Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501312571240920070441
2024-10-08
2025-05-04
Loading full text...

Full text loading...

References

  1. PinterM. Peck-RadosavljevicM. Review article: Systemic treatment of hepatocellular carcinoma.Aliment. Pharmacol. Ther.201848659860910.1111/apt.1491330039640
    [Google Scholar]
  2. Asafo-AgyeiK.O. SamantH. Hepatocellular CarcinomaTreasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  3. RawatD. ShrivastavaS. NaikR.A. ChhonkerS.K. MehrotraA. KoiriR.K. An overview of natural plant products in the treatment of hepatocellular carcinoma.Anticancer. Agents Med. Chem.201918131838185910.2174/187152061866618060408561229866017
    [Google Scholar]
  4. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  5. ZhangC. ChengY. ZhangS. FanJ. GaoQ. Changing epidemiology of hepatocellular carcinoma in Asia.Liver Int.20224292029204110.1111/liv.1525135319165
    [Google Scholar]
  6. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  7. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  8. SuK. GuoL. MaW. WangJ. XieY. RaoM. ZhangJ. LiX. WenL. LiB. YangX. SongY. HuangW. ChiH. GuT. XuK. LiuY. ChenJ. WuZ. JiangY. LiH. ZengH. WangP. FengX. ChenS. YangB. JinH. HeK. HanY. PD-1 inhibitors plus anti-angiogenic therapy with or without intensity-modulated radiotherapy for advanced hepatocellular carcinoma: A propensity score matching study.Front. Immunol.20221397250310.3389/fimmu.2022.97250336211350
    [Google Scholar]
  9. Sharifi-RadJ. SeidelV. IzabelaM. Monserrat-MequidaM. SuredaA. OrmazabalV. ZunigaF.A. MangalpadyS.S. PezzaniR. YdyrysA. TussupbekovaG. MartorellM. CalinaD. ChoW.C. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy.Cell Commun. Signal.20232118910.1186/s12964‑023‑01109‑037127651
    [Google Scholar]
  10. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. BanachM. RollingerJ.M. Natural products in drug discovery: advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  11. GeorgeB.P. ChandranR. AbrahamseH. Role of phytochemicals in cancer chemoprevention: Insights.Antioxidants2021109145510.3390/antiox1009145534573087
    [Google Scholar]
  12. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines910135334680470
    [Google Scholar]
  13. GuptaP. SaraffM. GahtoriR. NegiN. TripathiS. KumarJ. KumarS. AldhayanS. DhanasekaranS. AbomughaidM. DuaK. GundamarajuR. OjhaS. RuokolainenJ. JhaN. KesariK. Phytomedicines targeting cancer stem cells: Therapeutic opportunities and prospects for pharmaceutical development.Pharmaceuticals (Basel)202114767610.3390/ph1407067634358102
    [Google Scholar]
  14. TomasM. CapanogluE. BahramiA. HosseiniH. Akbari-AlavijehS. ShaddelR. RehmanA. RezaeiA. RashidinejadA. GaravandF. GoudarziM. JafariS.M. The direct and indirect effects of bioactive compounds against coronavirus.Food Front.2022319612310.1002/fft2.11935462942
    [Google Scholar]
  15. DeheleanC.A. MarcoviciI. SoicaC. MiocM. CoricovacD. IurciucS. CretuO.M. PinzaruI. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy.Molecules2021264110910.3390/molecules2604110933669817
    [Google Scholar]
  16. QuiñoneroF. MesasC. PeñaM. CabezaL. PerazzoliG. MelguizoC. OrtizR. PradosJ. Vegetal-derived bioactive compounds as multidrug resistance modulators in colorectal cancer.Appl. Sci. (Basel)2023134266710.3390/app13042667
    [Google Scholar]
  17. SuK. ShenQ. TongJ. GuT. XuK. LiH. ChiH. LiuY. LiX. WenL. SongY. GuoQ. ChenJ. WuZ. JiangY. HeK. GuoL. HanY. Construction and validation of a nomogram for HBV-related hepatocellular carcinoma: A large, multicenter study.Ann. Hepatol.202328410110910.1016/j.aohep.2023.10110937100384
    [Google Scholar]
  18. FaraziP.A. DePinhoR.A. Hepatocellular carcinoma pathogenesis: From genes to environment.Nat. Rev. Cancer20066967468710.1038/nrc193416929323
    [Google Scholar]
  19. ZhouZ. XuM.J. GaoB. Hepatocytes: A key cell type for innate immunity.Cell. Mol. Immunol.201613330131510.1038/cmi.2015.9726685902
    [Google Scholar]
  20. CabreraR. NelsonD.R. Review article: The management of hepatocellular carcinoma.Aliment. Pharmacol. Ther.201031446147610.1111/j.1365‑2036.2009.04200.x19925500
    [Google Scholar]
  21. HuM. WangY. XuL. AnS. TangY. ZhouX. LiJ. LiuR. HuangL. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy.Nat. Commun.2019101299310.1038/s41467‑019‑10893‑831278269
    [Google Scholar]
  22. SuK. LiuY. WangP. HeK. WangF. ChiH. RaoM. LiX. WenL. SongY. ZhangJ. GuT. XuK. LiQ. ChenJ. WuZ. LiH. HuangW. ChenL. TongJ. LiH. FengX. ChenS. YangB. JinH. YangY. LiuH. YangC. WuM. XiongF. PengK. ZhuL. XuY. TangX. TanZ. LuoX. ZhengH. ZhangY. GuoL. HanY. Heat-shock protein 90α is a potential prognostic and predictive biomarker in hepatocellular carcinoma: A large-scale and multicenter study.Hepatol. Int.20221651208121910.1007/s12072‑022‑10391‑y35972640
    [Google Scholar]
  23. CraigA.J. von FeldenJ. Garcia-LezanaT. SarcognatoS. VillanuevaA. Tumour evolution in hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202017313915210.1038/s41575‑019‑0229‑431792430
    [Google Scholar]
  24. LuL.C. HsuC.H. HsuC. ChengA.L. Tumor heterogeneity in hepatocellular carcinoma: Facing the challenges.liver cancer20165212813810.1159/00036775427386431
    [Google Scholar]
  25. ZhangS. JiangC. JiangL. ChenH. HuangJ. ZhangJ. WangR. ChiH. YangG. TianG. Uncovering the immune microenvironment and molecular subtypes of hepatitis B-related liver cirrhosis and developing stable a diagnostic differential model by machine learning and artificial neural networks.Front. Mol. Biosci.202310127589710.3389/fmolb.2023.127589737808522
    [Google Scholar]
  26. YangS. CaiC. WangH. MaX. ShaoA. ShengJ. YuC. Drug delivery strategy in hepatocellular carcinoma therapy.Cell Commun. Signal.20222012610.1186/s12964‑021‑00796‑x35248060
    [Google Scholar]
  27. FanW. YungB. HuangP. ChenX. Nanotechnology for multimodal synergistic cancer therapy.Chem. Rev.201711722135661363810.1021/acs.chemrev.7b0025829048884
    [Google Scholar]
  28. GirishC. PradhanS.C. Chapter 44 - Herbal drugs on the liver.Liver Pathophysiology MurielP.B.T.L.P. BostonAcademic Press201760562010.1016/B978‑0‑12‑804274‑8.00044‑8
    [Google Scholar]
  29. GuptaM. SarwatM. Protective effects of plant-derived natural products against hepatocellular carcinoma.Herbal MedicinesAcademic Press SarwatM. SiddiqueH.B.T.H.M. 202260962710.1016/B978‑0‑323‑90572‑5.00009‑3
    [Google Scholar]
  30. SuK. WangF. LiX. ChiH. ZhangJ. HeK. WangZ. WenL. SongY. ChenJ. WuZ. JiangY. LiH. GuT. WangC. LiY. LiuM. GuoQ. XuK. GuoL. HanY. Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): a multicenter experience over a ten-year period.Front. Immunol.202314126595910.3389/fimmu.2023.126595937818373
    [Google Scholar]
  31. DaiR. LiuM. XiangX. LiY. XiZ. XuH. OMICS applications for medicinal plants in gastrointestinal cancers: Current advancements and future perspectives.Front. Pharmacol.20221384220310.3389/fphar.2022.84220335185591
    [Google Scholar]
  32. ZhangS. JiangC. JiangL. ChenH. HuangJ. GaoX. XiaZ. TranL.J. ZhangJ. ChiH. YangG. TianG. Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay.Tumour Virus Res.20231620027110.1016/j.tvr.2023.20027137774952
    [Google Scholar]
  33. ZhangX. ChenY. CaiG. LiX. WangD. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway.Chem. Biol. Interact.20172779110010.1016/j.cbi.2017.09.00528918123
    [Google Scholar]
  34. Granado-SerranoA.B. MartiínM.A. BravoL. GoyaL. RamosS. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).J. Nutr.2006136112715272110.1093/jn/136.11.271517056790
    [Google Scholar]
  35. NishikawaT. NakajimaT. MoriguchiM. JoM. SekoguchiS. IshiiM. TakashimaH. KatagishiT. KimuraH. MinamiM. ItohY. KagawaK. OkanoueT. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins.J. Hepatol.20064461074108210.1016/j.jhep.2005.11.04516481065
    [Google Scholar]
  36. ChiH. ZhaoS. YangJ. GaoX. PengG. ZhangJ. XieX. SongG. XuK. XiaZ. ChenS. ZhaoJ. T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis via integrating single-cell RNA-seq and bulk RNA-sequencing.Front. Immunol.202314113702510.3389/fimmu.2023.113702537006257
    [Google Scholar]
  37. LiuA. WuQ. PengD. AresI. AnadónA. Lopez-TorresB. Martínez-LarrañagaM.R. WangX. MartínezM.A. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation.Med. Res. Rev.20204051973201810.1002/med.2169632525219
    [Google Scholar]
  38. YaoC. LiuB.B. QianX.D. LiL.Q. CaoH.B. GuoQ.S. ZhouG.F. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity.OncoTargets Ther.2018112017202810.2147/OTT.S15458629670377
    [Google Scholar]
  39. SurS. PalD. RoyR. BaruaA. RoyA. SahaP. PandaC.K. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice.Toxicol. Appl. Pharmacol.2016300344610.1016/j.taap.2016.03.01627058323
    [Google Scholar]
  40. BortA. SpínolaE. Rodríguez-HencheN. Díaz-LaviadaI. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation.Oncotarget2017850876848769810.18632/oncotarget.2119629152112
    [Google Scholar]
  41. LiC. CaiG. SongD. GaoR. TengP. ZhouL. JiQ. SuiH. CaiJ. LiQ. WangY. Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer.Biomater. Sci.2019793627363910.1039/C9BM00613C31328737
    [Google Scholar]
  42. TongD. QuH. MengX. JiangY. LiuD. YeS. ChenH. JinY. FuS. GengJ. S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-β signaling pathway in cancer cells.Oncol. Rep.20143231124113210.3892/or.2014.329524970681
    [Google Scholar]
  43. LiuC. PengX. LiY. LiuS. HouR. ZhangY. ZuoS. LiuZ. LuoR. LiL. FangW. Positive feedback loop of FAM83A/PI3K/AKT/c-Jun induces migration, invasion and metastasis in hepatocellular carcinoma.Biomed. Pharmacother.202012310978010.1016/j.biopha.2019.10978031901550
    [Google Scholar]
  44. KongJ. LiD. ZhangS. ZhangH. FuY. QianB. BeiC. TanS. ZhuX. Okadaic acid promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting protein phosphatase 2A.J. Cell. Biochem.2020Epub ahead of print31904141
    [Google Scholar]
  45. ShiJ. LiX. HuY. ZhangF. LvX. ZhangX. ChenQ. HuS. MiR-1203 is involved in hepatocellular carcinoma metastases and indicates a poor prognosis.Neoplasma202067226727610.4149/neo_2019_190414N32831847527
    [Google Scholar]
  46. HanS. ShiY. SunL. LiuZ. SongT. LiuQ. MiR-4319 induced an inhibition of epithelial-mesenchymal transition and prevented cancer stemness of HCC through targeting FOXQ1.Int. J. Biol. Sci.201915132936294710.7150/ijbs.3800031853229
    [Google Scholar]
  47. SongS. SunK. DongJ. ZhaoY. LiuF. LiuH. ShaZ. MaoJ. DingG. GuoW. FuZ. microRNA-29a regulates liver tumor-initiating cells expansion via Bcl-2 pathway.Exp. Cell Res.2020387211178110.1016/j.yexcr.2019.11178131857112
    [Google Scholar]
  48. YaoZ. XuR. YuanL. XuM. ZhuangH. LiY. ZhangY. LinN. Circ_0001955 facilitates hepatocellular carcinoma (HCC) tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11.Cell Death Dis.2019101294510.1038/s41419‑019‑2176‑y31822654
    [Google Scholar]
  49. HuZ.Q. ZhouS.L. LiJ. ZhouZ.J. WangP.C. XinH.Y. MaoL. LuoC.B. YuS.Y. HuangX.W. CaoY. JiaF. ZhouJ. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis.Hepatology2019Epub ahead of print31838741
    [Google Scholar]
  50. JiangY. SunA. ZhaoY. YingW. SunH. YangX. XingB. SunW. RenL. HuB. LiC. ZhangL. QinG. ZhangM. ChenN. ZhangM. HuangY. ZhouJ. ZhaoY. LiuM. ZhuX. QiuY. SunY. HuangC. YanM. WangM. LiuW. TianF. XuH. ZhouJ. WuZ. ShiT. ZhuW. QinJ. XieL. FanJ. QianX. HeF. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.Nature2019567774725726110.1038/s41586‑019‑0987‑830814741
    [Google Scholar]
  51. HuJ.W. YangZ. LiJ. HuB. LuoC.B. ZhuK. DaiZ. CaiJ.B. ZhanH. HuZ.Q. HuJ. CaoY. QiuS.J. ZhouJ. FanJ. HuangX.W. TGM3 promotes epithelial–mesenchymal transition and hepatocellular carcinogenesis and predicts poor prognosis for patients after curative resection.Dig. Liver Dis.202052666867610.1016/j.dld.2019.10.01031822388
    [Google Scholar]
  52. ZhouQ. HuangT. JiangZ. GeC. ChenX. ZhangL. ZhaoF. ZhuM. ChenT. CuiY. LiH. YaoM. LiJ. TianH. Upregulation of SNX5 predicts poor prognosis and promotes hepatocellular carcinoma progression by modulating the EGFR-ERK1/2 signaling pathway.Oncogene202039102140215510.1038/s41388‑019‑1131‑931819169
    [Google Scholar]
  53. DongZ.R. SunD. YangY.F. ZhouW. WuR. WangX.W. ShiK. YanY.C. YanL.J. YaoC.Y. ChenZ.Q. ZhiX.T. LiT. TMPRSS4 drives angiogenesis in hepatocellular carcinoma by promoting HBEGF expression and proteolytic cleavage.Hepatology2019Epub ahead of print31867749
    [Google Scholar]
  54. LiuZ. ChenM. ZhaoR. HuangY. LiuF. LiB. QinY. CAF-induced placental growth factor facilitates neoangiogenesis in hepatocellular carcinoma.Acta Biochim. Biophys. Sin. (Shanghai)2019521182510.1093/abbs/gmz13431828297
    [Google Scholar]
  55. ChenY. FuH. ZhangY. ChenP. Transmembrane and ubiquitin-like domain containing 1 protein (TMUB1) negatively regulates hepatocellular carcinoma proliferation via regulating signal transducer and activator of transcription 1 (STAT1).Med. Sci. Monit.2019259471948210.12659/MSM.92031931827061
    [Google Scholar]
  56. XiaoY. HuangS. QiuF. DingX. SunY. WeiC. HuX. WeiK. LongS. XieL. XunY. ChenW. ZhangZ. LiuN. XiangS. Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma.EBioMedicine20205110260310.1016/j.ebiom.2019.10260331901862
    [Google Scholar]
  57. GuoQ. YuD.Y. YangZ.F. LiuD.Y. CaoH.Q. LiaoX.W. IGFBP2 upregulates ZEB1 expression and promotes hepatocellular carcinoma progression through NF-κB signaling pathway.Dig. Liver Dis.202052557358110.1016/j.dld.2019.10.00831818638
    [Google Scholar]
  58. WangX. WangR. BaiS. XiongS. LiY. LiuM. ZhaoZ. WangY. ZhaoY. ChenW. BilliarT.R. ChengB. Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway.J. Exp. Clin. Cancer Res.201938150510.1186/s13046‑019‑1508‑131888685
    [Google Scholar]
  59. WangN. LiM. LiuY. YuJ. RenJ. ZhengZ. WangS. YangS. YangS. LiuL. HuB. ChongC.C.N. MerchantJ.L. LaiP.B.S. ChenG.G. ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway.Cancer Lett.2020472708010.1016/j.canlet.2019.12.02631874246
    [Google Scholar]
  60. ChakrabortyT. BhuniyaD. ChatterjeeM. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model.World J. Gastroenterol.200713486538654810.3748/wjg.v13.i48.6538
    [Google Scholar]
  61. ZhangC.L. ZengT. ZhaoX.L. YuL.H. ZhuZ.P. XieK.Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats.Int. J. Biol. Sci.20128336337410.7150/ijbs.379622393308
    [Google Scholar]
  62. ChoiE.J. KimG.H. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells.Chin. J. Cancer Res.201325553654324255577
    [Google Scholar]
  63. GordanianB. BehbahaniM. CarapetianJ. FazilatiM. in vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species.Res. Pharm. Sci.201492919625657777
    [Google Scholar]
  64. BordeanM.E. UngurR.A. TocD.A. BordaI.M. MarțișG.S. PopC.R. FilipM. VlassaM. NasuiB.A. PopA. CintezăD. PopaF.L. MarianS. SzantoL.G. MusteS. Antibacterial and phytochemical screening of Artemisia species.Antioxidants202312359610.3390/antiox1203059636978844
    [Google Scholar]
  65. JainS. DixitV.K. MalviyaN. AmbawatiaV. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Amorphophallus campanulatus Roxb. tubers.Acta Pol. Pharm.200966442342819702175
    [Google Scholar]
  66. YanZ. GuoG. ZhangB. Research of Brucea javanica against cancer.Chin. J. Integr. Med.201723215316010.1007/s11655‑016‑2501‑627041332
    [Google Scholar]
  67. ZhangJ. XuH.X. DouY.X. HuangQ.H. XianY.F. LinZ.X. Major constituents from Brucea javanica and their pharmacological actions.Front. Pharmacol.20221385311910.3389/fphar.2022.85311935370639
    [Google Scholar]
  68. ThusyanthanJ. WickramaratneN.S. SenathilakeK.S. RajagopalanU. TennekoonK.H. ThabrewI. SamarakoonS.R. Cytotoxicity against human hepatocellular carcinoma (hepg2) cells and anti-oxidant activity of selected endemic or medicinal plants in Sri Lanka.Adv. Pharmacol. Pharm. Sci.202220221910.1155/2022/640768835402917
    [Google Scholar]
  69. TadtongS. KamkaenN. WatthanachaiyingcharoenR. RuangrungsiN. Chemical components of four essential oils in aromatherapy recipe.Nat. Prod. Commun.20151061934578X150100010.1177/1934578X150100067326197558
    [Google Scholar]
  70. HsuW.H. ChangC.C. HuangK.W. ChenY.C. HsuS.L. WuL.C. TsouA.P. LaiJ.M. HuangC.Y.F. Evaluation of the medicinal herb Graptopetalum paraguayense as a treatment for liver cancer.PLoS One2015104e012129810.1371/journal.pone.012129825849560
    [Google Scholar]
  71. Al-SeeniM.N. El RabeyH.A. ZamzamiM.A. AlnefayeeA.M. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats.BMC Complement. Altern. Med.201616143810.1186/s12906‑016‑1422‑427814700
    [Google Scholar]
  72. KimH.J. ParkS.Y. LeeH.M. SeoD.I. KimY.M. Antiproliferative effect of the methanol extract from the roots of Petasites japonicus on Hep3B hepatocellular carcinoma cells in vitro and in vivo .Exp. Ther. Med.2015951791179610.3892/etm.2015.229626136894
    [Google Scholar]
  73. KuppusamyP. NagalingamA. MunirajN. SaxenaN.K. SharmaD. Concomitant activation of ETS-like transcription factor-1 and death receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice.Sci. Rep.2017711794310.1038/s41598‑017‑18190‑429263422
    [Google Scholar]
  74. J C FurtadoN.A. PirsonL. EdelbergH. M MirandaL. Loira-PastorizaC. PreatV. LarondelleY. AndréC.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies.Molecules201722340010.3390/molecules2203040028273859
    [Google Scholar]
  75. BasuA. NampornT. RuenraroengsakP. Critical review in designing plant-based anticancer nanoparticles against hepatocellular carcinoma.Pharmaceutics2023156161110.3390/pharmaceutics1506161137376061
    [Google Scholar]
  76. ChakrabortyE. SarkarD. Emerging therapies for hepatocellular carcinoma (HCC).Cancers (Basel)20221411279810.3390/cancers1411279835681776
    [Google Scholar]
  77. VijayakumarA. BaskaranR. JangY.S. OhS.H. YooB.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake.AAPS PharmSciTech201718387588310.1208/s12249‑016‑0573‑427368922
    [Google Scholar]
  78. BehzadiS. SerpooshanV. TaoW. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A
    [Google Scholar]
  79. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  80. KrishnanG. SubramaniyanJ. Chengalvarayan SubramaniP. MuralidharanB. ThiruvengadamD. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats.Asian J. Pharm. Sci.201712544245510.1016/j.ajps.2017.04.00132104357
    [Google Scholar]
  81. ZhangD. ZhangJ. ZengJ. LiZ. ZuoH. HuangC. ZhaoX. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo .J. Biomed. Nanotechnol.201915228830010.1166/jbn.2019.268230596551
    [Google Scholar]
  82. LiY. WuJ. LuQ. LiuX. WenJ. QiX. LiuJ. LianB. ZhangB. SunH. TianG. GA&HA-modified liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of hepatocellular carcinoma.Int. J. Nanomedicine2022172559257510.2147/IJN.S36618035698562
    [Google Scholar]
  83. ShuQ. WuJ. ChenQ. Synthesis, characterization of liposomes modified with biosurfactant MEL-A Loading betulinic acid and its anticancer effect in HepG2 cell.Molecules20192421393910.3390/molecules2421393931683639
    [Google Scholar]
  84. BatoolS. AsadM.J. ArshadM. AhmedW. SohailM.F. AbbasiS.W. AhmadS. SaleemR.S.Z. AhmedM.S. in silico validation, fabrication and evaluation of nano-liposomes of Bistorta amplexicaulis extract for improved anticancer activity against hepatoma cell line (HepG2).Curr. Drug Deliv.202118792293410.2174/156720181866621031611364033726649
    [Google Scholar]
  85. YueY. YangY. ShiL. WangZ. Basic research Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis.Arch. Med. Sci.20154485686210.5114/aoms.2015.5330626322098
    [Google Scholar]
  86. ChenX. HuX. HuJ. QiuZ. YuanM. ZhengG. Celastrol-loaded galactosylated liposomes effectively inhibit AKT/c-Met-triggered rapid hepatocarcinogenesis in mice.Mol. Pharm.202017373874710.1021/acs.molpharmaceut.9b0042831904241
    [Google Scholar]
  87. WangY. DingR. ZhangZ. ZhongC. WangJ. WangM. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma.Int. J. Pharm.202160212062810.1016/j.ijpharm.2021.12062833892061
    [Google Scholar]
  88. ChengY. ZhaoP. WuS. YangT. ChenY. ZhangX. HeC. ZhengC. LiK. MaX. XiangG. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma.Int. J. Pharm.20185451-226127310.1016/j.ijpharm.2018.05.00729730175
    [Google Scholar]
  89. LiuC. ZhouZ. ChenY. LiuJ. WangY. LiuH. Targeted delivery of garcinia glycosides by reconstituted high-density lipoprotein nano-complexes.J. Microencapsul.201835211512010.1080/02652048.2017.141314629195484
    [Google Scholar]
  90. YangJ. PeiH. LuoH. FuA. YangH. HuJ. ZhaoC. ChaiL. ChenX. ShaoX. WangC. WuW. WanL. YeH. QiuQ. PengA. WeiY. YangL. ChenL. Non-toxic dose of liposomal honokiol suppresses metastasis of hepatocellular carcinoma through destabilizing EGFR and inhibiting the downstream pathways.Oncotarget20178191593210.18632/oncotarget.1368727906672
    [Google Scholar]
  91. LiD. LiuS. ZhuJ. ShenL. ZhangQ. ZhuH. Folic acid modified TPGS as a novel nano-micelle for delivery of nitidine chloride to improve apoptosis induction in Huh7 human hepatocellular carcinoma.BMC Pharmacol. Toxicol.2021221110.1186/s40360‑020‑00461‑y33407916
    [Google Scholar]
  92. ZhongZ. liu ZhangX. huang YuX. li XiongD. SunX. LuoY. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo .Int. J. Nanomedicine2016113111312910.2147/IJN.S10844527471381
    [Google Scholar]
  93. JagwaniS. JalalpureS. DhamechaD. JadhavK. BoharaR. Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma.ACS Biomater. Sci. Eng.2020694969498410.1021/acsbiomaterials.0c0042933455290
    [Google Scholar]
  94. OchiM.M. AmoabedinyG. RezayatS.M. AkbarzadehA. EbrahimiB. in vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells.Cell J.2016182135148[CrossRef].27540518
    [Google Scholar]
  95. HuX. ZhangJ. DengL. HuH. HuJ. ZhengG. Galactose-modified Ph-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of tanshinone IIA.AAPS PharmSciTech20212239610.1208/s12249‑021‑01973‑433694067
    [Google Scholar]
  96. ZhangL. ZhangS. JiangM. LuL. DingY. MaN. ZhaoY. XuchenS. ZhangN. Sovel timosaponin SIII-based multifunctional liposomal delivery system for synergistic therapy against hepatocellular carcinoma cancer.Int. J. Nanomedicine2021165531555010.2147/IJN.S31375934429598
    [Google Scholar]
  97. ZhengY. KongF. LiuS. LiuX. PeiD. MiaoX. Membrane protein-chimeric liposome-mediated delivery of triptolide for targeted hepatocellular carcinoma therapy.Drug Deliv.20212812033204310.1080/10717544.2021.198307234569906
    [Google Scholar]
  98. YuL. WangZ. MoZ. ZouB. YangY. SunR. MaW. YuM. ZhangS. YuZ. Synergetic delivery of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy.Acta Pharm. Sin. B20211172004201510.1016/j.apsb.2021.02.00134386334
    [Google Scholar]
  99. LiZ. YangG. HanL. WangR. GongC. YuanY. Sorafenib and triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma.J. Nanobiotechnology202119136010.1186/s12951‑021‑01095‑w34749742
    [Google Scholar]
  100. WangB. XuQ. ZhouC. LinY. Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma.Acta Biochim. Pol.202168471171510.18388/abp.2020_560834730903
    [Google Scholar]
  101. NishaR. KumarP. GautamA.K. BeraH. BhattacharyaB. ParasharP. SarafS.A. SahaS. Assessments of in vitro and in vivo antineoplastic potentials of β-sitosterol-loaded PEGylated niosomes against hepatocellular carcinoma.J. Liposome Res.202131330431510.1080/08982104.2020.182052032901571
    [Google Scholar]
  102. SunS. ShangE. JuA. LiY. WuQ. LiQ. YangY. GuoY. YangD. LvS. Tumor-targeted hyaluronic acid-mPEG modified nanostructured lipid carriers for cantharidin delivery: An in vivo and in vitro study.Fitoterapia202115510503310.1016/j.fitote.2021.10503334517057
    [Google Scholar]
  103. KunjiappanS. SankaranarayananM. Karan KumarB. PavadaiP. BabkiewiczE. MaszczykP. Glodkowska-MrowkaE. ArunachalamS. Ram Kumar PandianS. RavishankarV. BaskararajS. VellaichamyS. ArulmaniL. PanneerselvamT. Capsaicin-loaded solid lipid nanoparticles: Design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation.Nanotechnology202132909510110.1088/1361‑6528/abc57e33113518
    [Google Scholar]
  104. ZhaoX. ChenQ. LiY. TangH. LiuW. YangX. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice.Eur. J. Pharm. Biopharm.201593273610.1016/j.ejpb.2015.03.00325770771
    [Google Scholar]
  105. RahmanM. Al-GhamdiS.A. AlharbiK.S. BegS. SharmaK. AnwarF. Al-AbbasiF.A. KumarV. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma.Drug Deliv.201926178279310.1080/10717544.2019.160686531357897
    [Google Scholar]
  106. ZhuJ. HuangY. ZhangJ. FengY. ShenL. Sormulation, preparation and evaluation of nanostructured lipid carrier containing naringin and coix seed oil for anti-tumor application based on “unification of medicines and excipients”.Drug Des. Devel. Ther.2020141481149110.2147/DDDT.S23699732368009
    [Google Scholar]
  107. VarshosazJ. JafarianA. SalehiG. ZolfaghariB. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma.J. Liposome Res.201424319120310.3109/08982104.2013.86847624354715
    [Google Scholar]
  108. RahmanM. AlmalkiW.H. AfzalO. Alfawaz AltamimiA.S. KazmiI. Al-AbbasiF.A. ChoudhryH. AleneziS. BarkatM.A. BegS. KumarV. AlhalmiA. Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: Systematic optimization, in vitro characterization and preclinical investigation.Int. J. Nanomedicine2020159283929910.2147/IJN.S27754533262588
    [Google Scholar]
  109. BhattacharyaS. MondalL. MukherjeeB. DuttaL. EhsanI. DebnathM.C. GaonkarR.H. PalM.M. MajumdarS. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats.Nanomedicine20181461905191710.1016/j.nano.2018.05.01129802937
    [Google Scholar]
  110. TianH. HuangY. HeJ. ZhangM. NiP. CD147 monoclonal antibody targeted reduction-responsive camptothecin polyphosphoester nanomedicine for drug delivery in hepatocellular carcinoma cells.ACS Appl. Bio Mater.2021454422443110.1021/acsabm.1c0017735006854
    [Google Scholar]
  111. SarikaP.R. JamesN.R. KumarP.R.A. RajD.K. KumaryT.V. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells.Carbohydr. Polym.201513416717410.1016/j.carbpol.2015.07.06826428113
    [Google Scholar]
  112. MondalJ. Khuda-BukhshA.R. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro .Mol. Biol. Rep.20204753615362810.1007/s11033‑020‑05455‑x32314187
    [Google Scholar]
  113. Abd-RabouA.A. AhmedH.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line.Adv. Med. Sci.201762235736710.1016/j.advms.2017.01.00328521254
    [Google Scholar]
  114. KumarV. BhattP. RahmanM. KaithwasG. ChoudhryH. Al-AbbasiF. AnwarF. VermaA. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies.Int. J. Nanomedicine2017126747675810.2147/IJN.S13662928932118
    [Google Scholar]
  115. ZhouM. YiY. LiuL. LinY. LiJ. RuanJ. ZhongZ. Polymeric micelles loading with ursolic acid enhancing anti-tumor effect on hepatocellular carcinoma.J. Cancer201910235820583110.7150/jca.3086531737119
    [Google Scholar]
  116. GaoW. FanX. BiY. ZhouZ. YuanY. Preparation of NIR-responsive gold nanocages as efficient carrier for controlling release of egcg in anticancer application.Front Chem.20221092600210.3389/fchem.2022.92600235720982
    [Google Scholar]
  117. SahuB. Comprehensive Review on Non-Alcoholic Fatty Liver Disease (NAFLD): Clinical advancement and drug treatments.Prob. Sci.20241117
    [Google Scholar]
  118. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil ( Gossypium Sp.).Int. J. Acarol.2020464263267[Taylor n Francis].10.1080/01647954.2020.1767203
    [Google Scholar]
  119. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and antioxidant activities of a combination of Terminalia arjuna and Commiphora mukul on experimental animals.Advances in Biomedical Engineering and Technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer202117518810.1007/978‑981‑15‑6329‑4_16
    [Google Scholar]
  120. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.2023835968[Internet].10.1016/j.matpr.2023.01.147
    [Google Scholar]
  121. PradhanP. JosephL. GuptaV. Efficacy of Phyllanthus niruri and Curcuma longa in hepatocellular carcinoma: A molecular perspective.J. Cancer Res.2012354245252
    [Google Scholar]
  122. SharmaR. AhujaV. Anti-cancer properties of curcumin in combination with Phyllanthus niruri: An overview.J. Tradit. Complement. Med.201551374526870678
    [Google Scholar]
  123. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting [Internet].Curr. Cancer Drug Targets202424122
    [Google Scholar]
  124. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model.Advances in Biomedical Engineering and TechnologySingaporeSpringer Singapore RizvanovA.A. SinghB.K. GanasalaP. 2021207220
    [Google Scholar]
  125. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.2021296June10950810.1016/j.vetpar.2021.10950834218174
    [Google Scholar]
  126. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  127. JainA. BhallaV. Andrographis paniculata and its role in hepatocellular carcinoma management.Phytother. Res.2016302233241
    [Google Scholar]
  128. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of citrus limetta seed oil for controlling ixodid tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.20212610.11158/saa.26.7.13
    [Google Scholar]
  129. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  130. KapoorM. SinghJ. Liv.52: A polyherbal formulation in liver cancer: Review of studies.Int. J. Pharm. Sci. Res.2014295567573
    [Google Scholar]
  131. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.10949034271319
    [Google Scholar]
  132. PatelS. PatelP. Synergistic effects of Silybum marianum with other hepatoprotective herbs in liver cancer.J. Herb. Med.201783190196
    [Google Scholar]
  133. GuptaS. MisraA. Challenges in standardization of polyherbal formulations for cancer treatment.Curr. Pharm. Des.2013191018551862
    [Google Scholar]
  134. SinghR. KaurM. Standardization and quality control of polyherbal formulations: A need for hepatocellular carcinoma management.J. Pharm. Res.2018327709716
    [Google Scholar]
  135. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  136. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.202350102700[Internet].10.1016/j.bcab.2023.102700
    [Google Scholar]
  137. SalkJ.J. SchmittM.W. LoebL.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.Nat. Rev. Genet.201819526928510.1038/nrg.2017.11729576615
    [Google Scholar]
  138. Love-KohJ. PeelA. Rejon-ParrillaJ.C. EnnisK. LovettR. MancaA. ChalkidouA. WoodH. TaylorM. The future of precision medicine: Potential impacts for health technology assessment.PharmacoEconomics201836121439145110.1007/s40273‑018‑0686‑630003435
    [Google Scholar]
  139. ChenT. GongT. ZhaoT. FuY. ZhangZ. GongT. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy.Eur. J. Pharm. Sci.201811129330210.1016/j.ejps.2017.09.04128966099
    [Google Scholar]
  140. KaurV. KumarM. KumarA. KaurK. DhillonV.S. KaurS. Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives.Biomed. Pharmacother.20189756458610.1016/j.biopha.2017.10.12429101800
    [Google Scholar]
  141. KorgaA. OstrowskaM. JozefczykA. IwanM. WojcikR. ZgorkaG. HerbetM. VilarrublaG.G. DudkaJ. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells.BMC Pharmacol. Toxicol.20192012210.1186/s40360‑019‑0301‑231053173
    [Google Scholar]
  142. LiJ. DuanB. GuoY. ZhouR. SunJ. BieB. YangS. HuangC. YangJ. LiZ. Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity.Biomed. Pharmacother.20189880681210.1016/j.biopha.2018.01.00229571250
    [Google Scholar]
  143. ChangY.F. ChiC.W. WangJ.J. Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells.Nutr. Cancer200655220120910.1207/s15327914nc5502_1217044776
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501312571240920070441
Loading
/content/journals/cdt/10.2174/0113894501312571240920070441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test