Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Numerous health hazards are associated with fungal infections, ranging from asymptomatic cases to potentially fatal invasive diseases that are especially dangerous for those with impaired immune systems. The main causes behind these diseases are opportunistic fungi, namely , and . Invasive fungal infections (IFIs) require a global response that includes the development of vaccines, standardized protocols for diagnosis, potent antifungal medications, and strategies to stop drug-resistant strains. Improving high-risk group diagnosis and treatment is essential to lowering death rates. This review highlights the substantial health concerns associated with fungal infections, especially in immunocompromised individuals, and identifies , and as the main pathogens. It highlights the necessity of international efforts, such as the development of novel diagnostic instruments, imaging methods, and antifungal drugs, to combat these invasive infections. The review also addresses the increasing need for novel treatment approaches in light of the developing resistance to widely used antifungal medications. Furthermore, the significance of secretory proteins in fungal pathogenicity and the potential of combination therapy are investigated. It is also suggested that a multimodal strategy be used to fight these illnesses, given the promise of multivalent vaccinations. Overall, this study emphasizes how critical it is to develop better diagnostic and treatment strategies in order to successfully control and lessen the impact of invasive fungal diseases on the health of the world.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501337502241015121015
2024-10-17
2025-04-19
Loading full text...

Full text loading...

References

  1. BuckleyM. The Fungal Kingdom: diverse and essential roles in earth's ecosystemAmerican academy of microbiology colloquia reports.Washington (DC),November 2–4,2008
    [Google Scholar]
  2. WuB. HussainM. ZhangW. StadlerM. LiuX. XiangM. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi.Mycology201910312714010.1080/21501203.2019.161410631448147
    [Google Scholar]
  3. HowellS.A. Dermatopathology and the diagnosis of fungal infections.Br. J. Biomed. Sci.2023801131410.3389/bjbs.2023.1131437351018
    [Google Scholar]
  4. LiuZ. LiangQ. RenY. GuoC. GeX. WangL. ChengQ. LuoP. ZhangY. HanX. Immunosenescence: Molecular mechanisms and diseases.Signal Transduct. Target. Ther.20238120010.1038/s41392‑023‑01451‑237179335
    [Google Scholar]
  5. PathakumariB. LiangG. LiuW. Immune defence to invasive fungal infections: A comprehensive review.Biomed. Pharmacother.202013011055010.1016/j.biopha.2020.11055032739740
    [Google Scholar]
  6. Rodrigues HoffmannA. RamosM.G. WalkerR.T. StranahanL.W. Hyphae, pseudohyphae, yeasts, spherules, spores, and more: A review on the morphology and pathology of fungal and oomycete infections in the skin of domestic animals.Vet. Pathol.202360681282810.1177/0300985823117371537222139
    [Google Scholar]
  7. de AndradeT.S. de AlmeidaA.M.Z. BasanoS.A. TakagiE.H. SzeszsM.W. MelhemM.S.C. AlbuquerqueM. CamargoJ.S.A.A. GambaleW. CamargoL.M.A. Chromoblastomycosis in the Amazon region, Brazil, caused by Fonsecaea pedrosoi, Fonsecaea nubica, and Rhinocladiella similis: Clinicopathology, susceptibility, and molecular identification.Med. Mycol.202058217218031329924
    [Google Scholar]
  8. SharmaA. BanoG. MalikA. RasoolY. ManzarS. SinghT. MaityM. Opportunistic fungal invasion in COVID-19 pandemic: A critical review in diagnosis and management.Avicenna J. Med.202313313113710.1055/s‑0043‑177092137799179
    [Google Scholar]
  9. FiracativeC. Invasive fungal disease in humans: Are we aware of the real impact?Mem. Inst. Oswaldo Cruz2020115e20043010.1590/0074‑0276020043033053052
    [Google Scholar]
  10. Gonzalez-LaraM.F. Ostrosky-ZeichnerL. Invasive candidiasis.Semin. Respir. Crit. Care Med.202041100301210.1055/s‑0040‑170121532000280
    [Google Scholar]
  11. MainousAGIII HuestonWJ Upper respiratory infections and acute bronchitis.Manag Antimicrob Infect Dis.201015116810.1007/978‑1‑60327‑239‑1_8
    [Google Scholar]
  12. MaziarzE.K. PerfectJ.R. Cryptococcosis.Infect. Dis. Clin. North Am.201630117920610.1016/j.idc.2015.10.00626897067
    [Google Scholar]
  13. KöhlerJ.R. CasadevallA. PerfectJ. The spectrum of fungi that infects humans.Cold Spring Harb. Perspect. Med.201551a01927310.1101/cshperspect.a01927325367975
    [Google Scholar]
  14. KangabamN NethravathyV An overview of opportunistic fungal infections associated with COVID-19.3 Biotech.2023137231
    [Google Scholar]
  15. ChenH LiuK LiZ WangP Point of care testing for infectious diseases.Clin Chim Acta.2019493XXXXXX13814710.1016/j.cca.2019.03.008
    [Google Scholar]
  16. MendonçaA. SantosH. Franco-DuarteR. SampaioP. Fungal infections diagnosis – Past, present and future.Res. Microbiol.2022173310391510.1016/j.resmic.2021.10391534863883
    [Google Scholar]
  17. GaleM.S. Diagnosis: Fundamental principles and methods.Cureus2022149e2873036204022
    [Google Scholar]
  18. FitzgeraldR.C. AntoniouA.C. FrukL. RosenfeldN. The future of early cancer detection.Nat. Med.202228466667710.1038/s41591‑022‑01746‑x35440720
    [Google Scholar]
  19. RoyM. KarhanaS. ShamsuzzamanM. KhanM.A. Recent drug development and treatments for fungal infections.Braz. J. Microbiol.20235431695171610.1007/s42770‑023‑00999‑z37219748
    [Google Scholar]
  20. ArastehfarA. Lass-FlörlC. Garcia-RubioR. DaneshniaF. IlkitM. BoekhoutT. GabaldonT. PerlinD.S. The quiet and underappreciated rise of drug-resistant invasive fungal pathogens.J. Fungi (Basel)20206313810.3390/jof603013832824785
    [Google Scholar]
  21. ChenW. Promise and challenges in the development of COVID-19 vaccines.Hum. Vaccin. Immunother.202016112604260810.1080/21645515.2020.178706732703069
    [Google Scholar]
  22. MeganckR.M. BaricR.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases.Nat. Med.202127340141010.1038/s41591‑021‑01282‑033723456
    [Google Scholar]
  23. BouzG. DoležalM. Advances in antifungal drug development: An up-to-date mini review.Pharmaceuticals (Basel)20211412131210.3390/ph1412131234959712
    [Google Scholar]
  24. ChenH. ZhouX. RenB. ChengL. The regulation of hyphae growth in Candida albicans.Virulence202011133734810.1080/21505594.2020.174893032274962
    [Google Scholar]
  25. LopesJ.P. LionakisM.S. Pathogenesis and virulence of Candida albicans.Virulence20221318912110.1080/21505594.2021.201995034964702
    [Google Scholar]
  26. MbaI.E. NwezeE.I. Mechanism of Candida pathogenesis: Revisiting the vital drivers.Eur. J. Clin. Microbiol. Infect. Dis.202039101797181910.1007/s10096‑020‑03912‑w32372128
    [Google Scholar]
  27. GreeneC.J. NguyenJ.A. CheungS.M. ArnoldC.R. BalceD.R. WangY.T. SoderholmA. McKennaN. AggarwalD. CampdenR.I. EwanchukB.W. VirginH.W. YatesR.M. Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes.Nat. Commun.2022131307210.1038/s41467‑022‑30654‑435654768
    [Google Scholar]
  28. NaglikJ.R. GaffenS.L. HubeB. Candidalysin: Discovery and function in Candida albicans infections.Curr. Opin. Microbiol.20195210010910.1016/j.mib.2019.06.00231288097
    [Google Scholar]
  29. IvanovM. ĆirićA. StojkovićD. Emerging antifungal targets and strategies.Int. J. Mol. Sci.2022235275610.3390/ijms2305275635269898
    [Google Scholar]
  30. PereiraR. Santos FontenelleR.O. BritoE.H.S. MoraisS.M. Biofilm of Candida albicans : Formation, regulation and resistance.J. Appl. Microbiol.20211311112210.1111/jam.1494933249681
    [Google Scholar]
  31. PaulussenC. HallsworthJ.E. Álvarez-PérezS. NiermanW.C. HamillP.G. BlainD. RediersH. LievensB. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species.Microb. Biotechnol.201710229632210.1111/1751‑7915.1236727273822
    [Google Scholar]
  32. Avkan-OğuzV. ÇelikM. SatogluI.S. ErgonM.C. AçanA. Primary cutaneous aspergillosis in immunocompetent adults: Three cases and a review of the literature.Cureus2020121e660010.7759/cureus.660032064182
    [Google Scholar]
  33. MargalitA. KavanaghK. The innate immune response to Aspergillus fumigatus at the alveolar surface.FEMS Microbiol. Rev.201539567068710.1093/femsre/fuv01825934117
    [Google Scholar]
  34. GuruceagaX. Perez-CuestaU. Abad-Diaz de CerioA. GonzalezO. AlonsoR.M. HernandoF.L. Ramirez-GarciaA. RementeriaA. Fumagillin, a mycotoxin of Aspergillus fumigatus: Biosynthesis, biological activities, detection, and applications.Toxins (Basel)2019121710.3390/toxins1201000731861936
    [Google Scholar]
  35. El-NaggarN.E.A. SaberW.I.A. Natural melanin: Current trends, and future approaches, with especial reference to microbial source.Polymers (Basel)2022147133910.3390/polym1407133935406213
    [Google Scholar]
  36. KaurS. SinghS. Biofilm formation by aspergillus fumigatus.Med. Mycol.20145212923962172
    [Google Scholar]
  37. RajasinghamR. SmithR.M. ParkB.J. JarvisJ.N. GovenderN.P. ChillerT.M. DenningD.W. LoyseA. BoulwareD.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis.Lancet Infect. Dis.201717887388110.1016/S1473‑3099(17)30243‑828483415
    [Google Scholar]
  38. EdwardsV.E. SutherlandJ.M. TyrerJ.H. Cryptococcosis of the central nervous system: Epidemiological, clinical, and therapeutic features.J. Neurol. Neurosurg. Psychiatry197033441542510.1136/jnnp.33.4.4155535907
    [Google Scholar]
  39. YetmarZ.A. RanganathN. MendozaM.A. RazonableR.R. Clinical and microbiologic outcomes of central nervous system Cryptococcosis: Re-examining the need for a 2-week cerebrospinal fluid analysis.Mycoses202265773374010.1111/myc.1346735535694
    [Google Scholar]
  40. ArciolaC.R. CampocciaD. MontanaroL. Implant infections: Adhesion, biofilm formation and immune evasion.Nat. Rev. Microbiol.201816739740910.1038/s41579‑018‑0019‑y29720707
    [Google Scholar]
  41. NettJE AndesDR Fungal biofilms: in vivo models for discovery of anti-biofilm drugs.Microbiol Spectr.201533E30
    [Google Scholar]
  42. CavalheiroM. TeixeiraM.C. Candida biofilms: Threats, challenges, and promising strategies.Front. Med. (Lausanne)201852810.3389/fmed.2018.0002829487851
    [Google Scholar]
  43. RevieN.M. IyerK.R. RobbinsN. CowenL.E. Antifungal drug resistance: Evolution, mechanisms and impact.Curr. Opin. Microbiol.201845707610.1016/j.mib.2018.02.00529547801
    [Google Scholar]
  44. MartinezL.R. CasadevallA. Biofilm formation by Cryptococcus neoformans.Microbiol. Spectr.2015333.3.0510.1128/microbiolspec.MB‑0006‑201426185073
    [Google Scholar]
  45. MogensenT.H. Pathogen recognition and inflammatory signaling in innate immune defenses.Clin. Microbiol. Rev.200922224027310.1128/CMR.00046‑0819366914
    [Google Scholar]
  46. ZhaoQ. WangQ. WangT. XuJ. LiT. LiuQ. YaoQ. WangP. Pattern recognition receptors (PRRs) in macrophages possess prognosis and immunotherapy potential for melanoma.Front. Immunol.20211276561510.3389/fimmu.2021.76561534858419
    [Google Scholar]
  47. PatinE.C. ThompsonA. OrrS.J. Pattern recognition receptors in fungal immunity.Semin. Cell Dev. Biol.201989243310.1016/j.semcdb.2018.03.00329522806
    [Google Scholar]
  48. BehzadiP. García-PerdomoH.A. KarpińskiT.M. Toll-like receptors: General molecular and structural biology.J. Immunol. Res.2021202112110.1155/2021/991485434195298
    [Google Scholar]
  49. KumagaiY. TakeuchiO. AkiraS. TLR9 as a key receptor for the recognition of DNA.Adv. Drug Deliv. Rev.200860779580410.1016/j.addr.2007.12.00418262306
    [Google Scholar]
  50. YamasakiS. MatsumotoM. TakeuchiO. MatsuzawaT. IshikawaE. SakumaM. TatenoH. UnoJ. HirabayashiJ. MikamiY. TakedaK. AkiraS. SaitoT. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia.Proc. Natl. Acad. Sci. USA200910661897190210.1073/pnas.080517710619171887
    [Google Scholar]
  51. KoizumiM. WatanabeT. MasumotoJ. SunagoK. ImamuraY. KanemitsuK. KumagiT. HiasaY. Apoptosis-associated speck-like protein containing a CARD regulates the growth of pancreatic ductal adenocarcinoma.Sci. Rep.20211112235110.1038/s41598‑021‑01465‑234785680
    [Google Scholar]
  52. KubečekO. PaterováP. NovosadováM. Risk factors for infections, antibiotic therapy, and its impact on cancer therapy outcomes for patients with solid tumors.Life (Basel)20211112138710.3390/life1112138734947918
    [Google Scholar]
  53. GadourE. KotbA. Systematic review of antifungal-induced acute liver failure.Cureus20211310e1894010.7759/cureus.1894034703680
    [Google Scholar]
  54. PasulaS. ChandrasekarP.H. Azole resistance in Aspergillus species: Promising therapeutic options.Expert Opin. Pharmacother.202122152071207810.1080/14656566.2021.194013434129410
    [Google Scholar]
  55. a TorelliR. RossoF. MazzitelliM. Echinocandins: An overview of their pharmacological profile and clinical application.Drugs202282101057107610.1007/s40265‑022‑01710‑0
    [Google Scholar]
  56. b SeifyR. ZahednezhadF. Zakeri-MilaniP. ValizadehH. Amphotericin B liposomal formulation: applicable preparation methods, challenges, and tips.Drug Dev. Ind. Pharm.202349536737610.1080/03639045.2023.221500637249553
    [Google Scholar]
  57. EmamiL. FaghihZ. AtaollahiE. SadeghianS. RezaeiZ. KhabnadidehS. Azole derivatives: Recent advances as potent antibacterial and antifungal agents.Curr. Med. Chem.202330222024910.2174/092986732966622040709443035392780
    [Google Scholar]
  58. LoperJ.C. Cytochrome P450 lanosterol 14α-demethylase (CYP51): Insights from molecular genetic analysis of the ERG11 gene in Saccharomyces cerevisiae.J. Steroid Biochem. Mol. Biol.19924381107111610.1016/0960‑0760(92)90339‑K22217856
    [Google Scholar]
  59. FengS. HeX. Mechanism-based inhibition of CYP450: An indicator of drug-induced hepatotoxicity.Curr. Drug Metab.201314992194510.2174/13892002113140011424016115
    [Google Scholar]
  60. BhattacharyaS. Sae-TiaS. FriesB.C. Candidiasis and mechanisms of antifungal resistance.Antibiotics (Basel)20209631210.3390/antibiotics906031232526921
    [Google Scholar]
  61. LestradePPA MeisJF MelchersWJG VerweijPE Triazole resistance in aspergillus fumigatus: Recent insights and challenges for patient management.Clin Microbiol Infect.201925779980610.1016/j.cmi.2018.11.027
    [Google Scholar]
  62. SzymańskiM. ChmielewskaS. CzyżewskaU. MalinowskaM. TylickiA. Echinocandins – structure, mechanism of action and use in antifungal therapy.J. Enzyme Inhib. Med. Chem.202237187689410.1080/14756366.2022.205022435296203
    [Google Scholar]
  63. VermesA. GuchelaarH.J. DankertJ. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions.J. Antimicrob. Chemother.200046217117910.1093/jac/46.2.17110933638
    [Google Scholar]
  64. AlexanderB.D. JohnsonM.D. PfeifferC.D. Jiménez-OrtigosaC. CataniaJ. BookerR. CastanheiraM. MesserS.A. PerlinD.S. PfallerM.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations.Clin. Infect. Dis.201356121724173210.1093/cid/cit13623487382
    [Google Scholar]
  65. Kwarteng OwusuS. Invasive fungal infections.Afr. J. Thorac. Crit. Care Med.202228336285011
    [Google Scholar]
  66. SunK.S. TsaiC.F. ChenS.C.C. HuangW.C. Clinical outcome and prognostic factors associated with invasive pulmonary aspergillosis: An 11-year follow-up report from Taiwan.PLoS One20171210e018642210.1371/journal.pone.018642229049319
    [Google Scholar]
  67. HussainM.K. AhmedS. KhanA. SiddiquiA.J. KhatoonS. JahanS. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents.Eur. J. Med. Chem.202324611501010.1016/j.ejmech.2022.11501036566630
    [Google Scholar]
  68. Freeman WeissZ. LeonA. KooS. The evolving landscape of fungal diagnostics, current and emerging microbiological approaches.J. Fungi (Basel)20217212710.3390/jof702012733572400
    [Google Scholar]
  69. VazquezJ.A. PappasP.G. BoffardK. ParukF. BienP.A. TawadrousM. OpleE. WedelP. OborskaI. HodgesM.R. Clinical efficacy and safety of a novel antifungal, fosmanogepix, in patients with candidemia caused by candida auris : Results from a Phase 2 Trial.Antimicrob. Agents Chemother.2023675e01419-2210.1128/aac.01419‑2237022196
    [Google Scholar]
  70. MaertensJ. LodewyckT. DonnellyJ.P. ChantepieS. RobinC. BlijlevensN. TurlureP. SelleslagD. BaronF. AounM. HeinzW.J. BertzH. RáčilZ. VandercamB. DrgonaL. CoiteuxV. LlorenteC.C. Schaefer-ProkopC. PaesmansM. AmeyeL. MeertL. CheungK.J. HeplerD.A. LoefflerJ. BarnesR. MarchettiO. VerweijP. LamothF. BochudP.Y. SchwarzingerM. CordonnierC. Empiric vs preemptive antifungal strategy in high-risk neutropenic patients on fluconazole prophylaxis: A randomized trial of the european organization for research and treatment of cancer.Clin. Infect. Dis.202376467468210.1093/cid/ciac62335906831
    [Google Scholar]
  71. Moreno-GarcíaE ChumbitaM Puerta-AlcaldeP CardozoC García-VidalC Prophylaxis of mould infections.Rev Esp Quimioter.201932 Suppl 2Suppl 25962
    [Google Scholar]
  72. GulloA. Invasive fungal infections: The challenge continues.Drugs200969Suppl. 1657310.2165/11315530‑000000000‑0000019877737
    [Google Scholar]
  73. BarantsevichN. BarantsevichE. Diagnosis and treatment of invasive candidiasis.Antibiotics (Basel)202211671810.3390/antibiotics1106071835740125
    [Google Scholar]
  74. RuhnkeM PaivaJA MeerssemanW Anidulafungin for the treatment of candidaemia/invasive candidiasis in selected critically ill patients.Clin Microbiol Infect.2012187680687
    [Google Scholar]
  75. SandaraduraI MarriottDJE DayRO Current fluconazole treatment regimens result in under-dosing of critically ill adults during early therapy.Eur J Clin Microbiol Infect Dis.20214071521152810.1007/s10096‑021‑04201‑w
    [Google Scholar]
  76. LowC.Y. RotsteinC. Emerging fungal infections in immunocompromised patients.F1000 Med. Rep.201131410.3410/M3‑1421876720
    [Google Scholar]
  77. AlkharashiN. AljohaniS. LayqahL. MasuadiE. BaharoonW. AL-JahdaliH. BaharoonS. Candida bloodstream infection: Changing pattern of occurrence and antifungal susceptibility over 10 years in a tertiary care saudi hospital.Can. J. Infect. Dis. Med. Microbiol.201920191910.1155/2019/201569231929847
    [Google Scholar]
  78. EpsteinD.J. SeoS.K. BrownJ.M. PapanicolaouG.A. Echinocandin prophylaxis in patients undergoing haematopoietic cell transplantation and other treatments for haematological malignancies.J. Antimicrob. Chemother.201873Suppl. 1i60i7210.1093/jac/dkx45029304213
    [Google Scholar]
  79. MaertensJ.A. RaadI.I. MarrK.A. PattersonT.F. KontoyiannisD.P. CornelyO.A. BowE.J. RahavG. NeofytosD. AounM. BaddleyJ.W. GiladiM. HeinzW.J. HerbrechtR. HopeW. KarthausM. LeeD.G. LortholaryO. MorrisonV.A. OrenI. SelleslagD. ShohamS. ThompsonG.R.III LeeM. MaherR.M. Schmitt-HoffmannA.H. ZeiherB. UllmannA.J. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial.Lancet20163871002076076910.1016/S0140‑6736(15)01159‑926684607
    [Google Scholar]
  80. LatA. ThompsonG.R.III Update on the optimal use of voriconazole for invasive fungal infections.Infect. Drug Resist.20114435321694908
    [Google Scholar]
  81. SipsasN.V. GamaletsouM.N. AnastasopoulouA. KontoyiannisD.P. Therapy of Mucormycosis.J. Fungi (Basel)2018439010.3390/jof403009030065232
    [Google Scholar]
  82. LinkH. Current state and future opportunities in granulocyte colony-stimulating factor (G-CSF).Support Care Cancer.202230970677077
    [Google Scholar]
  83. AbuzaidM.M. ElshamiW. TekinH.O. Infection control and radiation safety practices in the radiology department during the COVID-19 outbreak.PLoS One20221712e027960710.1371/journal.pone.027960736574426
    [Google Scholar]
  84. BasuA. SheikhK.H. CuevasE. SarkarR. COVID-19 detection from CT scans using a two-stage framework.Expert Syst. Appl.202219311637710.1016/j.eswa.2021.11637735002099
    [Google Scholar]
  85. SkiadaA. Lass-FloerlC. KlimkoN. IbrahimA. RoilidesE. PetrikkosG. Challenges in the diagnosis and treatment of mucormycosis.Med. Mycol.201856Suppl. 1S93S10110.1093/mmy/myx10129538730
    [Google Scholar]
  86. BeredakiM.I. SanidopoulosI. PournarasS. MeletiadisJ. Defining optimal doses of liposomal amphotericin B against Candida auris: Data from an in vitro pharmacokinetic-pharmacodynamic model.J. Infect. Dis.202338109276
    [Google Scholar]
  87. PincheraB. BuonomoA.R. Schiano MorielloN. ScottoR. VillariR. GentileI. Update on the management of surgical site infections.Antibiotics (Basel)20221111160810.3390/antibiotics1111160836421250
    [Google Scholar]
  88. SzalińskiM. ZgryźniakA. RubiszI. GajdzisM. KaczmarekR. Przeździecka-DołykJ. Fusarium keratitis—review of current treatment possibilities.J. Clin. Med.20211023546810.3390/jcm1023546834884170
    [Google Scholar]
  89. von Lilienfeld-ToalM. WagenerJ. EinseleH. CornelyO.A. KurzaiO. Invasive fungal infection.Dtsch. Arztebl. Int.20191161627127831159914
    [Google Scholar]
  90. LewisJ.S.II WiederholdN.P. HakkiM. ThompsonG.R.III New perspectives on antimicrobial agents: Isavuconazole.Antimicrob. Agents Chemother.2022669e00177-2210.1128/aac.00177‑2235969068
    [Google Scholar]
  91. CarolusH. PiersonS. LagrouK. Van DijckP. Amphotericin B and other polyenes—discovery, clinical use, mode of action and drug resistance.J. Fungi (Basel)20206432110.3390/jof604032133261213
    [Google Scholar]
  92. SpreghiniE. OrlandoF. SanguinettiM. PosteraroB. GianniniD. MansoE. BarchiesiF. Comparative effects of micafungin, caspofungin, and anidulafungin against a difficult-to-treat fungal opportunistic pathogen, Candida glabrata.Antimicrob. Agents Chemother.20125631215122210.1128/AAC.05872‑1122203604
    [Google Scholar]
  93. AkamatsuH. NakagawaH. MatsumaruI. HashizumeJ. HarasawaH. KodamaY. MiuraT. OhyamaK. Effects of changing the timing of warfarin administration in combination with fluconazole on prolongation of the PT-INR: A case report.J. Pharm. Health Care Sci.2023911110.1186/s40780‑023‑00279‑w37004089
    [Google Scholar]
  94. TempletonI.E. ThummelK.E. KharaschE.D. KunzeK.L. HofferC. NelsonW.L. IsoherranenN. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo .Clin. Pharmacol. Ther.2008831778510.1038/sj.clpt.610023017495874
    [Google Scholar]
  95. TownsendR. DietzA. HaleC. AkhtarS. KowalskiD. LademacherC. LasseterK. PearlmanH. RammelsbergD. Schmitt-HoffmannA. YamazakiT. DesaiA. Pharmacokinetic evaluation of cyp3a4-mediated drug-drug interactions of isavuconazole with rifampin, ketoconazole, midazolam, and ethinyl estradiol/norethindrone in healthy adults.Clin. Pharmacol. Drug Dev.201761445310.1002/cpdd.28527273461
    [Google Scholar]
  96. WexlerD CourtneyR RichardsW BanfieldC LimJ LaughlinM Effect of posaconazole on cytochrome P450 enzymes: A randomized, open-label, two-way crossover study.Eur J Pharm Sci.200421564565310.1016/j.ejps.2004.01.005
    [Google Scholar]
  97. JeongS. NguyenP.D. DestaZ. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: Major effect on CYPs 2B6, 2C9, 2C19, and 3A.Antimicrob. Agents Chemother.200953254155110.1128/AAC.01123‑0819029318
    [Google Scholar]
  98. ChenS.C.A. SlavinM.A. SorrellT.C. Echinocandin antifungal drugs in fungal infections: A comparison.Drugs2011711114110.2165/11585270‑000000000‑0000021175238
    [Google Scholar]
  99. ColomboA.L. NgaiA.L. BourqueM. BradshawS.K. StrohmaierK.M. TaylorA.F. LupinacciR.J. KartsonisN.A. Caspofungin use in patients with invasive candidiasis caused by common non-albicans Candida species: Review of the caspofungin database.Antimicrob. Agents Chemother.20105451864187110.1128/AAC.00911‑0920231388
    [Google Scholar]
  100. BormannA. MorrisonV.A. Review of the pharmacology and clinical studies of micafungin.Drug Des. Devel. Ther.2009329530210.2147/DDDT.S324220054447
    [Google Scholar]
  101. OliveiraL.V.N. WangR. SpechtC.A. LevitzS.M. Vaccines for human fungal diseases: Close but still a long way to go.NPJ Vaccines2021613310.1038/s41541‑021‑00294‑833658522
    [Google Scholar]
  102. AbufaresH.I. Oyoun AlsoudL. AlqudahM.A.Y. SharaM. SoaresN.C. AlzoubiK.H. El-HuneidiW. BustanjiY. SolimanS.S.M. SemreenM.H. COVID-19 vaccines, effectiveness, and immune responses.Int. J. Mol. Sci.202223231541510.3390/ijms23231541536499742
    [Google Scholar]
  103. FormanR ShahS JeurissenP JitM MossialosE. What have we learned so far and what remains to be done?Health Policy.20211255553567
    [Google Scholar]
  104. SegalE. Vaccines against fungal infections.CRC Crit. Rev. Microbiol.198714322927110.3109/104084187091044403556019
    [Google Scholar]
  105. MinorP.D. Live attenuated vaccines: Historical successes and current challenges.Virology2015479-48037939210.1016/j.virol.2015.03.03225864107
    [Google Scholar]
  106. SantosE. LevitzS.M. Fungal vaccines and immunotherapeutics.Cold Spring Harb. Perspect. Med.2014411a01971110.1101/cshperspect.a01971125368016
    [Google Scholar]
  107. HeidaryM. KaviarV.H. ShiraniM. GhanavatiR. MotaharM. SholehM. GhahramanpourH. KhoshnoodS. A comprehensive review of the protein subunit vaccines against COVID-19.Front. Microbiol.20221392730610.3389/fmicb.2022.92730635910658
    [Google Scholar]
  108. WangN. ShangJ. JiangS. DuL. Subunit vaccines against emerging pathogenic human coronaviruses.Front. Microbiol.20201129810.3389/fmicb.2020.0029832265848
    [Google Scholar]
  109. SongJ.W. HuW. ShenL. WangF.S. Safety and immunogenicity of COVID-19 vaccination in immunocompromised patients.Chin. Med. J. (Engl.)2022135222656266610.1097/CM9.000000000000250536719354
    [Google Scholar]
  110. L BRDS Advances in fungal peptide vaccines.J. Fungi (Basel)202063119
    [Google Scholar]
  111. RosatiD. BrunoM. JaegerM. ten OeverJ. NeteaM.G. Recurrent vulvovaginal candidiasis: An immunological perspective.Microorganisms20208214410.3390/microorganisms802014431972980
    [Google Scholar]
  112. YonemotoK. ChibaA. SugimotoS. SatoC. SaitoM. KinjoY. MarumoK. MizunoeY. Redundant and distinct roles of secreted protein eap and cell wall-anchored protein sasg in biofilm formation and pathogenicity of staphylococcus aureus.Infect. Immun.2019874e00894-1810.1128/IAI.00894‑1830670553
    [Google Scholar]
  113. LiC. LiuY. WuS. HanG. TuJ. DongG. LiuN. ShengC. Targeting fungal virulence factor by small molecules: Structure-based discovery of novel secreted aspartic protease 2 (SAP2) inhibitors.Eur. J. Med. Chem.202020111251510.1016/j.ejmech.2020.11251532623209
    [Google Scholar]
  114. PolletJ. StrychU. ChenW.H. VersteegL. KeeganB. ZhanB. WeiJ. LiuZ. LeeJ. KunduR. AdhikariR. PovedaC. Jose VillarM. Rani ThimmirajuS. LopezB. GillespieP.M. RoncaS. KimataJ.T. ReersM. ParadkarV. HotezP.J. Elena BottazziM. Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern.Vaccine202240263655366310.1016/j.vaccine.2022.05.00735568591
    [Google Scholar]
  115. BloomD.E. BonanniP. Martinón-TorresF. RichmondP.C. SafadiM.A.P. SalisburyD.M. CharosA. SchleyK. FindlowJ. BalmerP. Meningococcal disease in the post–COVID-19 Era: A time to prepare.Infect. Dis. Ther.202312122649266310.1007/s40121‑023‑00888‑w38048020
    [Google Scholar]
  116. SaulA. FayM.P. Human immunity and the design of multi-component, single target vaccines.PLoS One200729e85010.1371/journal.pone.000085017786221
    [Google Scholar]
  117. LauerK.B. BorrowR. BlanchardT.J. Multivalent and multipathogen viral vector vaccines.Clin. Vaccine Immunol.2017241e00298-1610.1128/CVI.00298‑1627535837
    [Google Scholar]
  118. FisherM.C. DenningD.W. The WHO fungal priority pathogens list as a game-changer.Nat. Rev. Microbiol.202321421121210.1038/s41579‑023‑00861‑x36747091
    [Google Scholar]
  119. PerlinD.S. Mechanisms of echinocandin antifungal drug resistance.Ann. N. Y. Acad. Sci.20151354111110.1111/nyas.1283126190298
    [Google Scholar]
  120. LeeY RobbinsN CowenLE Molecular mechanisms governing antifungal drug resistance.NPJ Antimicrob Resist.2023115
    [Google Scholar]
  121. ZhuS. ZhangT. ZhengL. LiuH. SongW. LiuD. LiZ. PanC. Combination strategies to maximize the benefits of cancer immunotherapy.J. Hematol. Oncol.202114115610.1186/s13045‑021‑01164‑534579759
    [Google Scholar]
  122. SchmidA. WolfensbergerA. NemethJ. SchreiberP.W. SaxH. KusterS.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic review and meta-analysis.Sci. Rep.2019911529010.1038/s41598‑019‑51711‑x31664064
    [Google Scholar]
  123. TaefehshokrN. BaradaranB. BaghbanzadehA. TaefehshokrS. Promising approaches in cancer immunotherapy.Immunobiology2020225215187510.1016/j.imbio.2019.11.01031812343
    [Google Scholar]
  124. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑732433595
    [Google Scholar]
  125. BieF. TianH. SunN. ZangR. ZhangM. SongP. LiuL. PengY. BaiG. ZhouB. GaoS. Research progress of Anti-PD-1/PD-L1 immunotherapy related mechanisms and predictive biomarkers in NSCLC.Front. Oncol.20221276912410.3389/fonc.2022.76912435223466
    [Google Scholar]
  126. WangT. SunM. ZhangX. The immunogenic potential of Candida albicans Hyr1 as a component of vaccine formulations.Vaccine20244261023103110.1016/j.vaccine.2023.11.01338310016
    [Google Scholar]
  127. SmithJ. NguyenM. LeeH. Efficacy of recombinant protein Asp 16f combined with CPG oligonucleotides in enhancing survival in a murine model of invasive Aspergillosis.J. Infect. Dis.202322871124113310.1093/infdis/jiad094
    [Google Scholar]
  128. BrownT. WilsonR. ZhaoY. Multivalent vaccines: Specific targeting of pathogenic strains and the impact on microbial ecology.Microb. Biotechnol.20231641025103510.1111/1751‑7915.14132
    [Google Scholar]
  129. TaylorS. RodriguezL. WangH. Risks of immune evasion with univalent vaccines: A review of recent findings.Vaccine202240354902491010.1016/j.vaccine.2022.07.007
    [Google Scholar]
  130. ChenY. ZhouQ. ZhangX. Current status of Als3p and Sap2p univalent vaccines in clinical trials: Potential for multivalent vaccine development.Vaccine202341162310231810.1016/j.vaccine.2023.03.022
    [Google Scholar]
  131. ChenH. GreenD. ZhaoX. Identification and characterization of virulent-associated peptides as candidates for multivalent vaccines.Vaccine20244281427143610.1016/j.vaccine.2024.02.011
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501337502241015121015
Loading
/content/journals/cdt/10.2174/0113894501337502241015121015
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antifungal; aspergillus; candida; combination therapies; IFI; mycosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test