Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Obesity is a significant health concern due to its rapid increase worldwide. It has been linked to the pathogenic factors of renal diseases, cancer, cardiovascular diseases, hypertension, dyslipidemia, and type 2 diabetes. Notably, obesity raises the likelihood of developing chronic kidney disease (CKD), leading to higher adult mortality and morbidity rates. This study explores the molecular mechanisms that underlie obesity-associated nephropathy and its clinical implications. Obesity-Associated Nephropathy (OAN) develops and worsens due to insulin resistance and hyperinsulinemia, which promote renal sodium reabsorption, glomerular hyperfiltration, and hypertension, leading to progressive kidney damage. Renal damage is further aggravated by persistent inflammation and redox damage, mediated by adipokines and proinflammatory cytokines, such as TNF-α and IL-6. Furthermore, stimulation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS) intensifies glomerular hypertension and fibrosis. These elements cause glomerular hyperfiltration, renal hypertrophy, and progressive kidney damage. Clinical manifestations of obesity-associated nephropathy include proteinuria, reduced glomerular filtration rate (GFR), and ultimately, CKD. Management strategies currently focus on lifestyle modifications, such as weight loss through diet and exercise, which have been effective in reducing proteinuria and improving GFR. Pharmacological treatments targeting metabolic pathways, including GLP-1 receptor agonists and SGLT2 inhibitors, have shown renoprotective properties. Additionally, traditional RAAS inhibitors offer therapeutic benefits. Early detection and comprehensive management of OAN are essential to prevent its progression and lessen the burden of CKD.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501314788241008115712
2024-10-14
2025-04-20
Loading full text...

Full text loading...

References

  1. ConsultationW.H.O.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.Lancet2004363940315716310.1016/S0140‑6736(03)15268‑314726171
    [Google Scholar]
  2. TavassolyI. BarbieriV. van HasseltC. MartinezP. SobieE.A. HansenJ. AzelogluE. GoldfarbJ. SanseauP. RajpalD.K. IyengarR. A tissue-and organ-based cell biological atlas of obesity-related human genes and cellular pathways.bioRxiv202010.1101/2020.03.16.993824
    [Google Scholar]
  3. ConsultationW.H. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation.World Health Organ. Tech. Rep. Ser.2000894ixii, 1-25311234459
    [Google Scholar]
  4. El NahasA.M. BelloA.K. Chronic kidney disease: The global challenge.Lancet2005365945633134010.1016/S0140‑6736(05)17789‑715664230
    [Google Scholar]
  5. LiP.K. BurdmannE.A. MehtaR.L. Acute kidney injury: Global health alert.Arab J. Nephrol. Transplant.201362758123795368
    [Google Scholar]
  6. PrebleW. Obesity: Observations on one thousand cases.Boston Med. Surg. J.19231881761762110.1056/NEJM192304261881701
    [Google Scholar]
  7. HsuC. McCullochC.E. IribarrenC. DarbinianJ. GoA.S. Body mass index and risk for end-stage renal disease.Ann. Intern. Med.20061441212810.7326/0003‑4819‑144‑1‑200601030‑0000616389251
    [Google Scholar]
  8. AlizadehS. EsmaeiliH. AlizadehM. DaneshzadE. SharifiL. RadfarH. RadaeiM.K. Metabolic phenotypes of obese, overweight, and normal weight individuals and risk of chronic kidney disease: a systematic review and meta-analysis.Arch. Endocrinol. Metab.201963442743710.20945/2359‑399700000014931365625
    [Google Scholar]
  9. MaaloufN.M. SakhaeeK. ParksJ.H. CoeF.L. Adams-HuetB. PakC.Y.C. Association of urinary pH with body weight in nephrolithiasis.Kidney Int.20046541422142510.1111/j.1523‑1755.2004.00522.x15086484
    [Google Scholar]
  10. SienerR. GlatzS. NicolayC. HesseA. The role of overweight and obesity in calcium oxalate stone formation.Obes. Res.200412110611310.1038/oby.2004.1414742848
    [Google Scholar]
  11. TessaroC.Z.W. RamosC.I. HeilbergI.P. Influence of nutritional status, laboratory parameters and dietary patterns upon urinary acid excretion in calcium stone formers.J. Bras. Nefrol.2018401354310.1590/2175‑8239‑jbn‑381429796583
    [Google Scholar]
  12. PooreW. BoydC.J. SinghN.P. WoodK. GowerB. AssimosD.G. Obesity and its impact on kidney stone formation.Rev. Urol.2020221172332523467
    [Google Scholar]
  13. FoxC.S. LarsonM.G. LeipE.P. CulletonB. WilsonP.W. LevyD. Predictors of new-onset kidney disease in a community-based population.JAMA2004291784485010.1001/jama.291.7.84414970063
    [Google Scholar]
  14. JohnsonR.J. Sanchez-LozadaL.G. NakagawaT. The effect of fructose on renal biology and disease.J. Am. Soc. Nephrol.201021122036203910.1681/ASN.201005050621115612
    [Google Scholar]
  15. AstonL.M. Glycaemic index and metabolic disease risk.Proc. Nutr. Soc.200665112513410.1079/PNS200548516441952
    [Google Scholar]
  16. RüsterC WolfG The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases.Semin Nephrol.2013331445310.1016/j.semnephrol.2012.12.002
    [Google Scholar]
  17. Rubin-KelleyV.E. JevnikarA.M. Antigen presentation by renal tubular epithelial cells.J. Am. Soc. Nephrol.199121132610.1681/ASN.V21131912411
    [Google Scholar]
  18. DeclèvesA.E. MathewA.V. CunardR. SharmaK. AMPK mediates the initiation of kidney disease induced by a high-fat diet.J. Am. Soc. Nephrol.201122101846185510.1681/ASN.201101002621921143
    [Google Scholar]
  19. ChenS. ZhouS. WuB. ZhaoY. LiuX. LiangY. ShaoX. HolthöferH. ZouH. Association between metabolically unhealthy overweight/obesity and chronic kidney disease: The role of inflammation.Diabetes Metab.201440642343010.1016/j.diabet.2014.08.00525451190
    [Google Scholar]
  20. WangH. LiJ. GaiZ. Kullak-UblickG.A. LiuZ. TNF-α deficiency prevents renal inflammation and oxidative stress in obese mice.Kidney Blood Press. Res.201742341642710.1159/00047886928683439
    [Google Scholar]
  21. WenY. LuX. RenJ. PrivratskyJ.R. YangB. RudemillerN.P. ZhangJ. GriffithsR. JainM.K. NedospasovS.A. LiuB.C. CrowleyS.D. KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis.J. Am. Soc. Nephrol.201930101925193810.1681/ASN.201902011131337692
    [Google Scholar]
  22. TherrienF.J. AgharaziiM. LebelM. LarivièreR. Neutralization of tumor necrosis factor-alpha reduces renal fibrosis and hypertension in rats with renal failure.Am. J. Nephrol.201236215116110.1159/00034003322813949
    [Google Scholar]
  23. EoH. ParkJ.E. JeonY. LimY. Ameliorative effect of ecklonia cava polyphenol extract on renal inflammation associated with aberrant energy metabolism and oxidative stress in high fat diet-induced obese mice.J. Agric. Food Chem.201765193811381810.1021/acs.jafc.7b0035728459555
    [Google Scholar]
  24. KizerJ.R. Adiponectin, cardiovascular disease, and mortality: Parsing the dual prognostic implications of a complex adipokine.Metabolism20146391079108310.1016/j.metabol.2014.06.01125038728
    [Google Scholar]
  25. SongS.H. OhT.R. ChoiH.S. KimC.S. MaS.K. OhK.H. AhnC. KimS.W. BaeE.H. High serum adiponectin as a biomarker of renal dysfunction: Results from the KNOW-CKD study.Sci. Rep.2020101559810.1038/s41598‑020‑62465‑232221363
    [Google Scholar]
  26. Kim-MitsuyamaS. SoejimaH. YasudaO. NodeK. JinnouchiH. YamamotoE. SekigamiT. OgawaH. MatsuiK. Total adiponectin is associated with incident cardiovascular and renal events in treated hypertensive patients: subanalysis of the ATTEMPT-CVD randomized trial.Sci. Rep.2019911658910.1038/s41598‑019‑52977‑x31719604
    [Google Scholar]
  27. JiaT. CarreroJ.J. LindholmB. StenvinkelP. The complex role of adiponectin in chronic kidney disease.Biochimie201294102150215610.1016/j.biochi.2012.02.02422980197
    [Google Scholar]
  28. KimY. ParkC.W. Mechanisms of adiponectin action: Implication of adiponectin receptor agonism in diabetic kidney disease.Int. J. Mol. Sci.2019207178210.3390/ijms2007178230974901
    [Google Scholar]
  29. La RussaD. MarroneA. MandalàM. MacirellaR. PellegrinoD. Antioxidant/anti-inflammatory effects of caloric restriction in an aged and obese rat model: The role of adiponectin.Biomedicines202081253210.3390/biomedicines812053233255520
    [Google Scholar]
  30. CâmaraN.O.S. IsekiK. KramerH. LiuZ.H. SharmaK. Kidney disease and obesity: Epidemiology, mechanisms and treatment.Nat. Rev. Nephrol.201713318119010.1038/nrneph.2016.19128090083
    [Google Scholar]
  31. McArdleM.A. FinucaneO.M. ConnaughtonR.M. McMorrowA.M. RocheH.M. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies.Front. Endocrinol. (Lausanne)201345210.3389/fendo.2013.0005223675368
    [Google Scholar]
  32. AhmadI. ZelnickL.R. RobinsonN.R. HungA.M. KestenbaumB. UtzschneiderK.M. KahnS.E. de BoerI.H. Chronic kidney disease and obesity bias surrogate estimates of insulin sensitivity compared with the hyperinsulinemic euglycemic clamp.Am. J. Physiol. Endocrinol. Metab.20173123E175E18210.1152/ajpendo.00394.201628073780
    [Google Scholar]
  33. de BoerI.H. ZelnickL. AfkarianM. AyersE. CurtinL. HimmelfarbJ. IkizlerT.A. KahnS.E. KestenbaumB. UtzschneiderK. Impaired glucose and insulin homeostasis in moderate-severe CKD.J. Am. Soc. Nephrol.20162792861287110.1681/ASN.201507075626823551
    [Google Scholar]
  34. DuH. WangQ. YangX. Fu brick tea alleviates chronic kidney disease of rats with high fat diet consumption through attenuating insulin resistance in skeletal muscle.J. Agric. Food Chem.201967102839284710.1021/acs.jafc.8b0692730829482
    [Google Scholar]
  35. HallJ.E. do CarmoJ.M. da SilvaA.A. WangZ. HallM.E. Obesity-Induced Hypertension.Circ. Res.20151166991100610.1161/CIRCRESAHA.116.30569725767285
    [Google Scholar]
  36. TainY.L. LinY.J. SheenJ.M. YuH.R. TiaoM.M. ChenC.C. TsaiC.C. HuangL.T. HsuC.N. High fat diets sex-specifically affect the renal transcriptome and program obesity, kidney injury, and hypertension in the offspring.Nutrients20179435710.3390/nu904035728368364
    [Google Scholar]
  37. OhashiN. IshigakiS. IsobeS. The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin–angiotensin system in the kidney.Hypertens. Res.201942676176810.1038/s41440‑018‑0186‑230610209
    [Google Scholar]
  38. Passos-SilvaD.G. BrandanE. SantosR.A.S. Angiotensins as therapeutic targets beyond heart disease.Trends Pharmacol. Sci.201536531032010.1016/j.tips.2015.03.00125847571
    [Google Scholar]
  39. LiaoW.H. SuendermannC. SteuerA.E. Pacheco LopezG. OdermattA. FaresseN. HennebergM. LanghansW. Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity.JCI Insight2018314e9901510.1172/jci.insight.9901530046010
    [Google Scholar]
  40. van ZonneveldA.J. RabelinkT.J. Mesangial cells defy LDL receptor paradigm.Kidney Int.20016052037203810.1046/j.1523‑1755.2001.00023.x11703627
    [Google Scholar]
  41. LiZ. WoollardJ.R. WangS. KorsmoM.J. EbrahimiB. GrandeJ.P. TextorS.C. LermanA. LermanL.O. Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation.Am. J. Physiol. Renal Physiol.20113015F1078F108710.1152/ajprenal.00333.201121775485
    [Google Scholar]
  42. NishiH. HigashiharaT. InagiR. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction.Nutrients2019117166410.3390/nu1107166431330812
    [Google Scholar]
  43. MountP. DaviesM. ChoyS.W. CookN. PowerD. Obesity-related chronic kidney disease—the role of lipid metabolism.Metabolites20155472073210.3390/metabo504072026690487
    [Google Scholar]
  44. YangX. OkamuraD.M. LuX. ChenY. MoorheadJ. VargheseZ. RuanX.Z. CD36 in chronic kidney disease: Novel insights and therapeutic opportunities.Nat. Rev. Nephrol.2017131276978110.1038/nrneph.2017.12628919632
    [Google Scholar]
  45. Opazo-RíosL. MasS. Marín-RoyoG. MezzanoS. Gómez-GuerreroC. MorenoJ.A. EgidoJ. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities.Int. J. Mol. Sci.2020217263210.3390/ijms2107263232290082
    [Google Scholar]
  46. AdeosunS.O. GordonD.M. WeeksM.F. MooreK.H. HallJ.E. HindsT.D.Jr StecD.E. Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells.Am. J. Physiol. Renal Physiol.20183152F323F33110.1152/ajprenal.00495.201729631357
    [Google Scholar]
  47. WeinbergJ.M. Lipotoxicity.Kidney Int.20067091560156610.1038/sj.ki.500183416955100
    [Google Scholar]
  48. KatsoulierisE. MableyJ.G. SamaiM. SharpeM.A. GreenI.C. ChatterjeeP.K. Lipotoxicity in renal proximal tubular cells: Relationship between endoplasmic reticulum stress and oxidative stress pathways.Free Radic. Biol. Med.201048121654166210.1016/j.freeradbiomed.2010.03.02120363316
    [Google Scholar]
  49. HortonJ.D. ShahN.A. WarringtonJ.A. AndersonN.N. ParkS.W. BrownM.S. GoldsteinJ.L. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.Proc. Natl. Acad. Sci. USA200310021120271203210.1073/pnas.153492310014512514
    [Google Scholar]
  50. TominagaT. DuttaR.K. JoladarashiD. DoiT. ReddyJ.K. KanwarY.S. Transcriptional and translational modulation of myo-inositol oxygenase (Miox) by fatty acids: Implications in renal tubular injury induced in obesity and diabetes.J. Biol. Chem.201629131348136710.1074/jbc.M115.69819126578517
    [Google Scholar]
  51. ZhuQ. SchererP.E. Immunologic and endocrine functions of adipose tissue: Implications for kidney disease.Nat. Rev. Nephrol.201814210512010.1038/nrneph.2017.15729199276
    [Google Scholar]
  52. ChenY. VargheseZ. RuanX.Z. The molecular pathogenic role of inflammatory stress in dysregulation of lipid homeostasis and hepatic steatosis.Genes Dis.20141110611210.1016/j.gendis.2014.07.00730258859
    [Google Scholar]
  53. KangH.M. AhnS.H. ChoiP. KoY.A. HanS.H. ChingaF. ParkA.S.D. TaoJ. SharmaK. PullmanJ. BottingerE.P. GoldbergI.J. SusztakK. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.Nat. Med.2015211374610.1038/nm.376225419705
    [Google Scholar]
  54. YangP. XiaoY. LuoX. ZhaoY. ZhaoL. WangY. WuT. WeiL. ChenY. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.J. Lipid Res.20175871417142710.1194/jlr.M07621628536108
    [Google Scholar]
  55. RoscaM.G. VazquezE.J. ChenQ. KernerJ. KernT.S. HoppelC.L. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes.Diabetes20126182074208310.2337/db11‑143722586586
    [Google Scholar]
  56. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  57. StraznickyN.E. GrimaM.T. LambertE.A. EikelisN. DawoodT. LambertG.W. NestelP.J. MasuoK. SariC.I. ChopraR. MarianiJ.A. SchlaichM.P. Exercise augments weight loss induced improvement in renal function in obese metabolic syndrome individuals.J. Hypertens.201129355356410.1097/HJH.0b013e328341887521119532
    [Google Scholar]
  58. FriedmanA.N. ChambersM. KamendulisL.M. TemmermanJ. Short-term changes after a weight reduction intervention in advanced diabetic nephropathy.Clin. J. Am. Soc. Nephrol.20138111892189810.2215/CJN.0401041323929927
    [Google Scholar]
  59. GongC. KimY.K. WoellerC.F. TangY. MaquatL.E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs.Genes Dev.2009231546610.1101/gad.171730919095803
    [Google Scholar]
  60. KassemM.A.M. DurdaM.A. StoiceaN. CavusO. SahinL. RogersB. The impact of bariatric surgery on type 2 diabetes mellitus and the management of hypoglycemic events.Front. Endocrinol. (Lausanne)201783710.3389/fendo.2017.0003728298900
    [Google Scholar]
  61. RitzE. Bariatric surgery and the kidney—much benefit, but also potential harm.Clin. Kidney J.20136436837210.1093/ckj/sfs16127293562
    [Google Scholar]
  62. BelliniM.I. PaolettiF. HerbertP.E. Obesity and bariatric intervention in patients with chronic renal disease.J. Int. Med. Res.20194762326234110.1177/030006051984375531006298
    [Google Scholar]
  63. WeisingerJ.R. KempsonR.L. EldridgeF.L. SwensonR.S. The nephrotic syndrome: a complication of massive obesity.Ann. Intern. Med.197481444044710.7326/0003‑4819‑81‑4‑4404416380
    [Google Scholar]
  64. ChagnacA. HermanM. ZingermanB. ErmanA. Rozen-ZviB. HirshJ. GafterU. Obesity-induced glomerular hyperfiltration: Its involvement in the pathogenesis of tubular sodium reabsorption.Nephrol. Dial. Transplant.200823123946395210.1093/ndt/gfn37918622024
    [Google Scholar]
  65. WuerznerG. PruijmM. MaillardM. BovetP. RenaudC. BurnierM. BochudM. Marked association between obesity and glomerular hyperfiltration: A cross-sectional study in an African population.Am. J. Kidney Dis.201056230331210.1053/j.ajkd.2010.03.01720538392
    [Google Scholar]
  66. ChagnacA. WeinsteinT. HermanM. HirshJ. GafterU. OriY. The effects of weight loss on renal function in patients with severe obesity.J. Am. Soc. Nephrol.20031461480148610.1097/01.ASN.0000068462.38661.8912761248
    [Google Scholar]
  67. ChagnacA. WeinsteinT. KorzetsA. RamadanE. HirschJ. GafterU. Glomerular hemodynamics in severe obesity.Am. J. Physiol. Renal Physiol.20002785F817F82210.1152/ajprenal.2000.278.5.F81710807594
    [Google Scholar]
  68. HallJ. Mechanisms of abnormal renal sodium handling in obesity hypertension.Am. J. Hypertens.1997101249S55S10.1016/S0895‑7061(97)00075‑79160781
    [Google Scholar]
  69. SzetoH.H. LiuS. SoongY. AlamN. PruskyG.T. SeshanS.V. Protection of mitochondria prevents high-fat diet–induced glomerulopathy and proximal tubular injury.Kidney Int.2016905997101110.1016/j.kint.2016.06.01327519664
    [Google Scholar]
  70. Herman-EdelsteinM. ScherzerP. TobarA. LeviM. GafterU. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy.J. Lipid Res.201455356157210.1194/jlr.P04050124371263
    [Google Scholar]
  71. ChenH.M. ChenY. ZhangY.D. ZhangP.P. ChenH.P. WangQ.W. LiL.S. LiuZ.H. Evaluation of metabolic risk marker in obesity-related glomerulopathy.J. Ren. Nutr.201121430931510.1053/j.jrn.2010.06.01920833076
    [Google Scholar]
  72. TsuboiN. KoikeK. HiranoK. UtsunomiyaY. KawamuraT. HosoyaT. Clinical features and long-term renal outcomes of Japanese patients with obesity-related glomerulopathy.Clin. Exp. Nephrol.201317337938510.1007/s10157‑012‑0719‑y23135866
    [Google Scholar]
  73. PehlivanE. OzenG. TaskapanH. GunesG. SahinI. ÇolakC. Identifying the determinants of microalbuminuria in obese patients in primary care units: The effects of blood pressure, random plasma glucose and other risk factors.J. Endocrinol. Invest.2016391738210.1007/s40618‑015‑0331‑626093468
    [Google Scholar]
  74. HashimotoY. TanakaM. OkadaH. SenmaruT. HamaguchiM. AsanoM. YamazakiM. OdaY. HasegawaG. TodaH. NakamuraN. FukuiM. Metabolically healthy obesity and risk of incident CKD.Clin. J. Am. Soc. Nephrol.201510457858310.2215/CJN.0898091425635035
    [Google Scholar]
  75. WenYuan LWLin Central obesity and albuminuria: Both cross- sectional and longitudinal studies in ChinesePLoS One.2012712e47960
    [Google Scholar]
  76. FillerG. LepageN. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula?Pediatr. Nephrol.2003181098198510.1007/s00467‑003‑1271‑512920638
    [Google Scholar]
  77. GroesbeckD. KöttgenA. ParekhR. SelvinE. SchwartzG.J. CoreshJ. FurthS. Age, gender, and race effects on cystatin C levels in US adolescents.Clin. J. Am. Soc. Nephrol.2008361777178510.2215/CJN.0084020818815241
    [Google Scholar]
  78. HoggR.J. PortmanR.J. MillinerD. LemleyK.V. EddyA. IngelfingerJ. Evaluation and management of proteinuria and nephrotic syndrome in children: Recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE).Pediatrics200010561242124910.1542/peds.105.6.124210835064
    [Google Scholar]
  79. AbitbolC.L. ChandarJ. OnderA.M. NwobiO. MontanéB. ZillerueloG. Profiling proteinuria in pediatric patients.Pediatr. Nephrol.2006217995100210.1007/s00467‑006‑0103‑916773413
    [Google Scholar]
  80. VejakamaP. IngsathitA. McKayG.J. MaxwellA.P. McEvoyM. AttiaJ. ThakkinstianA. Treatment effects of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease patients.BMC Nephrol.201718134210.1186/s12882‑017‑0753‑929187194
    [Google Scholar]
  81. TsuboiN. UtsunomiyaY. KanzakiG. KoikeK. IkegamiM. KawamuraT. HosoyaT. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy.Clin. J. Am. Soc. Nephrol.20127573574110.2215/CJN.0727071122403274
    [Google Scholar]
  82. LiH. LiM. LiuP. WangY. ZhangH. LiH. YangS. SongY. YinY. GaoL. ChengS. CaiJ. TianG. Telmisartan ameliorates nephropathy in metabolic syndrome by reducing leptin release from perirenal adipose tissue.Hypertension201668247849010.1161/HYPERTENSIONAHA.116.0700827296996
    [Google Scholar]
  83. GargR. AdlerG.K. Aldosterone and the mineralocorticoid receptor: risk factors for cardiometabolic disorders.Curr. Hypertens. Rep.20151775210.1007/s11906‑015‑0567‑826068659
    [Google Scholar]
  84. ChamberlainJ.J. HermanW.H. LealS. RhinehartA.S. ShubrookJ.H. SkolnikN. KalyaniR.R. Pharmacologic therapy for type 2 diabetes: Synopsis of the 2017 american diabetes association standards of medical care in diabetes.Ann. Intern. Med.2017166857257810.7326/M16‑293728288484
    [Google Scholar]
  85. GrecoE. RussoG. GiandaliaA. ViazziF. PontremoliR. De CosmoS. GLP-1 receptor agonists and kidney protection.Medicina (Kaunas)201955623310.3390/medicina5506023331159279
    [Google Scholar]
  86. BombackA.S. MuskalaP. BaldE. ChwatkoG. NowickiM. Low- dose spironolactone, added to long-term ACE inhibitor therapy, reduces blood pressure and urinary albumin excretion in obese patients with hypertensive target organ damage.Clin. Nephrol.2009721244945610.5414/CNP7244919954722
    [Google Scholar]
  87. JaikumkaoK. PongchaidechaA. ChatsudthipongV. ChattipakornS.C. ChattipakornN. LungkaphinA. The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes.Biomed. Pharmacother.20179417618710.1016/j.biopha.2017.07.09528759755
    [Google Scholar]
  88. VallonV. ThomsonS.C. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.Diabetologia201760221522510.1007/s00125‑016‑4157‑327878313
    [Google Scholar]
  89. EleftheriadisT. PissasG. TsogkaK. NikolaouE. LiakopoulosV. StefanidisI. A unifying model of glucotoxicity in human renal proximal tubular epithelial cells and the effect of the SGLT2 inhibitor dapagliflozin.Int. Urol. Nephrol.20205261179118910.1007/s11255‑020‑02481‑332361978
    [Google Scholar]
  90. WangX.X. LeviJ. LuoY. MyakalaK. Herman-EdelsteinM. QiuL. WangD. PengY. GrenzA. LuciaS. DobrinskikhE. D’AgatiV.D. KoepsellH. KoppJ.B. RosenbergA.Z. LeviM. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice.J. Biol. Chem.2017292135335534810.1074/jbc.M117.77952028196866
    [Google Scholar]
  91. DoroteaD. KoyaD. HaH. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways.Front. Pharmacol.20201126510.3389/fphar.2020.0026532256356
    [Google Scholar]
  92. HanC. Update on FXR biology: promising therapeutic target?Int. J. Mol. Sci.2018197206910.3390/ijms1907206930013008
    [Google Scholar]
  93. ZhangY. MaK.L. LiuJ. WuY. HuZ.B. LiuL. LiuB.C. Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy.Am. J. Physiol. Endocrinol. Metab.201530812E1140E114810.1152/ajpendo.00591.201425921580
    [Google Scholar]
  94. AsaiH.T. TanakaS. UegimaK. Linear regression analysis with fuzzy model.IEEE Trans. Syst. Man Cybern.198212690390710.1109/TSMC.1982.4308925
    [Google Scholar]
  95. HongY.A. LimJ.H. KimM.Y. KimT.W. KimY. YangK.S. ParkH.S. ChoiS.R. ChungS. KimH.W. KimH.W. ChoiB.S. ChangY.S. ParkC.W. Fenofibrate Improves Renal Lipotoxicity through Activation of AMPK-PGC-1α in db/db Mice.PLoS One201495e9614710.1371/journal.pone.009614724801481
    [Google Scholar]
  96. TsaiH.C. ChangF.P. LiT.H. LiuC.W. HuangC.C. HuangS.F. YangY.Y. LeeK.C. HsiehY.C. WangY.W. LeeT.Y. HuangY.H. HouM.C. LinH.C. Elafibranor inhibits chronic kidney disease progression in NASH mice.BioMed Res. Int.2019201911410.1155/2019/674061631321239
    [Google Scholar]
  97. KratzerA. BuchebnerM. PfeiferT. BeckerT.M. UrayG. MiyazakiM. Miyazaki-AnzaiS. EbnerB. ChandakP.G. KadamR.S. CalayirE. RathkeN. AhammerH. RadovicB. TraunerM. HoeflerG. KompellaU.B. FaulerG. LeviM. Levak-FrankS. KostnerG.M. KratkyD. Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia.J. Lipid Res.200950231232610.1194/jlr.M800376‑JLR20018812595
    [Google Scholar]
  98. CalkinA.C. TontonozP. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.Nat. Rev. Mol. Cell Biol.201213421322410.1038/nrm331222414897
    [Google Scholar]
  99. WuJ. ZhangY. WangN. DavisL. YangG. WangX. ZhuY. BreyerM.D. GuanY. Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells.Am. J. Physiol. Renal Physiol.20042875F886F89510.1152/ajprenal.00123.200415280160
    [Google Scholar]
  100. ZhangH. LiuY. WangL. LiZ. ZhangH. WuJ. RahmanN. GuoY. LiD. LiN. HuhtaniemiI. TsangS.Y. GaoG.F. LiX. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat.J. Lipid Res.201354234535710.1194/jlr.M02896923175777
    [Google Scholar]
  101. WangY. MoserA.H. ShigenagaJ.K. GrunfeldC. FeingoldK.R. Downregulation of liver X receptor-α in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines.J. Lipid Res.200546112377238710.1194/jlr.M500134‑JLR20016106051
    [Google Scholar]
  102. TachibanaH. OgawaD. MatsushitaY. BruemmerD. WadaJ. TeshigawaraS. EguchiJ. Sato-HoriguchiC. UchidaH.A. ShikataK. MakinoH. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy.J. Am. Soc. Nephrol.201223111835184610.1681/ASN.201201002223085633
    [Google Scholar]
  103. MoralesE. ValeroM. LeónM. HernándezE. PragaM. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies.Am. J. Kidney Dis.200341231932710.1053/ajkd.2003.5003912552492
    [Google Scholar]
  104. AfshinniaF. WiltT.J. DuvalS. EsmaeiliA. IbrahimH.N. Weight loss and proteinuria: Systematic review of clinical trials and comparative cohorts.Nephrol. Dial. Transplant.20102541173118310.1093/ndt/gfp64019945950
    [Google Scholar]
  105. NavaneethanS.D. YehnertH. MoustarahF. SchreiberM.J. SchauerP.R. BeddhuS. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis.Clin. J. Am. Soc. Nephrol.20094101565157410.2215/CJN.0225040919808241
    [Google Scholar]
  106. Raj KrishnamurthyV.M. WeiG. BairdB.C. MurtaughM. ChoncholM.B. RaphaelK.L. GreeneT. BeddhuS. High dietary fiber intake is associated with decreased inflammation and all- cause mortality in patients with chronic kidney disease.Kidney Int.201281330030610.1038/ki.2011.35522012132
    [Google Scholar]
  107. VaziriN.D. LiuS.M. LauW.L. KhazaeliM. NazertehraniS. FarzanehS.H. KiefferD.A. AdamsS.H. MartinR.J. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.PLoS One2014912e11488110.1371/journal.pone.011488125490712
    [Google Scholar]
  108. DeBoerM.D. FilippS.L. MusaniS.K. SimsM. OkusaM.D. GurkaM. Metabolic syndrome severity and risk of CKD and worsened GFR: The Jackson Heart Study.Kidney Blood Press. Res.201843255556710.1159/00048882929642060
    [Google Scholar]
  109. TaubesG. Treat obesity as physiology, not physics.Nature2012492742815510.1038/492155a23235840
    [Google Scholar]
  110. FriedmanA.N. The case for a bariatric-centered approach to CKD care.Clin. J. Am. Soc. Nephrol.201914229129310.2215/CJN.1206101830630858
    [Google Scholar]
  111. NehusE.J. KhouryJ.C. IngeT.H. XiaoN. JenkinsT.M. Moxey-MimsM.M. MitsnefesM.M. Kidney outcomes three years after bariatric surgery in severely obese adolescents.Kidney Int.201791245145810.1016/j.kint.2016.09.03127914704
    [Google Scholar]
  112. La RussaD. GiordanoF. MarroneA. ParafatiM. JandaE. PellegrinoD. Oxidative imbalance and kidney damage in cafeteria diet-induced rat model of metabolic syndrome: Effect of bergamot polyphenolic fraction.Antioxidants2019836610.3390/antiox803006630884780
    [Google Scholar]
  113. KambhamN. MarkowitzG.S. ValeriA.M. LinJ. D’AgatiV.D. Obesity-related glomerulopathy: An emerging epidemic.Kidney Int.20015941498150910.1046/j.1523‑1755.2001.0590041498.x11260414
    [Google Scholar]
  114. PragaM. HernándezE. MoralesE. CamposA.P. ValeroM.A. MartínezM.A. LeónM. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis.Nephrol. Dial. Transplant.20011691790179810.1093/ndt/16.9.179011522860
    [Google Scholar]
  115. TsuboiN. OkabayashiY. ShimizuA. YokooT. The renal pathology of obesity.Kidney Int. Rep.20172225126010.1016/j.ekir.2017.01.00729142961
    [Google Scholar]
  116. MurlidharanP KamaladevanS BalanS KarthaCC Mechanisms for obesity related kidney disease.Pathophysiology of Obesity-Induced Health Complications2020Springer, ChamZug, Switzerland1919321610.1007/978‑3‑030‑35358‑2_12
    [Google Scholar]
  117. StasiA. CosolaC. CaggianoG. CimmarustiM.T. PalieriR. AcquavivaP.M. RanaG. GesualdoL. Obesity-related chronic kidney disease: Principal mechanisms and new approaches in nutritional management.Front. Nutr.2022992561910.3389/fnut.2022.92561935811945
    [Google Scholar]
  118. HaoM. LvY. LiuS. GuoW. The new challenge of obesity - obesity-associated nephropathy.Diabetes Metab. Syndr. Obes.2024171957197110.2147/DMSO.S43364938737387
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501314788241008115712
Loading
/content/journals/cdt/10.2174/0113894501314788241008115712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test