Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Vitamins play a crucial role in cellular functions like cell cycling and proliferation, differentiation, and apoptosis. These also help in the induction of cell cycle arrest and/or apoptosis. They can inhibit normal prostatic epithelial cell growth and might be helpful for the prevention of prostate cancer (PCa). Many essential vitamins including the fat-soluble vitamins (vitamin A, vitamin D, vitamin E, and vitamin K) and the water-soluble vitamins (vitamin B complexes and vitamin C) have a huge impact on the inhibition of growth and progression of PCa. Vitamins show anticancer properties and are involved in regulatory processes like the DNA repairing process, which inhibit the growth of PCa. Consumption of multivitamins prevents methylation of cancer cells and possesses an enormous potential that can be applied for the prevention as well as in the management of PCa. They have a great role in the inhibition of different signalling pathways involved in PCa. Moreover, they have also displayed a significant role in targeting of PCa with various nanocarrier systems. This review encompasses the recent studies about the individual actions of different vitamins and vitamin analogs, the combination of vitamins, and their efficient functions in various therapeutic and targeting approaches for PCa.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501314558240822082557
2024-09-10
2024-11-26
Loading full text...

Full text loading...

References

  1. WangY. WangJ. Modelling and prediction of global non-communicable diseases.BMC Public Health202020182210.1186/s12889‑020‑08890‑432487173
    [Google Scholar]
  2. SarafS. JainA. TiwariA. VermaA. PandaP.K. JainS.K. Advances in liposomal drug delivery to cancer: An overview.J. Drug Deliv. Sci. Technol.20205610154910.1016/j.jddst.2020.101549
    [Google Scholar]
  3. TiwariA. SarafS. VermaA. PandaP.K. JainS.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight.World J. Gastroenterol.201824394428443510.3748/wjg.v24.i39.442830357011
    [Google Scholar]
  4. PandaP.K. SarafS. TiwariA. VermaA. RaikwarS. JainA. JainS.K. Novel strategies for targeting prostate cancer.Curr. Drug Deliv.201916871272710.2174/156720181666619082114380531433757
    [Google Scholar]
  5. CulpM.B. SoerjomataramI. EfstathiouJ.A. BrayF. JemalA. Recent global patterns in prostate cancer incidence and mortality rates.Eur. Urol.2020771385210.1016/j.eururo.2019.08.00531493960
    [Google Scholar]
  6. SarafS. Targeting approaches for the diagnosis and treatment of cancer.Front. Anti-Cancer Drug Disc.20201134105138
    [Google Scholar]
  7. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  8. OczkowskiM. DziendzikowskaK. Pasternak-WiniarskaA. WłodarekD. Gromadzka-OstrowskaJ. Dietary factors and prostate cancer development, progression, and reduction.Nutrients202113249610.3390/nu1302049633546190
    [Google Scholar]
  9. CrowleyF. SterpiM. BuckleyC. MargetichL. HandaS. DoveyZ. A review of the pathophysiological mechanisms underlying castration-resistant prostate cancer.Res. Rep. Urol.20211345747210.2147/RRU.S26472234235102
    [Google Scholar]
  10. FengY. GaoD. CaoH. ChenL. Qi ling inhibits progression of androgen-independent prostate cancer via negative regulation of TRIM66/HP1γ/AR axis.Complement. Med. Res.202128649250010.1159/00050938834077947
    [Google Scholar]
  11. StrattonJ. GodwinM. The effect of supplemental vitamins and minerals on the development of prostate cancer: A systematic review and meta-analysis.Fam. Pract.201128324325210.1093/fampra/cmq11521273283
    [Google Scholar]
  12. RawlaP. Epidemiology of prostate cancer.World J. Oncol.2019102638910.14740/wjon119131068988
    [Google Scholar]
  13. JainA. TiwariA. VermaA. JainS.K. Vitamins for cancer prevention and treatment: An insight.Curr. Mol. Med.201717532134029210648
    [Google Scholar]
  14. HurwitzL.M. AgalliuI. AlbanesD. BarryK.H. BerndtS.I. CaiQ. ChenC. ChengI. GenkingerJ.M. GilesG.G. HuangJ. JoshuC.E. KeyT.J. KnutsenS. KoutrosS. LangsethH. LiS.X. MacInnisR.J. MarktS.C. PenneyK.L. Perez-CornagoA. RohanT.E. Smith-WarnerS.A. StampferM.J. StopsackK.H. TangenC.M. TravisR.C. WeinsteinS.J. WuL. JacobsE.J. MucciL.A. PlatzE.A. CookM.B. Prostate Cancer Cohort Consortium (PC3) Working Group Recommended definitions of aggressive prostate cancer for etiologic epidemiologic research.J. Natl. Cancer Inst.2021113672773410.1093/jnci/djaa15433010161
    [Google Scholar]
  15. WangK. GuoL. XiongW. SunL. ZhengY. Nanoparticles of star-like copolymer mannitol-functionalized poly(lactide)-vitamin E TPGS for delivery of paclitaxel to prostate cancer cells.J. Biomater. Appl.201429332934010.1177/088532821452748624621530
    [Google Scholar]
  16. SarkisM. MinassianG. MitriN. RahmeK. FracassoG. El HageR. GhanemE. D2B-functionalized gold nanoparticles: Promising vehicles for targeted drug delivery to prostate cancer.ACS Appl. Bio Mater.20236281982710.1021/acsabm.2c0097536755401
    [Google Scholar]
  17. SalaheldinT.A. BharaliD.J. MousaS.A. Functionalized nano-targeted moieties in management of prostate cancer.Future Oncol.2020161386988310.2217/fon‑2019‑063532292071
    [Google Scholar]
  18. PandaP.K. JainS.K.J.J.o.D.D.S. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells.J. Drug Delivery Sci. Technol.202386104667
    [Google Scholar]
  19. HalverJ.E. The vitamins.Fish nutrition.Elsevier20036114110.1016/B978‑012319652‑1/50003‑3
    [Google Scholar]
  20. DochniakM.J. Vitamins and cancer immunotherapy.GSC Adv. Res. Rev.2022101007010
    [Google Scholar]
  21. SiddappaM. Vitamin D receptor cistrome-transcriptome analyses establishes quantitatively distinct receptor genomic interactions in African American prostate cancer regulated by BAZ1A.bioRxiv202210.1101/2022.01.31.478573
    [Google Scholar]
  22. KamalN. IlowefahM.A. HillesA.R. AnuaN.A. AwinT. AlshwyehH.A. AldosaryS.K. JambocusN.G.S. AlosaimiA.A. RahmanA. MahmoodS. MedianiA. Genesis and mechanism of some cancer types and an overview on the role of diet and nutrition in cancer prevention.Molecules2022276179410.3390/molecules2706179435335158
    [Google Scholar]
  23. VenturelliS. LeischnerC. HellingT. BurkardM. MarongiuL. Vitamins as possible cancer biomarkers: Significance and limitations.Nutrients20211311391410.3390/nu1311391434836171
    [Google Scholar]
  24. MatsushitaM. FujitaK. NonomuraN. Influence of diet and nutrition on prostate cancer.Int. J. Mol. Sci.2020214144710.3390/ijms2104144732093338
    [Google Scholar]
  25. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers.N. Engl. J. Med.1994330151029103510.1056/NEJM1994041433015018127329
    [Google Scholar]
  26. RowlesJ.L.III RanardK.M. SmithJ.W. AnR. ErdmanJ.W.Jr Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: A systematic review and meta-analysis.Prostate Cancer Prostatic Dis.201720436137710.1038/pcan.2017.2528440323
    [Google Scholar]
  27. WanL. TanH.L. Thomas-AhnerJ.M. PearlD.K. ErdmanJ.W.Jr MoranN.E. ClintonS.K. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis.Cancer Prev. Res.20147121228123910.1158/1940‑6207.CAPR‑14‑018225315431
    [Google Scholar]
  28. LiangJ.Y. FontanaJ.A. RaoJ.N. OrdonezJ.V. DawsonM.I. ShrootB. WilberJ.F. FengP. Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3.Prostate199938322823610.1002/(SICI)1097‑0045(19990215)38:3<228::AID‑PROS7>3.0.CO;2‑T10068347
    [Google Scholar]
  29. NelsonS. BataiK. AhaghotuC. Agurs-CollinsT. KittlesR. Association between serum 25-hydroxy-vitamin D and aggressive prostate cancer in African American men.Nutrients2016911210.3390/nu901001228036013
    [Google Scholar]
  30. GilbertR. MartinR.M. BeynonR. HarrisR. SavovicJ. ZuccoloL. BekkeringG.E. FraserW.D. SterneJ.A.C. MetcalfeC. Associations of circulating and dietary vitamin D with prostate cancer risk: A systematic review and dose–response meta-analysis.Cancer Causes Control201122331934010.1007/s10552‑010‑9706‑321203822
    [Google Scholar]
  31. MondulA.M. WeinsteinS.J. LayneT.M. AlbanesD. Vitamin D and cancer risk and mortality: State of the science, gaps, and challenges.Epidemiol. Rev.2017391284810.1093/epirev/mxx00528486651
    [Google Scholar]
  32. PolekT.C. StewartL.V. RyuE.J. CohenM.B. AllegrettoE.A. WeigelN.L. p53 Is required for 1,25-dihydroxyvitamin D3-induced G0 arrest but is not required for G1 accumulation or apoptosis of LNCaP prostate cancer cells.Endocrinology20031441506010.1210/en.2001‑21010912488329
    [Google Scholar]
  33. KeyT.J. ApplebyP.N. TravisR.C. AlbanesD. AlbergA.J. BarricarteA. BlackA. BoeingH. Bueno-de-MesquitaH.B. ChanJ.M. ChenC. CookM.B. DonovanJ.L. GalanP. GilbertR. GilesG.G. GiovannucciE. GoodmanG.E. GoodmanP.J. GunterM.J. HamdyF.C. HeliövaaraM. HelzlsouerK.J. HendersonB.E. HercbergS. Hoffman-BoltonJ. HooverR.N. JohanssonM. KhawK.T. KingI.B. KnektP. KolonelL.N. Le MarchandL. MännistöS. MartinR.M. MeyerH.E. MondulA.M. MoyK.A. NealD.E. NeuhouserM.L. PalliD. PlatzE.A. PouchieuC. RissanenH. SchenkJ.M. SeveriG. StampferM.J. TjønnelandA. TouvierM. TrichopoulouA. WeinsteinS.J. ZieglerR.G. ZhouC.K. AllenN.E. Endogenous Hormones Nutritional Biomarkers Prostate Cancer Collaborative Group Carotenoids, retinol, tocopherols, and prostate cancer risk: Pooled analysis of 15 studies.Am. J. Clin. Nutr.201510251142115710.3945/ajcn.115.11430626447150
    [Google Scholar]
  34. LawsonK.A. WrightM.E. SubarA. MouwT. HollenbeckA. SchatzkinA. LeitzmannM.F. Multivitamin use and risk of prostate cancer in the national institutes of health-AARP diet and health study.J. Natl. Cancer Inst.2007991075476410.1093/jnci/djk17717505071
    [Google Scholar]
  35. AntwiS.O. SteckS.E. ZhangH. StummL. ZhangJ. HurleyT.G. HebertJ.R. Plasma carotenoids and tocopherols in relation to prostate-specific antigen (PSA) levels among men with biochemical recurrence of prostate cancer.Cancer Epidemiol.201539575276210.1016/j.canep.2015.06.00826165176
    [Google Scholar]
  36. WangH. HongJ. YangC.S. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.Mol. Carcinog.201655111728173810.1002/mc.2242226465359
    [Google Scholar]
  37. WangH. YangX. LiuA. WangG. BoslandM.C. YangC.S. δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten−/− mice.Carcinogenesis201839215816910.1093/carcin/bgx12829121168
    [Google Scholar]
  38. FazzioA. MarilleyD. AzziA. The effect of α-Tocopherol and β-tocopherol on proliferation, protein kinase C activity and gene expression in different cell lines.IUBMB Life19974119310110.1080/152165497002011019043639
    [Google Scholar]
  39. ZinggJ.M. Vitamin E: Regulatory role on signal transduction.IUBMB Life201971445647810.1002/iub.198630556637
    [Google Scholar]
  40. YokoyamaT. MiyazawaK. YoshidaT. OhyashikiK. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines.Int. J. Oncol.2005261334010.3892/ijo.26.1.3315586222
    [Google Scholar]
  41. YaoY. LiL. ZhangH. JiaR. LiuB. ZhaoX. ZhangL. QianG. FanX. GeS. Enhanced therapeutic efficacy of vitamin K2 by silencing BCL-2 expression in SMMC-7721 hepatocellular carcinoma cells.Oncol. Lett.20124116316710.3892/ol.2012.68222807981
    [Google Scholar]
  42. RossiE. HungJ. BeilbyJ. KnuimanM. DivitiniM. BartholomewH. Folate levels and cancer morbidity and mortality: Prospective cohort study from Busselton, Western Australia.Ann. Epidemiol.200616320621210.1016/j.annepidem.2005.03.01016343942
    [Google Scholar]
  43. PelucchiC. GaleoneC. TalaminiR. NegriE. ParpinelM. FranceschiS. MontellaM. La VecchiaC. Dietary folate and risk of prostate cancer in Italy.Cancer Epidemiol. Biomarkers Prev.200514494494810.1158/1055‑9965.EPI‑04‑078715824168
    [Google Scholar]
  44. StevensV.L. RodriguezC. PavluckA.L. McCulloughM.L. ThunM.J. CalleE.E. Folate nutrition and prostate cancer incidence in a large cohort of US men.Am. J. Epidemiol.20061631198999610.1093/aje/kwj12616554345
    [Google Scholar]
  45. DonkenaK.V. KarnesR.J. YoungC.Y.F. Vitamins and prostate cancer risk.Molecules20101531762178310.3390/molecules1503176220336012
    [Google Scholar]
  46. ChangH.K. ShinM.S. YangH.Y. LeeJ.W. KimY.S. LeeM.H. KimJ. KimK.H. KimC.J. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells.Biol. Pharm. Bull.20062981597160210.1248/bpb.29.159716880611
    [Google Scholar]
  47. IntegrativeP. Laetrile/Amygdalin (PDQ®): Health Professional Version.PDQ Cancer Information Summaries2002
    [Google Scholar]
  48. BaiX.Y. QuX. JiangX. XuZ. YangY. SuQ. WangM. WuH. Association between dietary vitamin C intake and risk of prostate cancer: A meta-analysis involving 103,658 subjects.J. Cancer20156991392110.7150/jca.1216226284143
    [Google Scholar]
  49. AbiriB. VafaM. Vitamin C and cancer: The role of vitamin C in disease progression and quality of life in cancer patients.Nutr. Cancer20217381282129210.1080/01635581.2020.179569232691657
    [Google Scholar]
  50. MenonM. MaramagC. MalhotraR.K. SeethalakshmiL. Effect of vitamin C on androgen independent prostate cancer cells (PC3 and Mat-Ly-Lu) in vitro : Involvement of reactive oxygen species-effect on cell number, viability and DNA synthesis.Cancer Biochem. Biophys.1998161-217309923964
    [Google Scholar]
  51. TalibW.H. Ahmed Jum’AHD.A. AttallahZ.S. JalladM.S. Al KuryL.T. HadiR.W. MahmodA.I. Role of vitamins A, C, D, E in cancer prevention and therapy: Therapeutic potentials and mechanisms of action.Front. Nutr.202410128187910.3389/fnut.2023.128187938274206
    [Google Scholar]
  52. WangQ. HeY. ShenY. ZhangQ. ChenD. ZuoC. QinJ. WangH. WangJ. YuY. Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4.J. Biol. Chem.201428917116811169410.1074/jbc.M113.51758124619416
    [Google Scholar]
  53. KovalenkoP.L. ZhangZ. CuiM. ClintonS.K. FleetJ.C. 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1.BMC Genomics20101112610.1186/1471‑2164‑11‑2620070897
    [Google Scholar]
  54. AjibadeA.A. KirkJ.S. KarasikE. GillardB. MoserM.T. JohnsonC.S. TrumpD.L. FosterB.A. Early growth inhibition is followed by increased metastatic disease with vitamin D (calcitriol) treatment in the TRAMP model of prostate cancer.PLoS One201492e8955510.1371/journal.pone.008955524586868
    [Google Scholar]
  55. CarlbergC. MuñozA. An update on vitamin D signaling and cancer.Seminars in cancer biology.Elsevier202210.1016/j.semcancer.2020.05.018
    [Google Scholar]
  56. GreenwaldP. CliffordC.K. MilnerJ.A. Diet and cancer prevention.Eur. J. Cancer200137894896510.1016/S0959‑8049(01)00070‑311334719
    [Google Scholar]
  57. DasariS. AliS.M. ZhengG. ChenA. DontarajuV.S. BoslandM.C. Kajdacsy-BallaA. MunirathinamG. Vitamin K and its analogs: Potential avenues for prostate cancer management.Oncotarget2017834577825779910.18632/oncotarget.1799728915711
    [Google Scholar]
  58. VinjamuriS. DontarajuV.S. MunirathinamG. Prostate cancer and applications of vitamin K.Molecular nutrition.Elsevier202061362910.1016/B978‑0‑12‑811907‑5.00027‑0
    [Google Scholar]
  59. SilerU. BarellaL. SpitzerV. SchnorrJ. LeinM. GoralczykR. WertzK. Lycopene and Vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model.FASEB J.20041891019102110.1096/fj.03‑1116fje15084515
    [Google Scholar]
  60. WangH. YanW. SunY. YangC.S. δ-Tocotrienol is the most potent vitamin E form in inhibiting prostate cancer cell growth and inhibits prostate carcinogenesis in Ptenp−/− mice.Cancer Prev. Res.202215423324510.1158/1940‑6207.CAPR‑21‑050835144931
    [Google Scholar]
  61. NimptschK. RohrmannS. LinseisenJ. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European prospective investigation into cancer and nutrition (EPIC-Heidelberg).Am. J. Clin. Nutr.200887498599210.1093/ajcn/87.4.98518400723
    [Google Scholar]
  62. OliverT.R.D. NedjaiB. Abstract B034: A scoping review of carcinogenic potential in prostate cancer from 40+ years of functional vitamin D and K deficiency.Cancer Res.20238311_SupplementSuppl.B034B03410.1158/1538‑7445.PRCA2023‑B034
    [Google Scholar]
  63. ChenA. Vitamin K: New insights related to senescence and cancer metastasis.Biochim. Biophys. Acta Rev. Cancer202418792189057
    [Google Scholar]
  64. EvanG.I. WyllieA.H. GilbertC.S. LittlewoodT.D. LandH. BrooksM. WatersC.M. PennL.Z. HancockD.C. Induction of apoptosis in fibroblasts by c-myc protein.Cell199269111912810.1016/0092‑8674(92)90123‑T1555236
    [Google Scholar]
  65. LiZ. Drug repurposing of asparaginase and vitamin C targeting glutamine synthetase improves anticancer effect in metastatic castration-resistant prostate cancer.Res. Square202210.21203/rs.3.rs‑1102647/v1
    [Google Scholar]
  66. LuH. MeiC. YangL. ZhengJ. TongJ. DuanF. LiangH. HongL. PPM-18, an analog of vitamin K, induces autophagy and apoptosis in bladder cancer cells through ROS and AMPK signaling pathways.Front. Pharmacol.20211268491510.3389/fphar.2021.68491534305598
    [Google Scholar]
  67. PandaP.K. Ionically gelled gellan gum in drug delivery.Ionically Gelled Biopolysaccharide Based Systems in Drug DeliverySpringer2021556910.1007/978‑981‑16‑2271‑7_3
    [Google Scholar]
  68. DasP.M. SingalR. DNA methylation and cancer.J. Clin. Oncol.200422224632464210.1200/JCO.2004.07.15115542813
    [Google Scholar]
  69. JohanssonM. Van GuelpenB. VollsetS.E. HultdinJ. BerghA. KeyT. MidttunØ. HallmansG. UelandP.M. StattinP. One-carbon metabolism and prostate cancer risk: Prospective investigation of seven circulating B vitamins and metabolites.Cancer Epidemiol. Biomarkers Prev.20091851538154310.1158/1055‑9965.EPI‑08‑119319423531
    [Google Scholar]
  70. VlajinacH.D. MarinkovićJ.M. IlićM.D. KocevN.I. Diet and prostate cancer: A case-control study.Eur. J. Cancer199733110110710.1016/S0959‑8049(96)00373‑59071908
    [Google Scholar]
  71. BassettJ.K. SeveriG. HodgeA.M. BagliettoL. HopperJ.L. EnglishD.R. GilesG.G. Dietary intake of B vitamins and methionine and prostate cancer incidence and mortality.Cancer Causes Control201223685586310.1007/s10552‑012‑9954‑522527163
    [Google Scholar]
  72. PullarJ. CarrA. VissersM. The roles of vitamin C in skin health.Nutrients20179886610.3390/nu908086628805671
    [Google Scholar]
  73. MorettiM. FragaD.B. RodriguesA.L.S. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases.CNS Neurosci. Ther.2017231292192910.1111/cns.1276728980404
    [Google Scholar]
  74. NgoB. Van RiperJ.M. CantleyL.C. YunJ. Targeting cancer vulnerabilities with high-dose vitamin C.Nat. Rev. Cancer201919527128210.1038/s41568‑019‑0135‑730967651
    [Google Scholar]
  75. NaumanG. GrayJ.C. ParkinsonR. LevineM. PallerC.J. Systematic review of intravenous ascorbate in cancer clinical trials.Antioxidants2018778910.3390/antiox707008930002308
    [Google Scholar]
  76. AbbasiA. Mostafavi-PourZ. AmiriA. KeshavarziF. NejabatN. RamezaniF. SardarianA. ZalF. Chemoprevention of prostate cancer cells by vitamin C plus quercetin: Role of Nrf2 in inducing oxidative stress.Nutr. Cancer202173102003201310.1080/01635581.2020.181934632924610
    [Google Scholar]
  77. PandeD. Simultaneous progression of oxidative stress, angiogenesis, and cell proliferation in prostate carcinoma.Urologic oncology: Seminars and original investigations.Elsevier2013
    [Google Scholar]
  78. OhB. FigtreeG. CostaD. EadeT. HrubyG. LimS. ElfikyA. MartineN. RosenthalD. ClarkeS. BackM. Oxidative stress in prostate cancer patients: A systematic review of case control studies.Prostate Int.201643718710.1016/j.prnil.2016.05.00227689064
    [Google Scholar]
  79. BattistiV. MadersL.D.K. BagatiniM.D. ReetzL.G.B. ChiesaJ. BattistiI.E. GonçalvesJ.F. DuarteM.M.F. SchetingerM.R.C. MorschV.M. Oxidative stress and antioxidant status in prostate cancer patients: Relation to Gleason score, treatment and bone metastasis.Biomed. Pharmacother.201165751652410.1016/j.biopha.2011.06.00321993000
    [Google Scholar]
  80. PawlowskaE. SzczepanskaJ. BlasiakJ. Pro-and antioxidant effects of vitamin C in cancer in correspondence to its dietary and pharmacological concentrations.Oxid. Med. Cell. Longev.20192019728673710.1155/2019/7286737
    [Google Scholar]
  81. KilincK. DemirS. TuranI. MenteseA. OremA. SonmezM. AliyaziciogluY. Rosa canina extract has antiproliferative and proapoptotic effects on human lung and prostate cancer cells.Nutr. Cancer202072227328210.1080/01635581.2019.162593631184219
    [Google Scholar]
  82. MikirovaN. HunninghakeR. Changes in the rate of PSA progression and the level of alkaline phosphatase during high dose vitamin C treatment of patients with prostate cancer.Funct. Food Health Dis.20177751152810.31989/ffhd.v7i7.360
    [Google Scholar]
  83. FukumuraH. SatoM. KezukaK. SatoI. FengX. OkumuraS. FujitaT. YokoyamaU. EguchiH. IshikawaY. SaitoT. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells.J. Physiol. Sci.201262325125710.1007/s12576‑012‑0204‑022392350
    [Google Scholar]
  84. ChenF. WangC.C. KimE. HarrisonL.E. Hyperthermia in combination with oxidative stress induces autophagic cell death in HT-29 colon cancer cells.Cell Biol. Int.200832771572310.1016/j.cellbi.2008.02.01018396422
    [Google Scholar]
  85. Jiménez-AliagaK. Bermejo-BescósP. BenedíJ. Martín-AragónS. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells.Life Sci.20118925-2693994510.1016/j.lfs.2011.09.02322008478
    [Google Scholar]
  86. ChakrabortyA. JanaN.R. Vitamin C-conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses.ACS Appl. Mater. Interfaces2017948418074181710.1021/acsami.7b1605529135217
    [Google Scholar]
  87. WittrupA. AiA. LiuX. HamarP. TrifonovaR. CharisseK. ManoharanM. KirchhausenT. LiebermanJ. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown.Nat. Biotechnol.201533887087610.1038/nbt.329826192320
    [Google Scholar]
  88. PasqualiD. RossiV. BellastellaG. BellastellaA. SinisiA. Natural and synthetic retinoids in prostate cancer.Curr. Pharm. Des.200612151923192910.2174/13816120677687355416724957
    [Google Scholar]
  89. Lima-AntoineL. de Sousa Alves NeriJ.L. de MeloT.C.T. LeiteI.S.F. da Costa SantosD.M. de AraújoJ.N.G. da Costa Lemos SilvaA.G. de AraújoN.K. de Oliveira RamosC.C. de Miranda Henriques TarrappS.R. LuchessiA.D. de Oliveira LyraC. da Silva RibeiroK.D. SilbigerV.N. Histopathological prognosis of papillary thyroid carcinoma associated with nutritional status of vitamins A and E.Eur. J. Clin. Nutr.202276346947610.1038/s41430‑021‑00976‑534230633
    [Google Scholar]
  90. HammondL.A. KrinksC.H.V. DurhamJ. TomkinsS.E. BurnettR.D. JonesE.L. ChandraratnaR A S. BrownG. Antagonists of retinoic acid receptors (RARs) are potent growth inhibitors of prostate carcinoma cells.Br. J. Cancer200185345346210.1054/bjoc.2001.193911487280
    [Google Scholar]
  91. BahmadH.F. SammanH. MonzerA. HadadehO. CheaitoK. Abdel-SamadR. HayarB. PisanoC. MsheikH. LiuY.N. DarwicheN. Abou-KheirW. The synthetic retinoid ST1926 attenuates prostate cancer growth and potentially targets prostate cancer stem-like cells.Mol. Carcinog.20195871208122010.1002/mc.2300430883933
    [Google Scholar]
  92. SchwartzG.G. HulkaB.S. Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis).Anticancer Res.1990105A130713112241107
    [Google Scholar]
  93. Nair-ShallikerV. SmithD.P. GebskiV. PatelM.I. FrydenbergM. YaxleyJ.W. GardinerR. EspinozaD. KimlinM.G. FenechM. GillattD. WooH. ArmstrongB.K. RasiahK. AwadN. SymonsJ. GurneyH. High-dose vitamin D supplementation to prevent prostate cancer progression in localised cases with low-to-intermediate risk of progression on active surveillance (ProsD): protocol of a phase II randomised controlled trial.BMJ Open2021113e04405510.1136/bmjopen‑2020‑04405533653757
    [Google Scholar]
  94. AmadiC. OrluweneC. AmadiB. Serum vitamin D level status by prostate cancer grade and stage among native Africans.Afr. J. Lab. Med.202271615
    [Google Scholar]
  95. TuohimaaP. TenkanenL. AhonenM. LummeS. JellumE. HallmansG. StattinP. HarveiS. HakulinenT. LuostarinenT. DillnerJ. LehtinenM. HakamaM. Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: A longitudinal, nested case-control study in the Nordic countries.Int. J. Cancer2004108110410810.1002/ijc.1137514618623
    [Google Scholar]
  96. ZafalonR.V.A. RubertiB. RentasM.F. AmaralA.R. VendraminiT.H.A. ChacarF.C. KogikaM.M. BrunettoM.A. The role of vitamin D in small animal bone metabolism.Metabolites2020101249610.3390/metabo1012049633287408
    [Google Scholar]
  97. SheeleyM.P. Vitamin D regulation of energy metabolism in cancer.Br. J. Pharmacol.202133651382
    [Google Scholar]
  98. TrumpD. Aragon-ChingJ. Vitamin D in prostate cancer.Asian J. Androl.201820324425210.4103/aja.aja_14_1829667615
    [Google Scholar]
  99. SkowronskiR.J. PeehlD.M. FeldmanD. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines.Endocrinology199313251952196010.1210/endo.132.5.76829377682937
    [Google Scholar]
  100. JohnsonJ.R. Woods-BurnhamL. HookerS.E.Jr BataiK. KittlesR.A. Genetic contributions to prostate cancer disparities in men of west african descent.Front. Oncol.20211177050010.3389/fonc.2021.77050034820334
    [Google Scholar]
  101. BataiK. MurphyA.B. NonnL. KittlesR.A. Vitamin D and immune response: Implications for prostate cancer in African Americans.Front. Immunol.201675310.3389/fimmu.2016.0005326941739
    [Google Scholar]
  102. DimitrovV. BarbierC. IsmailovaA. WangY. DmowskiK. Salehi-TabarR. MemariB. Groulx-BoivinE. WhiteJ.H. Vitamin D-regulated gene expression profiles: Species-specificity and cell-specific effects on metabolism and immunity.Endocrinology20211622bqaa21810.1210/endocr/bqaa21833249469
    [Google Scholar]
  103. KrishnanA.V. PeehlD.M. FeldmanD. Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression.J. Cell. Biochem.200388236337110.1002/jcb.1033412520538
    [Google Scholar]
  104. AhnJ. ParkS. ZunigaB. BeraA. SongC.S. ChatterjeeB. Vitamin D in prostate cancer.Vitam. Horm.201610032135510.1016/bs.vh.2015.10.01226827958
    [Google Scholar]
  105. TraberM. Vitamin E. Modern Nutrition in Health and Disease. ShilsM.E. ShikeM. RossA.C. CaballeroB. CousinsR.J. PhiladelphiaLippincott Williams & Wilkins2006
    [Google Scholar]
  106. KleinE.A. ThompsonI.M.Jr TangenC.M. CrowleyJ.J. LuciaM.S. GoodmanP.J. MinasianL.M. FordL.G. ParnesH.L. GazianoJ.M. KarpD.D. LieberM.M. WaltherP.J. KlotzL. ParsonsJ.K. ChinJ.L. DarkeA.K. LippmanS.M. GoodmanG.E. MeyskensF.L.Jr BakerL.H. Vitamin E and the risk of prostate cancer.JAMA2011306141549155610.1001/jama.2011.143721990298
    [Google Scholar]
  107. ConstantinouC. CharalambousC. KanakisD. Vitamin E and cancer: An update on the emerging role of γ and δ tocotrienols.Eur. J. Nutr.202059384585710.1007/s00394‑019‑01962‑131016386
    [Google Scholar]
  108. ConstantinouC. HyattJ.A. VrakaP.S. PapasA. PapasK.A. NeophytouC. HadjivassiliouV. ConstantinouA.I. Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives.Nutr. Cancer200961686487410.1080/0163558090328513020155628
    [Google Scholar]
  109. LawrenceW.R. LimJ.E. HuangJ. WeinsteinS.J. MӓnnistӧS. AlbanesD. A 28-year prospective analysis of serum vitamin E, vitamin E-related genetic variation and risk of prostate cancer.Prostate Cancer Prostatic Dis.202225355356010.1038/s41391‑022‑00511‑y35197557
    [Google Scholar]
  110. Van VleetJ.F. GreenwoodL.A. RebarA.H. Effect of selenium-vitamin E on hematologic alterations of adriamycin toxicosis in young pigs.Am. J. Vet. Res.1981427115311597271034
    [Google Scholar]
  111. Van VleetJ.F. FerransV.J. Evaluation of vitamin E and selenium protection against chronic adriamycin toxicity in rabbits.Cancer Treat. Rep.1980642-33153177407765
    [Google Scholar]
  112. LippmanS.M. KleinE.A. GoodmanP.J. LuciaM.S. ThompsonI.M. FordL.G. ParnesH.L. MinasianL.M. GazianoJ.M. HartlineJ.A. ParsonsJ.K. BeardenJ.D.III CrawfordE.D. GoodmanG.E. ClaudioJ. WinquistE. CookE.D. KarpD.D. WaltherP. LieberM.M. KristalA.R. DarkeA.K. ArnoldK.B. GanzP.A. SantellaR.M. AlbanesD. TaylorP.R. ProbstfieldJ.L. JagpalT.J. CrowleyJ.J. MeyskensF.L.Jr BakerL.H. ColtmanC.A.Jr Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT).JAMA20093011395110.1001/jama.2008.86419066370
    [Google Scholar]
  113. RipollE.A.P. RamaB.N. WebberM.M. Vitamin E enhances the chemotherapeutic effects of adriamycin on human prostatic carcinoma cells in vitro .J. Urol.1986136252953110.1016/S0022‑5347(17)44937‑83735528
    [Google Scholar]
  114. KelloffG.J. CrowellJ.A. BooneC.W. SteeleV.E. LubetR.A. GreenwaldP. AlbertsD.S. CoveyJ.M. DoodyL.A. KnappG.G. Clinical development plan: Vitamin E.J. Cell. Biochem. Suppl.1994202822997616751
    [Google Scholar]
  115. IsraelK. SandersB.G. KlineK. RRR-alpha-tocopheryl succinate inhibits the proliferation of human prostatic tumor cells with defective cell cycle/differentiation pathways.Nutr. Cancer1995242161169
    [Google Scholar]
  116. NagataS. GolsteinP. The Fas death factor.Science199526752031449145610.1126/science.75333267533326
    [Google Scholar]
  117. IsraelK. YuW. SandersB.G. KlineK. Vitamin E succinate induces apoptosis in human prostate cancer cells: role for Fas in vitamin E succinate-triggered apoptosis.Nutr. Cancer20003619010010.1207/S15327914NC3601_1310798221
    [Google Scholar]
  118. RaikwarS. Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: An emerging landscape.Expert Opin. Drug Deliv.202219324726810.1080/17425247.2022.2044785
    [Google Scholar]
  119. ChoudhuryH. GorainB. PandeyM. KumbharS.A. TekadeR.K. IyerA.K. KesharwaniP. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy.Int. J. Pharm.20175291-250652210.1016/j.ijpharm.2017.07.01828711640
    [Google Scholar]
  120. TanS. ZouC. ZhangW. YinM. GaoX. TangQ. Recent developments in d -α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy.Drug Deliv.20172411831184210.1080/10717544.2017.140656129182031
    [Google Scholar]
  121. GorainB. ChoudhuryH. PandeyM. KesharwaniP. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy.Mater. Sci. Eng. C20189186888010.1016/j.msec.2018.05.05430033322
    [Google Scholar]
  122. IftimiA.A. Rodríguez-BernalC.L. PeiróS. BonanadS. Ferrero-GregoriA. HurtadoI. García-SempereA. Sanfélix-GimenoG. Association of vitamin K and non-vitamin K oral anticoagulant use and cancer incidence in atrial fibrillation patients.Clin. Pharmacol. Ther.2022111120020810.1002/cpt.236234242404
    [Google Scholar]
  123. KnapenM.H.J. BraamL.A.J.L.M. TeunissenK.J. ZwijsenR.M.L. TheuwissenE. VermeerC. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population.J. Nutr. Sci.20154e3510.1017/jns.2015.2526495126
    [Google Scholar]
  124. MladěnkaP. MacákováK. Kujovská KrčmováL. JavorskáL. MrštnáK. CarazoA. ProttiM. RemiãoF. NovákováL. OEMONOM researchers and collaborators Vitamin K – Sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity.Nutr. Rev.202280467769810.1093/nutrit/nuab06134472618
    [Google Scholar]
  125. Bailon-MoscosoN. Cevallos-SolorzanoG. Romero-BenavidesJ. Ramirez OrellanaM. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies.Curr. Genomics201718210613110.2174/138920291766616080812564528367072
    [Google Scholar]
  126. NishikawaY. CarrB.I. WangM. KarS. FinnF. DowdP. ZhengZ.B. KernsJ. NaganathanS. Growth inhibition of hepatoma cells induced by vitamin K and its analogs.J. Biol. Chem.199527047283042831010.1074/jbc.270.47.283047499329
    [Google Scholar]
  127. DasariS. SamyA.L.P.A. Kajdacsy-BallaA. BoslandM.C. MunirathinamG. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling.Food Chem. Toxicol.201811521822710.1016/j.fct.2018.02.01829432837
    [Google Scholar]
  128. RahmanianN. EskandaniM. BararJ. OmidiY. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines.J. Drug Target.201725320221510.1080/1061186X.2016.123847527646598
    [Google Scholar]
  129. WangQ. ZhangX. SunY. WangL. DingL. ZhuW.H. DiW. DuanY.R. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer.Biomaterials2019212738610.1016/j.biomaterials.2019.05.00931108274
    [Google Scholar]
  130. PandaP.K. Application potential of Pectin in drug delivery.1st edApple Academic Press201910.1201/9780429328251‑4
    [Google Scholar]
  131. PandaP.K. VermaA. JainS.K. Etherified polysaccharides in biomedical applications.Tailor-Made Polysaccharides in Biomedical Applications.Elsevier2020355010.1016/B978‑0‑12‑821344‑5.00002‑3
    [Google Scholar]
  132. TiwariA. SarafS. JainA. PandaP.K. VermaA. JainS.K. Basics to advances in nanotherapy of colorectal cancer.Drug Deliv. Transl. Res.202010231933810.1007/s13346‑019‑00680‑931701486
    [Google Scholar]
  133. MuthuM.S. KulkarniS.A. RajuA. FengS.S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots.Biomaterials201233123494350110.1016/j.biomaterials.2012.01.03622306020
    [Google Scholar]
  134. RajuA. MuthuM.S. FengS.S. Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel.Expert Opin. Drug Deliv.201310674776010.1517/17425247.2013.77742523458409
    [Google Scholar]
  135. QuG. WuX. YinL. ZhangC. N-octyl-O-sulfate chitosan-modified liposomes for delivery of docetaxel: Preparation, characterization, and pharmacokinetics.Biomed. Pharmacother.2012661465110.1016/j.biopha.2011.09.01022264883
    [Google Scholar]
  136. YamamotoY. YoshidaM. SatoM. SatoK. KikuchiS. SugishitaH. KuwabaraJ. MatsunoY. KojimaY. MorimotoM. HoriuchiA. WatanabeY. Feasibility of tailored, selective and effective anticancer chemotherapy by direct injection of docetaxel-loaded immunoliposomes into Her2/neu positive gastric tumor xenografts.Int. J. Oncol.2011381333921109923
    [Google Scholar]
  137. ZhaoJ. MiY. FengS.S. Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles.Biomaterials201334133411342110.1016/j.biomaterials.2013.01.00923375951
    [Google Scholar]
  138. DevalapallyH. ShenoyD. LittleS. LangerR. AmijiM. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.Cancer Chemother. Pharmacol.200759447748410.1007/s00280‑006‑0287‑516862429
    [Google Scholar]
  139. ZhaoS. TanS. GuoY. HuangJ. ChuM. LiuH. ZhangZ. pH-sensitive docetaxel-loaded D-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance.Biomacromolecules20131482636264610.1021/bm400511323815156
    [Google Scholar]
  140. GanjuA. YallapuM.M. KhanS. BehrmanS.W. ChauhanS.C. JaggiM. Nanoways to overcome docetaxel resistance in prostate cancer.Drug Resist. Updat.2014171-2132310.1016/j.drup.2014.04.00124853766
    [Google Scholar]
  141. Isaac-LamM.F. MeeA.D. Photodynamic activity of vitamin-chlorin conjugates at nanomolar concentrations against triple-negative breast cancer cells.ACS Omega2019422907292010.1021/acsomega.8b02323
    [Google Scholar]
  142. HudiyantiD. FawrinH. SiahaanP. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes.IOP conference series: materials science and engineering.IOP Publishing201810.1088/1757‑899X/349/1/012014
    [Google Scholar]
  143. FamuyiwaT.O. Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination.Florida Atlantic University2021
    [Google Scholar]
  144. RayR. Anti-proliferative and anti-tumor effects of a novel vitamin D derivative, either alone or in a liposomal formulation in malignancies of kidney, pancreas and prostate.AACR2010
    [Google Scholar]
  145. LimpensJ. SchröderF.H. de RidderC.M.A. BolderC.A. WildhagenM.F. Obermüller-JevicU.C. KrämerK. van WeerdenW.M. Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice.J. Nutr.200613651287129310.1093/jn/136.5.128716614418
    [Google Scholar]
  146. De LaurenziV. MelinoG. SaviniI. Annicchiarico-PetruzzelliM. Finazzi-AgròA. AviglianoL. Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines.Eur. J. Cancer199531446346610.1016/0959‑8049(95)00059‑R7576946
    [Google Scholar]
  147. TaperH.S. De GerlacheJ. LansM. RoberfroidM. Non-toxic potentiation of cancer chemotherapy by combined C and K 3 vitamin pre-treatment.Int. J. Cancer198740457557910.1002/ijc.29104004243666992
    [Google Scholar]
  148. TaperH.S. JamisonJ.M. GilloteauxJ. GwinC.A. GordonT. SummersJ.L. in vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K(3) combination.J. Histochem. Cytochem.200149110911910.1177/00221554010490011111118483
    [Google Scholar]
  149. JamisonJ.M. GilloteauxJ. TaperH.S. Activity of Vitamin C: K.Combinations Against Prostate Cancer2004
    [Google Scholar]
  150. JamisonJ.M. SummersJ.L. GilloteauxJ. TaperH.S. Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer.J. Nutr.20011311158S160S10.1093/jn/131.1.158S11208954
    [Google Scholar]
  151. ZhaoX.Y. LyL.H. PeehlD.M. FeldmanD. 1α,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent.Endocrinology199713883290329810.1210/endo.138.8.53289231780
    [Google Scholar]
  152. ShaJ. PanJ. PingP. XuanH. LiD. BoJ. LiuD. HuangY. Synergistic effect and mechanism of vitamin A and vitamin D on inducing apoptosis of prostate cancer cells.Mol. Biol. Rep.20134042763276810.1007/s11033‑012‑1925‑023436065
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501314558240822082557
Loading
/content/journals/cdt/10.2174/0113894501314558240822082557
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; nanocarriers; prevention; progression; prostate cancer; targeting; Vitamins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test