Skip to content
2000
image of A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting

Abstract

The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501312571240920070441
2024-10-08
2024-11-14
Loading full text...

Full text loading...

References

  1. Pinter M. Peck-Radosavljevic M. Review article: Systemic treatment of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2018 48 6 598 609 10.1111/apt.14913 30039640
    [Google Scholar]
  2. Asafo-Agyei K.O. Samant H. Hepatocellular Carcinoma Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  3. Rawat D. Shrivastava S. Naik R.A. Chhonker S.K. Mehrotra A. Koiri R.K. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer. Agents Med. Chem. 2019 18 13 1838 1859 10.2174/1871520618666180604085612 29866017
    [Google Scholar]
  4. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Zucman-Rossi J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  5. Zhang C. Cheng Y. Zhang S. Fan J. Gao Q. Changing epidemiology of hepatocellular carcinoma in Asia. Liver Int. 2022 42 9 2029 2041 10.1111/liv.15251 35319165
    [Google Scholar]
  6. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 10.1177/20503121211034366 34408877
    [Google Scholar]
  7. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  8. Su K. Guo L. Ma W. Wang J. Xie Y. Rao M. Zhang J. Li X. Wen L. Li B. Yang X. Song Y. Huang W. Chi H. Gu T. Xu K. Liu Y. Chen J. Wu Z. Jiang Y. Li H. Zeng H. Wang P. Feng X. Chen S. Yang B. Jin H. He K. Han Y. PD-1 inhibitors plus anti-angiogenic therapy with or without intensity-modulated radiotherapy for advanced hepatocellular carcinoma: A propensity score matching study. Front. Immunol. 2022 13 972503 10.3389/fimmu.2022.972503 36211350
    [Google Scholar]
  9. Sharifi-Rad J. Seidel V. Izabela M. Monserrat-Mequida M. Sureda A. Ormazabal V. Zuniga F.A. Mangalpady S.S. Pezzani R. Ydyrys A. Tussupbekova G. Martorell M. Calina D. Cho W.C. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy. Cell Commun. Signal. 2023 21 1 89 10.1186/s12964‑023‑01109‑0 37127651
    [Google Scholar]
  10. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Banach M. Rollinger J.M. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  11. George B.P. Chandran R. Abrahamse H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021 10 9 1455 10.3390/antiox10091455 34573087
    [Google Scholar]
  12. Talib W.H. Alsayed A.R. Barakat M. Abu-Taha M.I. Mahmod A.I. Targeting drug chemo-resistance in cancer using natural products. Biomedicines 2021 9 10 1353 10.3390/biomedicines9101353 34680470
    [Google Scholar]
  13. Gupta P. Saraff M. Gahtori R. Negi N. Tripathi S. Kumar J. Kumar S. Aldhayan S. Dhanasekaran S. Abomughaid M. Dua K. Gundamaraju R. Ojha S. Ruokolainen J. Jha N. Kesari K. Phytomedicines targeting cancer stem cells: Therapeutic opportunities and prospects for pharmaceutical development. Pharmaceuticals (Basel) 2021 14 7 676 10.3390/ph14070676 34358102
    [Google Scholar]
  14. Tomas M. Capanoglu E. Bahrami A. Hosseini H. Akbari-Alavijeh S. Shaddel R. Rehman A. Rezaei A. Rashidinejad A. Garavand F. Goudarzi M. Jafari S.M. The direct and indirect effects of bioactive compounds against coronavirus. Food Front. 2022 3 1 96 123 10.1002/fft2.119 35462942
    [Google Scholar]
  15. Dehelean C.A. Marcovici I. Soica C. Mioc M. Coricovac D. Iurciuc S. Cretu O.M. Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021 26 4 1109 10.3390/molecules26041109 33669817
    [Google Scholar]
  16. Quiñonero F. Mesas C. Peña M. Cabeza L. Perazzoli G. Melguizo C. Ortiz R. Prados J. Vegetal-derived bioactive compounds as multidrug resistance modulators in colorectal cancer. Appl. Sci. (Basel) 2023 13 4 2667 10.3390/app13042667
    [Google Scholar]
  17. Su K. Shen Q. Tong J. Gu T. Xu K. Li H. Chi H. Liu Y. Li X. Wen L. Song Y. Guo Q. Chen J. Wu Z. Jiang Y. He K. Guo L. Han Y. Construction and validation of a nomogram for HBV-related hepatocellular carcinoma: A large, multicenter study. Ann. Hepatol. 2023 28 4 101109 10.1016/j.aohep.2023.101109 37100384
    [Google Scholar]
  18. Farazi P.A. DePinho R.A. Hepatocellular carcinoma pathogenesis: From genes to environment. Nat. Rev. Cancer 2006 6 9 674 687 10.1038/nrc1934 16929323
    [Google Scholar]
  19. Zhou Z. Xu M.J. Gao B. Hepatocytes: A key cell type for innate immunity. Cell. Mol. Immunol. 2016 13 3 301 315 10.1038/cmi.2015.97 26685902
    [Google Scholar]
  20. Cabrera R. Nelson D.R. Review article: The management of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2010 31 4 461 476 10.1111/j.1365‑2036.2009.04200.x 19925500
    [Google Scholar]
  21. Hu M. Wang Y. Xu L. An S. Tang Y. Zhou X. Li J. Liu R. Huang L. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat. Commun. 2019 10 1 2993 10.1038/s41467‑019‑10893‑8 31278269
    [Google Scholar]
  22. Su K. Liu Y. Wang P. He K. Wang F. Chi H. Rao M. Li X. Wen L. Song Y. Zhang J. Gu T. Xu K. Li Q. Chen J. Wu Z. Li H. Huang W. Chen L. Tong J. Li H. Feng X. Chen S. Yang B. Jin H. Yang Y. Liu H. Yang C. Wu M. Xiong F. Peng K. Zhu L. Xu Y. Tang X. Tan Z. Luo X. Zheng H. Zhang Y. Guo L. Han Y. Heat-shock protein 90α is a potential prognostic and predictive biomarker in hepatocellular carcinoma: A large-scale and multicenter study. Hepatol. Int. 2022 16 5 1208 1219 10.1007/s12072‑022‑10391‑y 35972640
    [Google Scholar]
  23. Craig A.J. von Felden J. Garcia-Lezana T. Sarcognato S. Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020 17 3 139 152 10.1038/s41575‑019‑0229‑4 31792430
    [Google Scholar]
  24. Lu L.C. Hsu C.H. Hsu C. Cheng A.L. Tumor heterogeneity in hepatocellular carcinoma: Facing the challenges. liver cancer 2016 5 2 128 138 10.1159/000367754 27386431
    [Google Scholar]
  25. Zhang S. Jiang C. Jiang L. Chen H. Huang J. Zhang J. Wang R. Chi H. Yang G. Tian G. Uncovering the immune microenvironment and molecular subtypes of hepatitis B-related liver cirrhosis and developing stable a diagnostic differential model by machine learning and artificial neural networks. Front. Mol. Biosci. 2023 10 1275897 10.3389/fmolb.2023.1275897 37808522
    [Google Scholar]
  26. Yang S. Cai C. Wang H. Ma X. Shao A. Sheng J. Yu C. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun. Signal. 2022 20 1 26 10.1186/s12964‑021‑00796‑x 35248060
    [Google Scholar]
  27. Fan W. Yung B. Huang P. Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017 117 22 13566 13638 10.1021/acs.chemrev.7b00258 29048884
    [Google Scholar]
  28. Girish C. Pradhan S.C. Chapter 44 - Herbal drugs on the liver. Liver Pathophysiology Muriel P.B.T.L.P. Boston Academic Press 2017 605 620 10.1016/B978‑0‑12‑804274‑8.00044‑8
    [Google Scholar]
  29. Gupta M. Sarwat M. Protective effects of plant-derived natural products against hepatocellular carcinoma. Herbal Medicines Academic Press Sarwat M. Siddique H.B.T.H.M. 2022 609 627 10.1016/B978‑0‑323‑90572‑5.00009‑3
    [Google Scholar]
  30. Su K. Wang F. Li X. Chi H. Zhang J. He K. Wang Z. Wen L. Song Y. Chen J. Wu Z. Jiang Y. Li H. Gu T. Wang C. Li Y. Liu M. Guo Q. Xu K. Guo L. Han Y. Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): a multicenter experience over a ten-year period. Front. Immunol. 2023 14 1265959 10.3389/fimmu.2023.1265959 37818373
    [Google Scholar]
  31. Dai R. Liu M. Xiang X. Li Y. Xi Z. Xu H. OMICS applications for medicinal plants in gastrointestinal cancers: Current advancements and future perspectives. Front. Pharmacol. 2022 13 842203 10.3389/fphar.2022.842203 35185591
    [Google Scholar]
  32. Zhang S. Jiang C. Jiang L. Chen H. Huang J. Gao X. Xia Z. Tran L.J. Zhang J. Chi H. Yang G. Tian G. Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay. Tumour Virus Res. 2023 16 200271 10.1016/j.tvr.2023.200271 37774952
    [Google Scholar]
  33. Zhang X. Chen Y. Cai G. Li X. Wang D. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway. Chem. Biol. Interact. 2017 277 91 100 10.1016/j.cbi.2017.09.005 28918123
    [Google Scholar]
  34. Granado-Serrano A.B. Martiín M.A. Bravo L. Goya L. Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J. Nutr. 2006 136 11 2715 2721 10.1093/jn/136.11.2715 17056790
    [Google Scholar]
  35. Nishikawa T. Nakajima T. Moriguchi M. Jo M. Sekoguchi S. Ishii M. Takashima H. Katagishi T. Kimura H. Minami M. Itoh Y. Kagawa K. Okanoue T. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J. Hepatol. 2006 44 6 1074 1082 10.1016/j.jhep.2005.11.045 16481065
    [Google Scholar]
  36. Chi H. Zhao S. Yang J. Gao X. Peng G. Zhang J. Xie X. Song G. Xu K. Xia Z. Chen S. Zhao J. T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis via integrating single-cell RNA-seq and bulk RNA-sequencing. Front. Immunol. 2023 14 1137025 10.3389/fimmu.2023.1137025 37006257
    [Google Scholar]
  37. Liu A. Wu Q. Peng D. Ares I. Anadón A. Lopez-Torres B. Martínez-Larrañaga M.R. Wang X. Martínez M.A. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med. Res. Rev. 2020 40 5 1973 2018 10.1002/med.21696 32525219
    [Google Scholar]
  38. Yao C. Liu B.B. Qian X.D. Li L.Q. Cao H.B. Guo Q.S. Zhou G.F. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. OncoTargets Ther. 2018 11 2017 2028 10.2147/OTT.S154586 29670377
    [Google Scholar]
  39. Sur S. Pal D. Roy R. Barua A. Roy A. Saha P. Panda C.K. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol. Appl. Pharmacol. 2016 300 34 46 10.1016/j.taap.2016.03.016 27058323
    [Google Scholar]
  40. Bort A. Spínola E. Rodríguez-Henche N. Díaz-Laviada I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget 2017 8 50 87684 87698 10.18632/oncotarget.21196 29152112
    [Google Scholar]
  41. Li C. Cai G. Song D. Gao R. Teng P. Zhou L. Ji Q. Sui H. Cai J. Li Q. Wang Y. Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer. Biomater. Sci. 2019 7 9 3627 3639 10.1039/C9BM00613C 31328737
    [Google Scholar]
  42. Tong D. Qu H. Meng X. Jiang Y. Liu D. Ye S. Chen H. Jin Y. Fu S. Geng J. S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-β signaling pathway in cancer cells. Oncol. Rep. 2014 32 3 1124 1132 10.3892/or.2014.3295 24970681
    [Google Scholar]
  43. Liu C. Peng X. Li Y. Liu S. Hou R. Zhang Y. Zuo S. Liu Z. Luo R. Li L. Fang W. Positive feedback loop of FAM83A/PI3K/AKT/c-Jun induces migration, invasion and metastasis in hepatocellular carcinoma. Biomed. Pharmacother. 2020 123 109780 10.1016/j.biopha.2019.109780 31901550
    [Google Scholar]
  44. Kong J. Li D. Zhang S. Zhang H. Fu Y. Qian B. Bei C. Tan S. Zhu X. Okadaic acid promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting protein phosphatase 2A. J. Cell. Biochem. 2020 Epub ahead of print 31904141
    [Google Scholar]
  45. Shi J. Li X. Hu Y. Zhang F. Lv X. Zhang X. Chen Q. Hu S. MiR-1203 is involved in hepatocellular carcinoma metastases and indicates a poor prognosis. Neoplasma 2020 67 2 267 276 10.4149/neo_2019_190414N328 31847527
    [Google Scholar]
  46. Han S. Shi Y. Sun L. Liu Z. Song T. Liu Q. MiR-4319 induced an inhibition of epithelial-mesenchymal transition and prevented cancer stemness of HCC through targeting FOXQ1. Int. J. Biol. Sci. 2019 15 13 2936 2947 10.7150/ijbs.38000 31853229
    [Google Scholar]
  47. Song S. Sun K. Dong J. Zhao Y. Liu F. Liu H. Sha Z. Mao J. Ding G. Guo W. Fu Z. microRNA-29a regulates liver tumor-initiating cells expansion via Bcl-2 pathway. Exp. Cell Res. 2020 387 2 111781 10.1016/j.yexcr.2019.111781 31857112
    [Google Scholar]
  48. Yao Z. Xu R. Yuan L. Xu M. Zhuang H. Li Y. Zhang Y. Lin N. Circ_0001955 facilitates hepatocellular carcinoma (HCC) tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11. Cell Death Dis. 2019 10 12 945 10.1038/s41419‑019‑2176‑y 31822654
    [Google Scholar]
  49. Hu Z.Q. Zhou S.L. Li J. Zhou Z.J. Wang P.C. Xin H.Y. Mao L. Luo C.B. Yu S.Y. Huang X.W. Cao Y. Jia F. Zhou J. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology 2019 Epub ahead of print 31838741
    [Google Scholar]
  50. Jiang Y. Sun A. Zhao Y. Ying W. Sun H. Yang X. Xing B. Sun W. Ren L. Hu B. Li C. Zhang L. Qin G. Zhang M. Chen N. Zhang M. Huang Y. Zhou J. Zhao Y. Liu M. Zhu X. Qiu Y. Sun Y. Huang C. Yan M. Wang M. Liu W. Tian F. Xu H. Zhou J. Wu Z. Shi T. Zhu W. Qin J. Xie L. Fan J. Qian X. He F. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019 567 7747 257 261 10.1038/s41586‑019‑0987‑8 30814741
    [Google Scholar]
  51. Hu J.W. Yang Z. Li J. Hu B. Luo C.B. Zhu K. Dai Z. Cai J.B. Zhan H. Hu Z.Q. Hu J. Cao Y. Qiu S.J. Zhou J. Fan J. Huang X.W. TGM3 promotes epithelial–mesenchymal transition and hepatocellular carcinogenesis and predicts poor prognosis for patients after curative resection. Dig. Liver Dis. 2020 52 6 668 676 10.1016/j.dld.2019.10.010 31822388
    [Google Scholar]
  52. Zhou Q. Huang T. Jiang Z. Ge C. Chen X. Zhang L. Zhao F. Zhu M. Chen T. Cui Y. Li H. Yao M. Li J. Tian H. Upregulation of SNX5 predicts poor prognosis and promotes hepatocellular carcinoma progression by modulating the EGFR-ERK1/2 signaling pathway. Oncogene 2020 39 10 2140 2155 10.1038/s41388‑019‑1131‑9 31819169
    [Google Scholar]
  53. Dong Z.R. Sun D. Yang Y.F. Zhou W. Wu R. Wang X.W. Shi K. Yan Y.C. Yan L.J. Yao C.Y. Chen Z.Q. Zhi X.T. Li T. TMPRSS4 drives angiogenesis in hepatocellular carcinoma by promoting HBEGF expression and proteolytic cleavage. Hepatology 2019 Epub ahead of print 31867749
    [Google Scholar]
  54. Liu Z. Chen M. Zhao R. Huang Y. Liu F. Li B. Qin Y. CAF-induced placental growth factor facilitates neoangiogenesis in hepatocellular carcinoma. Acta Biochim. Biophys. Sin. (Shanghai) 2019 52 1 18 25 10.1093/abbs/gmz134 31828297
    [Google Scholar]
  55. Chen Y. Fu H. Zhang Y. Chen P. Transmembrane and ubiquitin-like domain containing 1 protein (TMUB1) negatively regulates hepatocellular carcinoma proliferation via regulating signal transducer and activator of transcription 1 (STAT1). Med. Sci. Monit. 2019 25 9471 9482 10.12659/MSM.920319 31827061
    [Google Scholar]
  56. Xiao Y. Huang S. Qiu F. Ding X. Sun Y. Wei C. Hu X. Wei K. Long S. Xie L. Xun Y. Chen W. Zhang Z. Liu N. Xiang S. Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma. EBioMedicine 2020 51 102603 10.1016/j.ebiom.2019.102603 31901862
    [Google Scholar]
  57. Guo Q. Yu D.Y. Yang Z.F. Liu D.Y. Cao H.Q. Liao X.W. IGFBP2 upregulates ZEB1 expression and promotes hepatocellular carcinoma progression through NF-κB signaling pathway. Dig. Liver Dis. 2020 52 5 573 581 10.1016/j.dld.2019.10.008 31818638
    [Google Scholar]
  58. Wang X. Wang R. Bai S. Xiong S. Li Y. Liu M. Zhao Z. Wang Y. Zhao Y. Chen W. Billiar T.R. Cheng B. Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. J. Exp. Clin. Cancer Res. 2019 38 1 505 10.1186/s13046‑019‑1508‑1 31888685
    [Google Scholar]
  59. Wang N. Li M. Liu Y. Yu J. Ren J. Zheng Z. Wang S. Yang S. Yang S. Liu L. Hu B. Chong C.C.N. Merchant J.L. Lai P.B.S. Chen G.G. ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway. Cancer Lett. 2020 472 70 80 10.1016/j.canlet.2019.12.026 31874246
    [Google Scholar]
  60. Chakraborty T. Bhuniya D. Chatterjee M. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model. World J. Gastroenterol. 2007 13 48 6538 6548 10.3748/wjg.v13.i48.6538
    [Google Scholar]
  61. Zhang C.L. Zeng T. Zhao X.L. Yu L.H. Zhu Z.P. Xie K.Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int. J. Biol. Sci. 2012 8 3 363 374 10.7150/ijbs.3796 22393308
    [Google Scholar]
  62. Choi E.J. Kim G.H. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells. Chin. J. Cancer Res. 2013 25 5 536 543 24255577
    [Google Scholar]
  63. Gordanian B. Behbahani M. Carapetian J. Fazilati M. in vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Res. Pharm. Sci. 2014 9 2 91 96 25657777
    [Google Scholar]
  64. Bordean M.E. Ungur R.A. Toc D.A. Borda I.M. Marțiș G.S. Pop C.R. Filip M. Vlassa M. Nasui B.A. Pop A. Cinteză D. Popa F.L. Marian S. Szanto L.G. Muste S. Antibacterial and phytochemical screening of Artemisia species. Antioxidants 2023 12 3 596 10.3390/antiox12030596 36978844
    [Google Scholar]
  65. Jain S. Dixit V.K. Malviya N. Ambawatia V. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Amorphophallus campanulatus Roxb. tubers. Acta Pol. Pharm. 2009 66 4 423 428 19702175
    [Google Scholar]
  66. Yan Z. Guo G. Zhang B. Research of Brucea javanica against cancer. Chin. J. Integr. Med. 2017 23 2 153 160 10.1007/s11655‑016‑2501‑6 27041332
    [Google Scholar]
  67. Zhang J. Xu H.X. Dou Y.X. Huang Q.H. Xian Y.F. Lin Z.X. Major constituents from Brucea javanica and their pharmacological actions. Front. Pharmacol. 2022 13 853119 10.3389/fphar.2022.853119 35370639
    [Google Scholar]
  68. Thusyanthan J. Wickramaratne N.S. Senathilake K.S. Rajagopalan U. Tennekoon K.H. Thabrew I. Samarakoon S.R. Cytotoxicity against human hepatocellular carcinoma (hepg2) cells and anti-oxidant activity of selected endemic or medicinal plants in Sri Lanka. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 9 10.1155/2022/6407688 35402917
    [Google Scholar]
  69. Tadtong S. Kamkaen N. Watthanachaiyingcharoen R. Ruangrungsi N. Chemical components of four essential oils in aromatherapy recipe. Nat. Prod. Commun. 2015 10 6 1934578X1501000 10.1177/1934578X1501000673 26197558
    [Google Scholar]
  70. Hsu W.H. Chang C.C. Huang K.W. Chen Y.C. Hsu S.L. Wu L.C. Tsou A.P. Lai J.M. Huang C.Y.F. Evaluation of the medicinal herb Graptopetalum paraguayense as a treatment for liver cancer. PLoS One 2015 10 4 e0121298 10.1371/journal.pone.0121298 25849560
    [Google Scholar]
  71. Al-Seeni M.N. El Rabey H.A. Zamzami M.A. Alnefayee A.M. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complement. Altern. Med. 2016 16 1 438 10.1186/s12906‑016‑1422‑4 27814700
    [Google Scholar]
  72. Kim H.J. Park S.Y. Lee H.M. Seo D.I. Kim Y.M. Antiproliferative effect of the methanol extract from the roots of Petasites japonicus on Hep3B hepatocellular carcinoma cells in vitro and in vivo. Exp. Ther. Med. 2015 9 5 1791 1796 10.3892/etm.2015.2296 26136894
    [Google Scholar]
  73. Kuppusamy P. Nagalingam A. Muniraj N. Saxena N.K. Sharma D. Concomitant activation of ETS-like transcription factor-1 and death receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice. Sci. Rep. 2017 7 1 17943 10.1038/s41598‑017‑18190‑4 29263422
    [Google Scholar]
  74. J C Furtado N.A. Pirson L. Edelberg H. M Miranda L. Loira-Pastoriza C. Preat V. Larondelle Y. André C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules 2017 22 3 400 10.3390/molecules22030400 28273859
    [Google Scholar]
  75. Basu A. Namporn T. Ruenraroengsak P. Critical review in designing plant-based anticancer nanoparticles against hepatocellular carcinoma. Pharmaceutics 2023 15 6 1611 10.3390/pharmaceutics15061611 37376061
    [Google Scholar]
  76. Chakraborty E. Sarkar D. Emerging therapies for hepatocellular carcinoma (HCC). Cancers (Basel) 2022 14 11 2798 10.3390/cancers14112798 35681776
    [Google Scholar]
  77. Vijayakumar A. Baskaran R. Jang Y.S. Oh S.H. Yoo B.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 2017 18 3 875 883 10.1208/s12249‑016‑0573‑4 27368922
    [Google Scholar]
  78. Behzadi S. Serpooshan V. Tao W. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017 46 14 4218 4244 10.1039/C6CS00636A
    [Google Scholar]
  79. Xu J.J. Zhang W.C. Guo Y.W. Chen X.Y. Zhang Y.N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022 29 1 664 678 10.1080/10717544.2022.2039804 35209786
    [Google Scholar]
  80. Krishnan G. Subramaniyan J. Chengalvarayan Subramani P. Muralidharan B. Thiruvengadam D. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian J. Pharm. Sci. 2017 12 5 442 455 10.1016/j.ajps.2017.04.001 32104357
    [Google Scholar]
  81. Zhang D. Zhang J. Zeng J. Li Z. Zuo H. Huang C. Zhao X. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J. Biomed. Nanotechnol. 2019 15 2 288 300 10.1166/jbn.2019.2682 30596551
    [Google Scholar]
  82. Li Y. Wu J. Lu Q. Liu X. Wen J. Qi X. Liu J. Lian B. Zhang B. Sun H. Tian G. GA&HA-modified liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of hepatocellular carcinoma. Int. J. Nanomedicine 2022 17 2559 2575 10.2147/IJN.S366180 35698562
    [Google Scholar]
  83. Shu Q. Wu J. Chen Q. Synthesis, characterization of liposomes modified with biosurfactant MEL-A Loading betulinic acid and its anticancer effect in HepG2 cell. Molecules 2019 24 21 3939 10.3390/molecules24213939 31683639
    [Google Scholar]
  84. Batool S. Asad M.J. Arshad M. Ahmed W. Sohail M.F. Abbasi S.W. Ahmad S. Saleem R.S.Z. Ahmed M.S. in silico validation, fabrication and evaluation of nano-liposomes of Bistorta amplexicaulis extract for improved anticancer activity against hepatoma cell line (HepG2). Curr. Drug Deliv. 2021 18 7 922 934 10.2174/1567201818666210316113640 33726649
    [Google Scholar]
  85. Yue Y. Yang Y. Shi L. Wang Z. Basic research Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch. Med. Sci. 2015 4 4 856 862 10.5114/aoms.2015.53306 26322098
    [Google Scholar]
  86. Chen X. Hu X. Hu J. Qiu Z. Yuan M. Zheng G. Celastrol-loaded galactosylated liposomes effectively inhibit AKT/c-Met-triggered rapid hepatocarcinogenesis in mice. Mol. Pharm. 2020 17 3 738 747 10.1021/acs.molpharmaceut.9b00428 31904241
    [Google Scholar]
  87. Wang Y. Ding R. Zhang Z. Zhong C. Wang J. Wang M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int. J. Pharm. 2021 602 120628 10.1016/j.ijpharm.2021.120628 33892061
    [Google Scholar]
  88. Cheng Y. Zhao P. Wu S. Yang T. Chen Y. Zhang X. He C. Zheng C. Li K. Ma X. Xiang G. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm. 2018 545 1-2 261 273 10.1016/j.ijpharm.2018.05.007 29730175
    [Google Scholar]
  89. Liu C. Zhou Z. Chen Y. Liu J. Wang Y. Liu H. Targeted delivery of garcinia glycosides by reconstituted high-density lipoprotein nano-complexes. J. Microencapsul. 2018 35 2 115 120 10.1080/02652048.2017.1413146 29195484
    [Google Scholar]
  90. Yang J. Pei H. Luo H. Fu A. Yang H. Hu J. Zhao C. Chai L. Chen X. Shao X. Wang C. Wu W. Wan L. Ye H. Qiu Q. Peng A. Wei Y. Yang L. Chen L. Non-toxic dose of liposomal honokiol suppresses metastasis of hepatocellular carcinoma through destabilizing EGFR and inhibiting the downstream pathways. Oncotarget 2017 8 1 915 932 10.18632/oncotarget.13687 27906672
    [Google Scholar]
  91. Li D. Liu S. Zhu J. Shen L. Zhang Q. Zhu H. Folic acid modified TPGS as a novel nano-micelle for delivery of nitidine chloride to improve apoptosis induction in Huh7 human hepatocellular carcinoma. BMC Pharmacol. Toxicol. 2021 22 1 1 10.1186/s40360‑020‑00461‑y 33407916
    [Google Scholar]
  92. Zhong Z. liu Zhang X. huang Yu X. li Xiong D. Sun X. Luo Y. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomedicine 2016 11 3111 3129 10.2147/IJN.S108445 27471381
    [Google Scholar]
  93. Jagwani S. Jalalpure S. Dhamecha D. Jadhav K. Bohara R. Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma. ACS Biomater. Sci. Eng. 2020 6 9 4969 4984 10.1021/acsbiomaterials.0c00429 33455290
    [Google Scholar]
  94. Ochi M.M. Amoabediny G. Rezayat S.M. Akbarzadeh A. Ebrahimi B. in vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell J. 2016 18 2 135 148 [CrossRef]. 27540518
    [Google Scholar]
  95. Hu X. Zhang J. Deng L. Hu H. Hu J. Zheng G. Galactose-modified Ph-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of tanshinone IIA. AAPS PharmSciTech 2021 22 3 96 10.1208/s12249‑021‑01973‑4 33694067
    [Google Scholar]
  96. Zhang L. Zhang S. Jiang M. Lu L. Ding Y. Ma N. Zhao Y. Xuchen S. Zhang N. Sovel timosaponin SIII-based multifunctional liposomal delivery system for synergistic therapy against hepatocellular carcinoma cancer. Int. J. Nanomedicine 2021 16 5531 5550 10.2147/IJN.S313759 34429598
    [Google Scholar]
  97. Zheng Y. Kong F. Liu S. Liu X. Pei D. Miao X. Membrane protein-chimeric liposome-mediated delivery of triptolide for targeted hepatocellular carcinoma therapy. Drug Deliv. 2021 28 1 2033 2043 10.1080/10717544.2021.1983072 34569906
    [Google Scholar]
  98. Yu L. Wang Z. Mo Z. Zou B. Yang Y. Sun R. Ma W. Yu M. Zhang S. Yu Z. Synergetic delivery of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy. Acta Pharm. Sin. B 2021 11 7 2004 2015 10.1016/j.apsb.2021.02.001 34386334
    [Google Scholar]
  99. Li Z. Yang G. Han L. Wang R. Gong C. Yuan Y. Sorafenib and triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma. J. Nanobiotechnology 2021 19 1 360 10.1186/s12951‑021‑01095‑w 34749742
    [Google Scholar]
  100. Wang B. Xu Q. Zhou C. Lin Y. Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma. Acta Biochim. Pol. 2021 68 4 711 715 10.18388/abp.2020_5608 34730903
    [Google Scholar]
  101. Nisha R. Kumar P. Gautam A.K. Bera H. Bhattacharya B. Parashar P. Saraf S.A. Saha S. Assessments of in vitro and in vivo antineoplastic potentials of β-sitosterol-loaded PEGylated niosomes against hepatocellular carcinoma. J. Liposome Res. 2021 31 3 304 315 10.1080/08982104.2020.1820520 32901571
    [Google Scholar]
  102. Sun S. Shang E. Ju A. Li Y. Wu Q. Li Q. Yang Y. Guo Y. Yang D. Lv S. Tumor-targeted hyaluronic acid-mPEG modified nanostructured lipid carriers for cantharidin delivery: An in vivo and in vitro study. Fitoterapia 2021 155 105033 10.1016/j.fitote.2021.105033 34517057
    [Google Scholar]
  103. Kunjiappan S. Sankaranarayanan M. Karan Kumar B. Pavadai P. Babkiewicz E. Maszczyk P. Glodkowska-Mrowka E. Arunachalam S. Ram Kumar Pandian S. Ravishankar V. Baskararaj S. Vellaichamy S. Arulmani L. Panneerselvam T. Capsaicin-loaded solid lipid nanoparticles: Design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation. Nanotechnology 2021 32 9 095101 10.1088/1361‑6528/abc57e 33113518
    [Google Scholar]
  104. Zhao X. Chen Q. Li Y. Tang H. Liu W. Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015 93 27 36 10.1016/j.ejpb.2015.03.003 25770771
    [Google Scholar]
  105. Rahman M. Al-Ghamdi S.A. Alharbi K.S. Beg S. Sharma K. Anwar F. Al-Abbasi F.A. Kumar V. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv. 2019 26 1 782 793 10.1080/10717544.2019.1606865 31357897
    [Google Scholar]
  106. Zhu J. Huang Y. Zhang J. Feng Y. Shen L. Sormulation, preparation and evaluation of nanostructured lipid carrier containing naringin and coix seed oil for anti-tumor application based on “unification of medicines and excipients”. Drug Des. Devel. Ther. 2020 14 1481 1491 10.2147/DDDT.S236997 32368009
    [Google Scholar]
  107. Varshosaz J. Jafarian A. Salehi G. Zolfaghari B. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J. Liposome Res. 2014 24 3 191 203 10.3109/08982104.2013.868476 24354715
    [Google Scholar]
  108. Rahman M. Almalki W.H. Afzal O. Alfawaz Altamimi A.S. Kazmi I. Al-Abbasi F.A. Choudhry H. Alenezi S. Barkat M.A. Beg S. Kumar V. Alhalmi A. Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: Systematic optimization, in vitro characterization and preclinical investigation. Int. J. Nanomedicine 2020 15 9283 9299 10.2147/IJN.S277545 33262588
    [Google Scholar]
  109. Bhattacharya S. Mondal L. Mukherjee B. Dutta L. Ehsan I. Debnath M.C. Gaonkar R.H. Pal M.M. Majumdar S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine 2018 14 6 1905 1917 10.1016/j.nano.2018.05.011 29802937
    [Google Scholar]
  110. Tian H. Huang Y. He J. Zhang M. Ni P. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells. ACS Appl. Bio Mater. 2021 4 5 4422 4431 10.1021/acsabm.1c00177 35006854
    [Google Scholar]
  111. Sarika P.R. James N.R. Kumar P.R.A. Raj D.K. Kumary T.V. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr. Polym. 2015 134 167 174 10.1016/j.carbpol.2015.07.068 26428113
    [Google Scholar]
  112. Mondal J. Khuda-Bukhsh A.R. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Mol. Biol. Rep. 2020 47 5 3615 3628 10.1007/s11033‑020‑05455‑x 32314187
    [Google Scholar]
  113. Abd-Rabou A.A. Ahmed H.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci. 2017 62 2 357 367 10.1016/j.advms.2017.01.003 28521254
    [Google Scholar]
  114. Kumar V. Bhatt P. Rahman M. Kaithwas G. Choudhry H. Al-Abbasi F. Anwar F. Verma A. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int. J. Nanomedicine 2017 12 6747 6758 10.2147/IJN.S136629 28932118
    [Google Scholar]
  115. Zhou M. Yi Y. Liu L. Lin Y. Li J. Ruan J. Zhong Z. Polymeric micelles loading with ursolic acid enhancing anti-tumor effect on hepatocellular carcinoma. J. Cancer 2019 10 23 5820 5831 10.7150/jca.30865 31737119
    [Google Scholar]
  116. Gao W. Fan X. Bi Y. Zhou Z. Yuan Y. Preparation of NIR-responsive gold nanocages as efficient carrier for controlling release of egcg in anticancer application. Front Chem. 2022 10 926002 10.3389/fchem.2022.926002 35720982
    [Google Scholar]
  117. Sahu B. Comprehensive Review on Non-Alcoholic Fatty Liver Disease (NAFLD): Clinical advancement and drug treatments. Prob. Sci. 2024 1 1 1 7
    [Google Scholar]
  118. Jain P. Satapathy T. Pandey R.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil ( Gossypium Sp.). Int. J. Acarol. 2020 46 4 263 267 [Taylor n Francis]. 10.1080/01647954.2020.1767203
    [Google Scholar]
  119. Prasad J. Netam A.K. Satapathy T. Prakash Rao S. Jain P. Anti-hyperlipidemic and antioxidant activities of a combination of Terminalia arjuna and Commiphora mukul on experimental animals. Advances in Biomedical Engineering and Technology. Rizvanov A.A. Singh B.K. Ganasala P. Singapore Springer 2021 175 188 10.1007/978‑981‑15‑6329‑4_16
    [Google Scholar]
  120. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes. Mater. Today Proc. 2023 83 59 68 [Internet]. 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  121. Pradhan P. Joseph L. Gupta V. Efficacy of Phyllanthus niruri and Curcuma longa in hepatocellular carcinoma: A molecular perspective. J. Cancer Res. 2012 35 4 245 252
    [Google Scholar]
  122. Sharma R. Ahuja V. Anti-cancer properties of curcumin in combination with Phyllanthus niruri: An overview. J. Tradit. Complement. Med. 2015 5 1 37 45 26870678
    [Google Scholar]
  123. Sudhir Dhote N. Dineshbhai Patel R. Kuwar U. Agrawal M. Alexander A. Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting [Internet]. Curr. Cancer Drug Targets 2024 24 1 22
    [Google Scholar]
  124. Netam A.K. Prasad J. Satapathy T. Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model. Advances in Biomedical Engineering and Technology Singapore Springer Singapore Rizvanov A.A. Singh B.K. Ganasala P. 2021 207 220
    [Google Scholar]
  125. Jain P. Satapathy T. Pandey R.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet. Parasitol. 2021 296 June 109508 10.1016/j.vetpar.2021.109508 34218174
    [Google Scholar]
  126. Singh R Prasad J Satapathy T Jain P Singh S Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. indian J. Biochem. Biophys. 2021 58 2 156 161
    [Google Scholar]
  127. Jain A. Bhalla V. Andrographis paniculata and its role in hepatocellular carcinoma management. Phytother. Res. 2016 30 2 233 241
    [Google Scholar]
  128. Jain P. Satapathy T. Pandey R.K. Acaricidal activity and biochemical analysis of citrus limetta seed oil for controlling ixodid tick Rhipicephalus microplus infesting cattle. Syst. Appl. Acarol. 2021 26 10.11158/saa.26.7.13
    [Google Scholar]
  129. Patel R. Kuwar U. Dhote N. Alexander A. Nakhate K. Jain P. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr. Drug Deliv. 2024 21 2 193 210 10.2174/1567201820666230112170035 36644864
    [Google Scholar]
  130. Kapoor M. Singh J. Liv.52: A polyherbal formulation in liver cancer: Review of studies. Int. J. Pharm. Sci. Res. 2014 29 5 567 573
    [Google Scholar]
  131. Jain P. Satapathy T. Pandey R.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2021 298 May 109490 10.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  132. Patel S. Patel P. Synergistic effects of Silybum marianum with other hepatoprotective herbs in liver cancer. J. Herb. Med. 2017 8 3 190 196
    [Google Scholar]
  133. Gupta S. Misra A. Challenges in standardization of polyherbal formulations for cancer treatment. Curr. Pharm. Des. 2013 19 10 1855 1862
    [Google Scholar]
  134. Singh R. Kaur M. Standardization and quality control of polyherbal formulations: A need for hepatocellular carcinoma management. J. Pharm. Res. 2018 32 7 709 716
    [Google Scholar]
  135. Jain A. Jain P. Soni P. Tiwari A. Tiwari S.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J. Gastrointest. Cancer 2023 54 1 90 95 10.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  136. Islam M. Huang Y. Jain P. Fan B. Tong L. Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal. Agric. Biotechnol. 2023 50 102700 [Internet]. 10.1016/j.bcab.2023.102700
    [Google Scholar]
  137. Salk J.J. Schmitt M.W. Loeb L.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 2018 19 5 269 285 10.1038/nrg.2017.117 29576615
    [Google Scholar]
  138. Love-Koh J. Peel A. Rejon-Parrilla J.C. Ennis K. Lovett R. Manca A. Chalkidou A. Wood H. Taylor M. The future of precision medicine: Potential impacts for health technology assessment. PharmacoEconomics 2018 36 12 1439 1451 10.1007/s40273‑018‑0686‑6 30003435
    [Google Scholar]
  139. Chen T. Gong T. Zhao T. Fu Y. Zhang Z. Gong T. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy. Eur. J. Pharm. Sci. 2018 111 293 302 10.1016/j.ejps.2017.09.041 28966099
    [Google Scholar]
  140. Kaur V. Kumar M. Kumar A. Kaur K. Dhillon V.S. Kaur S. Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomed. Pharmacother. 2018 97 564 586 10.1016/j.biopha.2017.10.124 29101800
    [Google Scholar]
  141. Korga A. Ostrowska M. Jozefczyk A. Iwan M. Wojcik R. Zgorka G. Herbet M. Vilarrubla G.G. Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol. Toxicol. 2019 20 1 22 10.1186/s40360‑019‑0301‑2 31053173
    [Google Scholar]
  142. Li J. Duan B. Guo Y. Zhou R. Sun J. Bie B. Yang S. Huang C. Yang J. Li Z. Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity. Biomed. Pharmacother. 2018 98 806 812 10.1016/j.biopha.2018.01.002 29571250
    [Google Scholar]
  143. Chang Y.F. Chi C.W. Wang J.J. Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells. Nutr. Cancer 2006 55 2 201 209 10.1207/s15327914nc5502_12 17044776
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501312571240920070441
Loading
/content/journals/cdt/10.2174/0113894501312571240920070441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemicals ; anticancer ; nitrosamines ; Hepatocellular carcinoma ; aflatoxin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test