.I. MustafaG. NaderiM. NagelG. NaheedA. NaikG. NajafiF. NangiaV. NegoiI. NegoiR.I. NewtonC.R.J. NgunjiriJ.W. NguyenC.T. NguyenL.H. NingrumD.N.A. NirayoY.L. NixonM.R. NorrvingB. NoubiapJ.J. Nourollahpour ShiadehM. NyasuluP.S. OgahO.S. OhI-H. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OnwujekweO.E. OrenE. OwolabiM.O. PaM. PakpourA.H. PanW-H. Panda-JonasS. PandianJ.D. PatelS.K. PereiraD.M. PetzoldM. PillayJ.D. PiradovM.A. PolanczykG.V. PolinderS. PostmaM.J. PoultonR. PoustchiH. PrakashS. PrakashV. QorbaniM. RadfarA. RafayA. RafieiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanM.A. RajatiF. RamU. RantaA. RawafD.L. RawafS. ReinigN. ReisC. RenzahoA.M.N. ResnikoffS. RezaeianS. RezaiM.S. Rios GonzálezC.M. RobertsN.L.S. RoeverL. RonfaniL. RoroE.M. RoshandelG. RostamiA. SabbaghP. SaccoR.L. SachdevP.S. SaddikB. SafariH. Safari-FaramaniR. SafiS. SafiriS. SagarR. SahathevanR. SahebkarA. SahraianM.A. SalamatiP. Salehi ZahabiS. SalimiY. SamyA.M. SanabriaJ. SantosI.S. Santric MilicevicM.M. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SeedatS. SepanlouS.G. ShabaninejadH. ShafieesabetA. ShaikhM.A. ShakirR.A. Shams-BeyranvandM. ShamsizadehM. SharifM. Sharif-AlhoseiniM. SheJ. SheikhA. ShethK.N. ShigematsuM. ShiriR. ShirkoohiR. ShiueI. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilberbergD.H. SilvaJ.P. SilveiraD.G.A. SinghJ.A. SinhaD.N. SkiadaresiE. SmithM. SobaihB.H. SobhaniS. SoofiM. SoyiriI.N. SposatoL.A. SteinD.J. SteinM.B. StokesM.A. SufiyanM.B. SykesB.L. SylajaP.N. Tabarés-SeisdedosR. Te AoB.J. Tehrani-BanihashemiA. TemsahM-H. TemsahO. ThakurJ.S. ThriftA.G. Topor-MadryR. Tortajada-GirbésM. Tovani-PaloneM.R. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. Tudor CarL. UkwajaK.N. UllahI. UsmanM.S. UthmanO.A. ValdezP.R. VasankariT.J. VasanthanR. VeisaniY. VenketasubramanianN. ViolanteF.S. VlassovV. VosoughiK. VuG.T. VujcicI.S. WagnewF.S. WaheedY. WangY-P. WeiderpassE. WeissJ. WhitefordH.A. WijeratneT. WinklerA.S. WiysongeC.S. WolfeC.D.A. XuG. YadollahpourA. YamadaT. YanoY. YaseriM. YatsuyaH. YimerE.M. YipP. YismaE. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamanS.B. ZamaniM. ZandianH. ZareZ. ZhangY. ZodpeyS. NaghaviM. MurrayC.J.L. VosT. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X30879893
    [Google Scholar]
  84. TianY. ChenR. SuZ. HMGB1 is a potential and challenging therapeutic target for Parkinson’s disease.Cell. Mol. Neurobiol.2023431475810.1007/s10571‑021‑01170‑834797463
    [Google Scholar]
  85. SantoroM. MaetzlerW. StathakosP. MartinH.L. HobertM.A. RattayT.W. GasserT. ForresterJ.V. BergD. TraceyK.J. RiedelG. TeismannP. in-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin.Neurobiol. Dis.201691596810.1016/j.nbd.2016.02.01826921471
    [Google Scholar]
  86. PaudelY.N. AngelopoulouE. PiperiC. OthmanI. AamirK. ShaikhM.F. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s disease (AD): From risk factors to therapeutic targeting.Cells20209238310.3390/cells902038332046119
    [Google Scholar]
  87. TavanaJ. RoseneM. JensenN. RidgeP.G. KauweJ.S.K. KarchC.M. RAB10: An Alzheimer’s disease resilience locus and potential drug target.Clin. Interv. Aging201814737910.2147/CIA.S15914830643396
    [Google Scholar]
  88. Van EldikL.J. CarrilloM.C. ColeP.E. FeuerbachD. GreenbergB.D. HendrixJ.A. KennedyM. KozauerN. MargolinR.A. MolinuevoJ.L. MuellerR. RansohoffR.M. WilcockD.M. BainL. BalesK. The roles of inflammation and immune mechanisms in Alzheimer's disease.Alzheimers Dement (N Y).2016229910910.1016/j.trci.2016.05.001.
    [Google Scholar]
  89. BayerA.J. The role of biomarkers and imaging in the clinical diagnosis of dementia.Age Ageing201847564164310.1093/ageing/afy00429432519
    [Google Scholar]
  90. FujitaK. MotokiK. TagawaK. ChenX. HamaH. NakajimaK. HommaH. TamuraT. WatanabeH. KatsunoM. MatsumiC. KajikawaM. SaitoT. SaidoT. SobueG. MiyawakiA. OkazawaH. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease.Sci. Rep.2016613189510.1038/srep3189527557632
    [Google Scholar]
  91. RenQ. JiangX. PaudelY.N. GaoX. GaoD. ZhangP. ShengW. ShangX. LiuK. ZhangX. JinM. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson’s disease like pathology in Zebrafish.J. Ethnopharmacol.202229211523410.1016/j.jep.2022.11523435358621
    [Google Scholar]
  92. McCoolR. WilsonK. ArberM. FleetwoodK. ToupinS. ThomH. BennettI. EdwardsS. Systematic review and network meta-analysis comparing ocrelizumab with other treatments for relapsing multiple sclerosis.Mult. Scler. Relat. Disord.201929556110.1016/j.msard.2018.12.04030677733
    [Google Scholar]
  93. MoriM. A new therapeutic target for neuromyelitis optica and multiple sclerosis: High mobility group box 1 (HMGB1).Clin. Neurol.201454975977
    [Google Scholar]
  94. PaudelY.N. AngelopoulouE. CB.K. PiperiC. OthmanI. High mobility group box 1 (HMGB1) protein in Multiple Sclerosis (MS): Mechanisms and therapeutic potential.Life Sci.201923811692410.1016/j.lfs.2019.11692431606383
    [Google Scholar]
  95. RobinsonA.P. CaldisM.W. HarpC.T. GoingsG.E. MillerS.D. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis.J. Autoimmun.201343324310.1016/j.jaut.2013.02.00523514872
    [Google Scholar]
  96. ZhaoQ. ZhaoZ. ZhangJ. NiY. OuyangS. QiH. YuY. MironR.J. TangH. ZhangY. Fn-HMGB1 adsorption behavior initiates early immune recognition and subsequent osteoinduction of biomaterials.Adv. Healthc. Mater.2024132230180810.1002/adhm.20230180837602504
    [Google Scholar]
  97. FeldmanE.L. GoutmanS.A. PetriS. MazziniL. SavelieffM.G. ShawP.J. SobueG. Amyotrophic lateral sclerosis.Lancet2022400103601363138010.1016/S0140‑6736(22)01272‑736116464
    [Google Scholar]
  98. PaudelY.N. AngelopoulouE. PiperiC. OthmanI. ShaikhM.F. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results.Pharmacol. Res.202015610479210.1016/j.phrs.2020.10479232278047
    [Google Scholar]
  99. FellnerA. BarhumY. AngelA. PeretsN. SteinerI. OffenD. LevN. Toll-like receptor-4 inhibitor TAK-242 attenuates motor dysfunction and spinal cord pathology in an amyotrophic lateral sclerosis mouse model.Int. J. Mol. Sci.2017188166610.3390/ijms1808166628763002
    [Google Scholar]
  100. MaoD. ZhengY. XuF. HanX. ZhaoH. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target.Front. Neurol.202213102989110.3389/fneur.2022.102989136388178
    [Google Scholar]
  101. LeeJ.D. LiuN. LevinS.C. OttossonL. AnderssonU. HarrisH.E. WoodruffT.M. Therapeutic blockade of HMGB1 reduces early motor deficits, but not survival in the SOD1G93A mouse model of amyotrophic lateral sclerosis.J. Neuroinflammation20191614510.1186/s12974‑019‑1435‑230782181
    [Google Scholar]
  102. RanaT. BehlT. MehtaV. UddinM.S. BungauS. Molecular insights into the therapeutic promise of targeting HMGB1 in depression.Pharmacol Rep.2021731314210.1007/s43440‑020‑00163‑6.
    [Google Scholar]
  103. JobsonD.D. HaseY. ClarksonA.N. KalariaR.N. The role of the medial prefrontal cortex in cognition, ageing and dementia.Brain Commun.202133fcab12510.1093/braincomms/fcab12534222873
    [Google Scholar]
  104. WangS. GuanY.G. ZhuY.H. WangM.Z. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective.World J. Psychiatry202212677978610.5498/wjp.v12.i6.77935978968
    [Google Scholar]
  105. WangB. LianY.J. DongX. PengW. LiuL.L. SuW.J. GongH. ZhangT. JiangC.L. LiJ.S. WangY.X. Glycyrrhizic acid ameliorates the kynurenine pathway in association with its antidepressant effect.Behav. Brain Res.201835325025710.1016/j.bbr.2018.01.02429366745
    [Google Scholar]
  106. XuX. PiaoH.N. AosaiF. ZengX.Y. ChengJ.H. CuiY.X. LiJ. MaJ. PiaoH.R. JinX. PiaoL.X. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways.Br. J. Pharmacol.2020177225224524510.1111/bph.1526132964428
    [Google Scholar]
  107. SchiltzH.K. McVeyA.J. Dolan WozniakB. HaendelA.D. StanleyR. AriasA. GordonN. Van HeckeA.V. The role of loneliness as a mediator between autism features and mental health among autistic young adults.Autism202125254555510.1177/136236132096778933126822
    [Google Scholar]
  108. BabinskáK. BucováM. ĎurmanováV. LakatošováS. JánošíkováD. BakošJ. HlavatáA. OstatníkováD. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism.Physiol. Res.201463S613S61810.33549/physiolres.93293225669692
    [Google Scholar]
  109. SunS. HeM. WangY. YangH. Al-AbedY. Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1:TLR4:MD-2 axes.PLoS One2018132e019302810.1371/journal.pone.019302829447234
    [Google Scholar]
  110. JiangX. ShenP. ZhouJ. GeH. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages.Bioorg. Med. Chem. Lett.20225812852310.1016/j.bmcl.2021.128523.
    [Google Scholar]
  111. MollicaL. De MarchisF. SpitaleriA. DallacostaC. PennacchiniD. ZamaiM. AgrestiA. TrisciuoglioL. MuscoG. BianchiM.E. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities.Chem. Biol.200714443144110.1016/j.chembiol.2007.03.00717462578
    [Google Scholar]
  112. ShenP. SunY. JiangX. ZhouX. NianB. WangW. ZhangJ. Interaction of bioactive kaempferol with HMGB1: Investigation by multi-spectroscopic and molecular simulation methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329212236010.1016/j.saa.2023.12236036724682
    [Google Scholar]
  113. LeK. Chibaatar DalivE. WuS. QianF. AliA.I. YuD. GuoY. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury.Int. Immunopharmacol.20197510577910.1016/j.intimp.2019.10577931362164
    [Google Scholar]
  114. ZhaiY. ZhuY. LiuJ. XieK. YuJ. YuL. DengH. Dexmedetomidine post-conditioning alleviates cerebral ischemia-reperfusion injury in rats by inhibiting high mobility group protein B1 group (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway.Med. Sci. Monit.202026e91861710.12659/MSM.91861731912804
    [Google Scholar]
  115. ZimmerD.B. EubanksJ.O. RamakrishnanD. CriscitielloM.F. Evolution of the S100 family of calcium sensor proteins.Cell Calcium201353317017910.1016/j.ceca.2012.11.00623246155
    [Google Scholar]
  116. WangS. SongR. WangZ. JingZ. WangS. MaJ. S100A8/A9 in inflammation.Front. Immunol.20189129810.3389/fimmu.2018.0129829942307
    [Google Scholar]
  117. HolzingerD. TenbrockK. RothJ. Alarmins of the S100-Family in Juvenile autoimmune and auto-inflammatory diseases.Front. Immunol.20191018210.3389/fimmu.2019.0018230828327
    [Google Scholar]
  118. AustermannJ. SpiekermannC. RothJ. S100 proteins in rheumatic diseases.Nat. Rev. Rheumatol.201814952854110.1038/s41584‑018‑0058‑930076385
    [Google Scholar]
  119. RammesA. RothJ. GoebelerM. KlemptM. HartmannM. SorgC. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway.J. Biol. Chem.1997272149496950210.1074/jbc.272.14.94969083090
    [Google Scholar]
  120. MaL. SunP. ZhangJ.C. ZhangQ. YaoS.L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells.Int. J. Mol. Med.2017401313810.3892/ijmm.2017.298728498464
    [Google Scholar]
  121. VoglT. StratisA. WixlerV. VöllerT. ThurainayagamS. JorchS.K. ZenkerS. DreilingA. ChakrabortyD. FröhlingM. ParuzelP. WehmeyerC. HermannS. PapantonopoulouO. GeyerC. LoserK. SchäfersM. LudwigS. StollM. LeandersonT. SchultzeJ.L. KönigS. PapT. RothJ. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation.J. Clin. Invest.201812851852186610.1172/JCI8986729611822
    [Google Scholar]
  122. WangC. IashchishynI.A. PansieriJ. NyströmS. KlementievaO. KaraJ. HorvathI. MoskalenkoR. RofougaranR. GourasG. KovacsG.G. ShankarS.K. Morozova-RocheL.A. S100A9-driven amyloid-neuroinflammatory cascade in traumatic brain injury as a precursor state for Alzheimer’s disease.Sci. Rep.2018811283610.1038/s41598‑018‑31141‑x30150640
    [Google Scholar]
  123. ShenL. LiaoL. ChenC. GuoY. SongD. WangY. ChenY. ZhangK. YingM. LiS. LiuQ. NiJ. Proteomics analysis of blood serums from Alzheimer’s disease patients using iTRAQ labeling technology.J. Alzheimers Dis.201756136137810.3233/JAD‑16091327911324
    [Google Scholar]
  124. LodeiroM. PuertaE. IsmailM.A. Rodriguez-RodriguezP. RönnbäckA. CoditaA. Parrado-FernandezC. MaioliS. Gil-BeaF. Merino-SerraisP. Cedazo-MinguezA. Aggregation of the inflammatory S100A8 precedes Aβ plaque formation in transgenic APP mice: Positive feedback for S100A8 and Aβ productions.J. Gerontol. A Biol. Sci. Med. Sci.201772331932827131040
    [Google Scholar]
  125. IashchishynI.A. SulskisD. Nguyen NgocM. SmirnovasV. Morozova-RocheL.A. Finke–Watzky two-step nucleation–autocatalysis model of S100A9 amyloid formation: Protein misfolding as “nucleation” event.ACS Chem. Neurosci.20178102152215810.1021/acschemneuro.7b0025128759719
    [Google Scholar]
  126. HeG.Y. ZhaoC.H. WuD.G. ChengH. SunL.A. ZhangD.L. YangX.J. FanX.R. DiG.F. JiangX.C. S100A8 promotes inflammation via toll-like receptor 4 after experimental traumatic brain injury.Front. Neurosci.20211461655910.3389/fnins.2020.61655933613176
    [Google Scholar]
  127. HanssenN.M.J. SpaetgensB. NagareddyP.R. MurphyA.J. DAMPening mortality in COVID-19: Therapeutic insights from basic cardiometabolic studies on S100A8/A9.Circulation20211431097197310.1161/CIRCULATIONAHA.120.05302533434052
    [Google Scholar]
  128. OttoM. BahnE. WiltfangJ. BoekhoffI. BeucheW. Decrease of S100 beta protein in serum of patients with amyotrophic lateral sclerosis.Neurosci. Lett.1998240317117310.1016/S0304‑3940(97)00947‑69502231
    [Google Scholar]
  129. BeckerA.P. OsorioD.S. BellE.H. GiglioP. FlemingJ.L. CottrellC.E. MardisE.R. MillerK.E. SchiefferK.M. KellyB.J. MakaryM.S. SloneW. BensonD. LeonardJ. KahwashS.B. BouéD.R. ChakravartiA. Correspondence comprehensive characterization of a brainstem aggregoma (light and heavy chain deposition disease).Brain Pathol.2023335e1315410.1111/bpa.1315436827605
    [Google Scholar]
  130. SchwanhäusserB. BusseD. LiN. DittmarG. SchuchhardtJ. WolfJ. ChenW. SelbachM. Global quantification of mammalian gene expression control.Nature2011473734733734210.1038/nature1009821593866
    [Google Scholar]
  131. DahlmannM. KobeltD. WaltherW. MudduluruG. SteinU. S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction.Cancers (Basel)2016865910.3390/cancers806005927331819
    [Google Scholar]
  132. BresnickA.R. S100 proteins as therapeutic targets.Biophys. Rev.20181061617162910.1007/s12551‑018‑0471‑y30382555
    [Google Scholar]
  133. BjörkP. BjörkA. VoglT. StenströmM. LibergD. OlssonA. RothJ. IvarsF. LeandersonT. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides.PLoS Biol.200974e100009710.1371/journal.pbio.100009719402754
    [Google Scholar]
  134. PelletierM. SimardJ.C. GirardD. TessierP.A. Quinoline-3-carboxamides such as tasquinimod are not specific inhibitors of S100A9.Blood Adv.20182101170117110.1182/bloodadvances.201801666729789315
    [Google Scholar]
  135. NathK.A. BelcherJ.D. NathM.C. GrandeJ.P. CroattA.J. AckermanA.W. KatusicZ.S. VercellottiG.M. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins.Am. J. Physiol. Renal Physiol.20183145F906F91410.1152/ajprenal.00432.201728978536
    [Google Scholar]
  136. JanciauskieneS. VijayanV. ImmenschuhS. TLR4 signaling by heme and the role of heme-binding blood proteins.Front. Immunol.202011196410.3389/fimmu.2020.0196432983129
    [Google Scholar]
  137. CamusS.M. De MoraesJ.A. BonninP. AbbyadP. Le JeuneS. LionnetF. LoufraniL. GrimaudL. LambryJ.C. CharueD. KigerL. RenardJ.M. LarroqueC. Le ClésiauH. TedguiA. BrunevalP. Barja-FidalgoC. AlexandrouA. TharauxP.L. BoulangerC.M. Blanc-BrudeO.P. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.Blood2015125243805381410.1182/blood‑2014‑07‑58928325827830
    [Google Scholar]
  138. BelcherJ.D. ZhangP. NguyenJ. KiserZ.M. NathK.A. HuJ. TrentJ.O. VercellottiG.M. Identification of a heme activation site on the MD-2/TLR4 complex.Front. Immunol.202011137010.3389/fimmu.2020.0137032695117
    [Google Scholar]
  139. ZhangP. NguyenJ. AbdullaF. NelsonA.T. BeckmanJ.D. VercellottiG.M. BelcherJ.D. Soluble MD-2 and heme in sickle cell disease plasma promote pro-inflammatory signaling in endothelial cells.Front. Immunol.20211263270910.3389/fimmu.2021.63270933841413
    [Google Scholar]
  140. LeiJ. PaulJ. WangY. GuptaM. VangD. ThompsonS. JhaR. NguyenJ. ValverdeY. LamarreY. JonesM.K. GuptaK. Heme causes pain in sickle mice via toll-like receptor 4-mediated reactive oxygen species- and endoplasmic reticulum stress-induced glial activation.Antioxid. Redox Signal.202134427929310.1089/ars.2019.791332729340
    [Google Scholar]
  141. WangG. ManaenkoA. ShaoA. OuY. YangP. BudbazarE. NowrangiD. ZhangJ.H. TangJ. Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice.J. Cereb. Blood Flow Metab.20173741299131010.1177/0271678X1665449427317656
    [Google Scholar]
  142. WangX.Y. WuF. ZhanR.Y. ZhouH.J. Inflammatory role of microglia in brain injury caused by subarachnoid hemorrhage.Front. Cell. Neurosci.20221695618510.3389/fncel.2022.95618536561497
    [Google Scholar]
  143. StewartC.R. StuartL.M. WilkinsonK. van GilsJ.M. DengJ. HalleA. RaynerK.J. BoyerL. ZhongR. FrazierW.A. Lacy-HulbertA. KhouryJ.E. GolenbockD.T. MooreK.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer.Nat. Immunol.201011215516110.1038/ni.183620037584
    [Google Scholar]
  144. KalainayakanS.P. GhoshP. DeyS. FitzgeraldK.E. SohoniS. KonduriP.C. GarrossianM. LiuL. ZhangL. Cyclopamine tartrate, a modulator of hedgehog signaling and mitochondrial respiration, effectively arrests lung tumor growth and progression.Sci. Rep.201991140510.1038/s41598‑018‑38345‑130723259
    [Google Scholar]
  145. Ribeiro-VianaR.M. ButeraA.P. SantosE.S. TischerC.A. AlvesR.B. Pereira de FreitasR. GuimarãesL. VarottiF.P. VianaG.H.R. NascimentoC.S.Jr Revealing the binding process of new 3-alkylpyridine marine alkaloid analogue antimalarials and the heme group: An experimental and theoretical investigation.J. Chem. Inf. Model.201656357157910.1021/acs.jcim.5b0074226954429
    [Google Scholar]
  146. BarbosaC.S. GuimarãesD.S.M. GonçalvesA.M.M.N. BarbosaM.C.S. Alves e CostaM.L. Nascimento JúniorC.S. GuimarãesL. Ribeiro-VianaR.M. dos SantosF.V. Alves de BritoC.F. de Pilla VarottiF. Ribeiro VianaG.H. Target-guided synthesis and antiplasmodial evaluation of a new fluorinated 3-alkylpyridine marine alkaloid analog.ACS Omega20172118264827210.1021/acsomega.7b0130230023579
    [Google Scholar]
  147. MattinzoliD. IkehataM. TsugawaK. AlfieriC.M. DongiovanniP. TrombettaE. ValentiL. PulitiA. LazzariL. MessaP. FGF23 and Fetuin-A interaction in the liver and in the circulation.Int. J. Biol. Sci.201814658659810.7150/ijbs.23256.
    [Google Scholar]
  148. HeinenMC. BablerA. WeisJ. ElsasJ. NolteK. KippM. Jahnen-DechentW. HäuslerM. Fetuin-A protein distribution in mature inflamed and ischemic brain tissue.PLoS One.20181311e020659710.1371/journal.pone.0206597.
    [Google Scholar]
  149. WangY.J. GongZ.Q. BiX.M. LiY.L. Correlation of plasma soluble cluster of differentiation 40 ligand, alpha fetoprotein A, and pregnancy-associated plasma protein A with carotid plaque in patients with ischemic stroke.Genet. Mol. Res.20151438091809910.4238/2015.July.17.18.
    [Google Scholar]
  150. WangH. SamaAE. Anti-inflammatory role of fetuin-A in injury and infection.Curr Mol Med.20121256253310.2174/156652412800620039.
    [Google Scholar]
  151. PalD. DasguptaS. KunduR. MaitraS. DasG. MukhopadhyayS. RayS. MajumdarSS. BhattacharyaS. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.Nat Med.201218812798510.1038/nm.2851.
    [Google Scholar]
  152. ChenL. YuCX. SongB. CaiW. LiuC. GuanQB. Free fatty acids mediates human umbilical vein endothelial cells inflammation through toll-like receptor-4.Eur Rev Med Pharmacol Sci.20182282421243110.26355/eurrev_201804_14835.
    [Google Scholar]
  153. NishidaT. TsubotaM. KawaishiY. YamanishiH. KamitaniN. SekiguchiF. IshikuraH. LiuK. KawabataA. NishiboriM. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats.Toxicology2016365485810.1016/j.tox.2016.07.016.
    [Google Scholar]
  154. Vega-RamírezMT. Becerril-VillanuevaE. Maldonado-GarcíaJL. PavónL. Pérez-SánchezG. S100 proteins: A new frontier in fibromyalgia research.Mol Brain.20241712910.1186/s13041‑024‑01102‑9.
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501316051240821060249
Loading
/content/journals/cdt/10.2174/0113894501316051240821060249
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Fetuin-A; Heme; HMGB1; microglia; neuroinflammatory diseases; S100A8/A9; TLR4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test