Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

β-hydroxybutyrate (BHB) is a ketone body that serves as an alternative energy source for various tissues, including the brain, heart, and skeletal muscle. As a metabolic intermediate and signaling molecule, BHB plays a crucial role in modulating cellular and physiological processes. Notably, BHB supplementation offers a novel and promising strategy to induce nutritional ketosis without the need for strict dietary adherence or causing nutritional deficiencies. This review article provides an overview of BHB metabolism and explores its applications in age-related diseases. This review conducted a comprehensive search of PubMed, ScienceDirect, and other relevant English-language articles. The main findings were synthesized, and discussed the challenges, limitations, and future directions of BHB supplementation. BHB supplementation holds potential benefits for various diseases and conditions, including neurodegenerative disorders, cardiovascular diseases, cancers, and inflammation. BHB acts through multiple mechanisms, including interactions with cell surface receptors, intracellular enzymes, transcription factors, signaling molecules, and epigenetic modifications. Despite its promise, BHB supplementation faces several challenges, such as determining the optimal dosage, ensuring long-term safety, identifying the most effective type and formulation, establishing biomarkers of response, and conducting cost-effectiveness analyses. BHB supplementation opens exciting avenues for research, including investigating molecular mechanisms, refining optimization strategies, exploring innovation opportunities, and assessing healthspan and lifespan benefits. BHB supplementation represents a new frontier in health research, offering a potential pathway to enhance well-being and extend lifespan.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501312168240821082224
2024-09-05
2024-11-22
Loading full text...

Full text loading...

References

  1. QiJ. GanL. FangJ. ZhangJ. YuX. GuoH. CaiD. CuiH. GouL. DengJ. WangZ. ZuoZ. Beta-hydroxybutyrate: a dual function molecular and immunological barrier function regulator.Front. Immunol.20221380588110.3389/fimmu.2022.80588135784364
    [Google Scholar]
  2. WhiteH. HeffernanA.J. WorrallS. GrunsfeldA. ThomasM. A Systematic Review of Intravenous β-Hydroxybutyrate Use in Humans – A Promising Future Therapy?Front. Med. (Lausanne)2021874037410.3389/fmed.2021.74037434621766
    [Google Scholar]
  3. HanY.M. RamprasathT. ZouM.H. β-hydroxybutyrate and its metabolic effects on age-associated pathology.Exp. Mol. Med.202052454855510.1038/s12276‑020‑0415‑z32269287
    [Google Scholar]
  4. MaruschakK.M. Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Anthropometrics, Biochemical Values, and Gastrointestinal Symptoms in Adult Patients with Epilepsy.Chicago, IL, USARush University2016
    [Google Scholar]
  5. SendS.R. The Impact of a Low-Carbohydrate, High-Fat Modified Ketogenic Diet on Seizure Severity, Seizure Frequency, and Quality of Life in Adult Patients with Epilepsy.Chicago, IL, USARush University2016
    [Google Scholar]
  6. SchmidtM. PfetzerN. SchwabM. StraussI. KämmererU. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial.Nutr. Metab. (Lond.)2011815410.1186/1743‑7075‑8‑5421794124
    [Google Scholar]
  7. MullinsG. HallamC.L. BroomI. Ketosis, ketoacidosis and very-low-calorie diets: putting the record straight.Nutr. Bull.201136339740210.1111/j.1467‑3010.2011.01916.x
    [Google Scholar]
  8. LaymanD.K. WalkerD.A. Potential importance of leucine in treatment of obesity and the metabolic syndrome.J. Nutr.20061361Suppl.319S323S10.1093/jn/136.1.319S16365106
    [Google Scholar]
  9. LawsonM. ShawV. Ketogenic diet for epilepsy.Clinical Paediatric Dietetics.2nd edOxford, UKBlackwell Science Ltd.2001222232
    [Google Scholar]
  10. ThomasL.K. IttmannM. CooperC. The role of leucine in ketogenesis in starved rats.Biochem. J.1982204239940310.1042/bj20403997115336
    [Google Scholar]
  11. Soto-MotaA. NorwitzN.G. ClarkeK. Why a d -β-hydroxybutyrate monoester?Biochem. Soc. Trans.2020481515910.1042/BST2019024032096539
    [Google Scholar]
  12. CahillG.F.Jr HerreraM.G. MorganA.P. SoeldnerJ.S. SteinkeJ. LevyP.L. ReichardG.A.Jr KipnisD.M. Hormone-fuel interrelationships during fasting.J. Clin. Invest.196645111751176910.1172/JCI1054815926444
    [Google Scholar]
  13. FlattJ.P. On the maximal possible rate of ketogenesis.Diabetes1972211505310.2337/diab.21.1.505008086
    [Google Scholar]
  14. GarberA.J. MenzelP.H. BodenG. OwenO.E. Hepatic ketogenesis and gluconeogenesis in humans.J. Clin. Invest.197454498198910.1172/JCI1078394430728
    [Google Scholar]
  15. ReichardG.A.Jr OwenO.E. HaffA.C. PaulP. BortzW.M. Ketone- body production and oxidation in fasting obese humans.J. Clin. Invest.197453250851510.1172/JCI10758411344564
    [Google Scholar]
  16. NewmanJ.C. VerdinE. β-hydroxybutyrate: Much more than a metabolite.Diabetes Res. Clin. Pract.2014106217318110.1016/j.diabres.2014.08.00925193333
    [Google Scholar]
  17. BockH. FleischerS. Preparation of a homogeneous soluble D-beta-hydroxybutyrate apodehydrogenase from mitochondria.J. Biol. Chem.1975250155774578110.1016/S0021‑9258(19)41121‑61171099
    [Google Scholar]
  18. LehningerA.L. SudduthH.C. WiseJ.B. D-beta-Hydroxybutyric dehydrogenase of muitochondria.J. Biol. Chem.196023582450245510.1016/S0021‑9258(18)64641‑114415394
    [Google Scholar]
  19. CoxP.J. KirkT. AshmoreT. WillertonK. EvansR. SmithA. MurrayA.J. StubbsB. WestJ. McLureS.W. KingM.T. DoddM.S. HollowayC. NeubauerS. DrawerS. VeechR.L. GriffinJ.L. ClarkeK. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.Cell Metab.201624225626810.1016/j.cmet.2016.07.01027475046
    [Google Scholar]
  20. NewmanJ.C. MilmanS. HashmiS.K. AustadS.N. KirklandJ.L. HalterJ.B. BarzilaiN. Strategies and challenges in clinical trials targeting human aging.J. Gerontol. A Biol. Sci. Med. Sci.201671111424143410.1093/gerona/glw14927535968
    [Google Scholar]
  21. NewmanJ.C. VerdinE. β-Hydroxybutyrate: a signaling metabolite.Annu. Rev. Nutr.2017371517610.1146/annurev‑nutr‑071816‑06491628826372
    [Google Scholar]
  22. CuenoudB. HartwegM. GodinJ.P. CroteauE. MaltaisM. CastellanoC.A. CarpentierA.C. CunnaneS.C. Metabolism of exogenous D-beta-hydroxybutyrate, an energy substrate avidly consumed by the heart and kidney.Front. Nutr.202071310.3389/fnut.2020.0001332140471
    [Google Scholar]
  23. HalestrapA.P. WilsonM.C. The monocarboxylate transporter family—Role and regulation.IUBMB Life201264210911910.1002/iub.57222162139
    [Google Scholar]
  24. PuchalskaP. CrawfordP.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics.Cell Metab.201725226228410.1016/j.cmet.2016.12.02228178565
    [Google Scholar]
  25. HalestrapA.P. The SLC16 gene family – Structure, role and regulation in health and disease.Mol. Aspects Med.2013342-333734910.1016/j.mam.2012.05.00323506875
    [Google Scholar]
  26. FukaoT. LopaschukG.D. MitchellG.A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry.Prostaglandins Leukot. Essent. Fatty Acids200470324325110.1016/j.plefa.2003.11.00114769483
    [Google Scholar]
  27. FukaoT. SongX.Q. MitchellG.A. YamaguchiS. SukegawaK. OrT. KondoN. Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases.Pediatr. Res.199742449850210.1203/00006450‑199710000‑000139380443
    [Google Scholar]
  28. OriiK.E. FukaoT. SongX.Q. MitchellG.A. KondoN. Liver-specific silencing of the human gene encoding succinyl-CoA: 3-ketoacid CoA transferase.Tohoku J. Exp. Med.2008215322723610.1620/tjem.215.22718648183
    [Google Scholar]
  29. OwenO.E. MorganA.P. KempH.G. SullivanJ.M. HerreraM.G. CahillG.F.Jr Brain metabolism during fasting.J. Clin. Invest.196746101589159510.1172/JCI1056506061736
    [Google Scholar]
  30. SultanA.M.N. D-3-Hydroxybutyrate metabolism in the perfused rat heart.Mol. Cell. Biochem.198879211311810.1007/BF024245523398833
    [Google Scholar]
  31. AbbasiJ. Ketone Body Supplementation—A Potential New Approach for Heart Disease.JAMA20213261171810.1001/jama.2021.878934137804
    [Google Scholar]
  32. PaoliA. BoscoG. CamporesiE.M. MangarD. Ketosis, ketogenic diet and food intake control: a complex relationship.Front. Psychol.201562710.3389/fpsyg.2015.0002725698989
    [Google Scholar]
  33. KrebsH. Biochemical aspects of ketosis.Proc. R. Soc. Med.1960532718010.1177/00359157600530020114411854
    [Google Scholar]
  34. RobinsonA.M. WilliamsonD.H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues.Physiol. Rev.198060114318710.1152/physrev.1980.60.1.1436986618
    [Google Scholar]
  35. LaffelL. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes.Diabetes Metab. Res. Rev.199915641242610.1002/(SICI)1520‑7560(199911/12)15:6<412::AID‑DMRR72>3.0.CO;2‑810634967
    [Google Scholar]
  36. JohnsonR.H. WaltonJ.L. KrebsH.A. WilliamsonD.H. Metabolic fuels during and after severe exercise in athletes and non-athletes.Lancet1969294761845245510.1016/S0140‑6736(69)90164‑04183902
    [Google Scholar]
  37. GershuniV.M. YanS.L. MediciV. Nutritional ketosis for weight management and reversal of metabolic syndrome.Curr. Nutr. Rep.2018739710610.1007/s13668‑018‑0235‑030128963
    [Google Scholar]
  38. CahillG.F.Jr Fuel metabolism in starvation.Annu. Rev. Nutr.200626112210.1146/annurev.nutr.26.061505.11125816848698
    [Google Scholar]
  39. BalasseE.O. FéryF. Ketone body production and disposal: Effects of fasting, diabetes, and exercise.Diabetes Metab. Rev.19895324727010.1002/dmr.56100503042656155
    [Google Scholar]
  40. BalasseE.O. FeryF. NeefM.A. Changes induced by exercise in rates of turnover and oxidation of ketone bodies in fasting man.J. Appl. Physiol.197844151110.1152/jappl.1978.44.1.5627499
    [Google Scholar]
  41. VeechR.L. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism.Prostaglandins Leukot. Essent. Fatty Acids200470330931910.1016/j.plefa.2003.09.00714769489
    [Google Scholar]
  42. SinghP. RavananP. TalwarP. Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy.Front. Mol. Neurosci.201694610.3389/fnmol.2016.0004627445685
    [Google Scholar]
  43. GasiorM. RogawskiM.A. HartmanA.L. Neuroprotective and disease-modifying effects of the ketogenic diet.Behav. Pharmacol.2006175-643143910.1097/00008877‑200609000‑0000916940764
    [Google Scholar]
  44. StafstromC.E. RhoJ.M. The ketogenic diet as a treatment paradigm for diverse neurological disorders.Front. Pharmacol.201235910.3389/fphar.2012.0005922509165
    [Google Scholar]
  45. WlaźP. SocałaK. NieoczymD. ŁuszczkiJ.J. ŻarnowskaI. ŻarnowskiT. CzuczwarS.J. GasiorM. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice.Neuropharmacology20126241882188910.1016/j.neuropharm.2011.12.01522210332
    [Google Scholar]
  46. ErecińskaM. NelsonD. DaikhinY. YudkoffM. Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies.J. Neurochem.19966762325233410.1046/j.1471‑4159.1996.67062325.x8931464
    [Google Scholar]
  47. DaikhinY. YudkoffM. Ketone bodies and brain glutamate and GABA metabolism.Dev. Neurosci.1998204-535836410.1159/0000173319778572
    [Google Scholar]
  48. LikhodiiS.S. SerbanescuI. CortezM.A. MurphyP. SneadO.C.III BurnhamW.M. Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet.Ann. Neurol.200354221922610.1002/ana.1063412891674
    [Google Scholar]
  49. BarañanoK.W. HartmanA.L. The ketogenic diet: Uses in epilepsy and other neurologic illnesses.Curr. Treat. Options Neurol.200810641041910.1007/s11940‑008‑0043‑818990309
    [Google Scholar]
  50. PoffA.M. AriC. SeyfriedT.N. D’AgostinoD.P. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer.PLoS One201386e6552210.1371/journal.pone.006552223755243
    [Google Scholar]
  51. KlementR.J. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation.Med. Oncol.201734813210.1007/s12032‑017‑0991‑528653283
    [Google Scholar]
  52. GoldbergE.L. AsherJ.L. MolonyR.D. ShawA.C. ZeissC.J. WangC. Morozova-RocheL.A. HerzogR.I. IwasakiA. DixitV.D. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares.Cell Rep.20171892077208710.1016/j.celrep.2017.02.00428249154
    [Google Scholar]
  53. YoumY.H. NguyenK.Y. GrantR.W. GoldbergE.L. BodogaiM. KimD. D’AgostinoD. PlanavskyN. LupferC. KannegantiT.D. KangS. HorvathT.L. FahmyT.M. CrawfordP.A. BiragynA. AlnemriE. DixitV.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease.Nat. Med.201521326326910.1038/nm.380425686106
    [Google Scholar]
  54. GoldbergE.L. MolonyR.D. KudoE. SidorovS. KongY. DixitV.D. IwasakiA. Ketogenic diet activates protective γδ T cell responses against influenza virus infection.Sci. Immunol.2019441eaav202610.1126/sciimmunol.aav202631732517
    [Google Scholar]
  55. WhiteH. VenkateshB. Clinical review: ketones and brain injury.Crit Care.201115221910.1186/cc10020
    [Google Scholar]
  56. NewmanJ.C. VerdinE. Ketone bodies as signaling metabolites.Trends Endocrinol. Metab.2014251425210.1016/j.tem.2013.09.00224140022
    [Google Scholar]
  57. Rojas-MoralesP. TapiaE. Pedraza-ChaverriJ. β-Hydroxybutyrate: A signaling metabolite in starvation response?Cell. Signal.201628891792310.1016/j.cellsig.2016.04.00527083590
    [Google Scholar]
  58. IslamM.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.Neurol. Res.2017391738210.1080/01616412.2016.125171127809706
    [Google Scholar]
  59. YangH. ShanW. ZhuF. WuJ. WangQ. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms.Front. Neurol.20191058510.3389/fneur.2019.0058531244753
    [Google Scholar]
  60. KashiwayaY. TakeshimaT. MoriN. NakashimaK. ClarkeK. VeechR.L. d -β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease.Proc. Natl. Acad. Sci. USA200097105440544410.1073/pnas.97.10.544010805800
    [Google Scholar]
  61. WłodarekD. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease).Nutrients201911116910.3390/nu1101016930650523
    [Google Scholar]
  62. ShaafiS. NajmiS. AliasgharpourH. MahmoudiJ. Sadigh-EtemadS. FarhoudiM. BaniasadiN. The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: A rat model.Iran. J. Neurol.2016152636927326359
    [Google Scholar]
  63. TieuK. PerierC. CaspersenC. TeismannP. WuD.C. YanS.D. NainiA. VilaM. Jackson-LewisV. RamasamyR. PrzedborskiS. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease.J. Clin. Invest.2003112689290110.1172/JCI20031879712975474
    [Google Scholar]
  64. BirdA. Perceptions of epigenetics.Nature2007447714339639810.1038/nature0591317522671
    [Google Scholar]
  65. WinesettS.P. BessoneS.K. KossoffE.H.W. The ketogenic diet in pharmacoresistant childhood epilepsy.Expert Rev. Neurother.201515662162810.1586/14737175.2015.104498225994046
    [Google Scholar]
  66. RhoJ.M. How does the ketogenic diet induce anti-seizure effects?Neurosci. Lett.201763741010.1016/j.neulet.2015.07.03426222258
    [Google Scholar]
  67. McNallyM.A. HartmanA.L. Ketone bodies in epilepsy.J. Neurochem.20121211283510.1111/j.1471‑4159.2012.07670.x22268909
    [Google Scholar]
  68. RoopraA. DingledineR. HsiehJ. Epigenetics and epilepsy.Epilepsia201253s9Suppl. 921010.1111/epi.1203023216574
    [Google Scholar]
  69. PelegS. SananbenesiF. ZovoilisA. BurkhardtS. Bahari-JavanS. Agis-BalboaR.C. CotaP. WittnamJ.L. Gogol-DoeringA. OpitzL. Salinas-RiesterG. DettenhoferM. KangH. FarinelliL. ChenW. FischerA. Altered histone acetylation is associated with age-dependent memory impairment in mice.Science2010328597975375610.1126/science.118608820448184
    [Google Scholar]
  70. GuanJ.S. HaggartyS.J. GiacomettiE. DannenbergJ.H. JosephN. GaoJ. NielandT.J.F. ZhouY. WangX. MazitschekR. BradnerJ.E. DePinhoR.A. JaenischR. TsaiL.H. HDAC2 negatively regulates memory formation and synaptic plasticity.Nature20094597243556010.1038/nature0792519424149
    [Google Scholar]
  71. FischerA. SananbenesiF. WangX. DobbinM. TsaiL.H. Recovery of learning and memory is associated with chromatin remodelling.Nature2007447714117818210.1038/nature0577217468743
    [Google Scholar]
  72. GräffJ. ReiD. GuanJ.S. WangW.Y. SeoJ. HennigK.M. NielandT.J.F. FassD.M. KaoP.F. KahnM. SuS.C. SamieiA. JosephN. HaggartyS.J. DelalleI. TsaiL.H. An epigenetic blockade of cognitive functions in the neurodegenerating brain.Nature2012483738822222610.1038/nature1084922388814
    [Google Scholar]
  73. OgiwaraI. MiyamotoH. MoritaN. AtapourN. MazakiE. InoueI. TakeuchiT. ItoharaS. YanagawaY. ObataK. FuruichiT. HenschT.K. YamakawaK. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation.J. Neurosci.200727225903591410.1523/JNEUROSCI.5270‑06.200717537961
    [Google Scholar]
  74. VerretL. MannE.O. HangG.B. BarthA.M.I. CobosI. HoK. DevidzeN. MasliahE. KreitzerA.C. ModyI. MuckeL. PalopJ.J. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model.Cell2012149370872110.1016/j.cell.2012.02.04622541439
    [Google Scholar]
  75. AunanJ.R. ChoW.C. SøreideK. The biology of ageing and cancer: A brief overview of shared and divergent molecular hallmarks.Aging Dis.20178562864210.14336/AD.2017.010328966806
    [Google Scholar]
  76. KumariS. BadanaA.K. GM.M. GS. MallaR. Reactive oxygen species: A key constituent in cancer survival.Biomark. Insights20181310.1177/117727191875539129449774
    [Google Scholar]
  77. KlementR.J. ChampC.E. OttoC. KämmererU. Anti-tumor effects of ketogenic diets in mice: A meta-analysis.PLoS One2016115e015505010.1371/journal.pone.015505027159218
    [Google Scholar]
  78. AllenB.G. BhatiaS.K. AndersonC.M. Eichenberger-GilmoreJ.M. SibenallerZ.A. MapuskarK.A. SchoenfeldJ.D. BuattiJ.M. SpitzD.R. FathM.A. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism.Redox Biol.2014296397010.1016/j.redox.2014.08.00225460731
    [Google Scholar]
  79. KlementR.J. SweeneyR.A. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients.BMC Res. Notes20169114310.1186/s13104‑016‑1959‑926946138
    [Google Scholar]
  80. ZhangC. RissmanR.A. FengJ. Characterization of ATP alternations in an Alzheimer’s disease transgenic mouse model.J. Alzheimers Dis.201544237537810.3233/JAD‑14189025261448
    [Google Scholar]
  81. MosconiL. de LeonM. MurrayJ. eL. LuJ. JavierE. McHughP. SwerdlowR.H. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer’s disease.J. Alzheimers Dis.201127348349010.3233/JAD‑2011‑11086621841246
    [Google Scholar]
  82. FortierM. CastellanoC.A. CroteauE. LangloisF. BoctiC. St-PierreV. VandenbergheC. BernierM. RoyM. DescoteauxM. WhittingstallK. LepageM. TurcotteÉ.E. FulopT. CunnaneS.C. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment.Alzheimers Dement.201915562563410.1016/j.jalz.2018.12.01731027873
    [Google Scholar]
  83. SrivastavaS. BaxaU. NiuG. ChenX. VeechR.L. A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice.IUBMB Life2013651586610.1002/iub.110223233333
    [Google Scholar]
  84. XuX. ZhangQ. TuJ. RenZ. D-β-hydroxybutyrate inhibits microglial activation in a cell activation model in vitro.J. Med. Coll. PLA201126311712710.1016/S1000‑1948(11)60042‑7
    [Google Scholar]
  85. LopaschukG.D. DyckJ.R.B. Ketones and the cardiovascular system.Nature Cardiovascular Research20232542543710.1038/s44161‑023‑00259‑1
    [Google Scholar]
  86. CampisiJ. KapahiP. LithgowG.J. MelovS. NewmanJ.C. VerdinE. From discoveries in ageing research to therapeutics for healthy ageing.Nature2019571776418319210.1038/s41586‑019‑1365‑231292558
    [Google Scholar]
  87. AbiriB. VafaM. Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence.Adv. Exp. Med. Biol.2019117811312710.1007/978‑3‑030‑25650‑0_731493225
    [Google Scholar]
  88. NewmanJ.C. CovarrubiasA.J. ZhaoM. YuX. GutP. NgC.P. HuangY. HaldarS. VerdinE. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice.Cell Metab.2017263547557.e810.1016/j.cmet.2017.08.00428877458
    [Google Scholar]
  89. ShouJ. ChenP.J. XiaoW.H. Mechanism of increased risk of insulin resistance in aging skeletal muscle.Diabetol. Metab. Syndr.20201211410.1186/s13098‑020‑0523‑x32082422
    [Google Scholar]
  90. BonaldoP. SandriM. Cellular and molecular mechanisms of muscle atrophy.Dis. Model. Mech.201361253910.1242/dmm.01038923268536
    [Google Scholar]
  91. StubbsB.J. KoutnikA.P. VolekJ.S. NewmanJ.C. From bedside to battlefield: intersection of ketone body mechanisms in geroscience with military resilience.Geroscience20214331071108110.1007/s11357‑020‑00277‑y33006708
    [Google Scholar]
  92. KoutnikA.P. D’AgostinoD.P. EganB. Anticatabolic Effects of Ketone Bodies in Skeletal Muscle.Trends Endocrinol. Metab.201930422722910.1016/j.tem.2019.01.00630712977
    [Google Scholar]
  93. Ahola-ErkkiläS. CarrollC.J. Peltola-MjösundK. TulkkiV. MattilaI. Seppänen-LaaksoT. OrešičM. TyynismaaH. SuomalainenA. Ketogenic diet slows down mitochondrial myopathy progression in mice.Hum. Mol. Genet.201019101974198410.1093/hmg/ddq07620167576
    [Google Scholar]
  94. KwakS.E. BaeJ.H. LeeJ.H. ShinH.E. ZhangD. ChoS.C. SongW. Effects of exercise-induced beta-hydroxybutyrate on muscle function and cognitive function.Physiol. Rep.202193e1449710.14814/phy2.1449733547753
    [Google Scholar]
  95. MunroeM. PincuY. MerrittJ. CobertA. BranderR. JensenT. RhodesJ. BoppartM.D. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice.Exp. Gerontol.201787Pt A576610.1016/j.exger.2016.11.01027887984
    [Google Scholar]
  96. WalshM.E. BhattacharyaA. SataranatarajanK. QaisarR. SloaneL. RahmanM.M. KinterM. Van RemmenH. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging.Aging Cell201514695797010.1111/acel.1238726290460
    [Google Scholar]
  97. AngiolilliC. BaetenD.L. RadstakeT.R. ReedquistK.A. The acetyl code in rheumatoid arthritis and other rheumatic diseases.Epigenomics20179444746110.2217/epi‑2016‑013628102705
    [Google Scholar]
  98. PraticòD. TrojanowskiJ.Q. Inflammatory hypotheses: novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets?Neurobiol. Aging200021344144510.1016/S0197‑4580(00)00141‑X10858591
    [Google Scholar]
  99. Pasyukovaeg VaisermanA.M. HDAC inhibitors: A new promising drug class in anti-aging research.Mech. Ageing Dev.201716661510.1016/j.mad.2017.08.00828843433
    [Google Scholar]
  100. Camberos-LunaL. MassieuL. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases.Neurochem. Int.202013310461410.1016/j.neuint.2019.10461431785349
    [Google Scholar]
  101. KimD.Y. HaoJ. LiuR. TurnerG. ShiF.D. RhoJ.M. Inflammation- mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis.PLoS One201275e3547610.1371/journal.pone.003547622567104
    [Google Scholar]
  102. AlbertiK.G.M.M. ZimmetP. ShawJ. IDF Epidemiology Task Force Consensus Group The metabolic syndrome—a new worldwide definition.Lancet200536694911059106210.1016/S0140‑6736(05)67402‑816182882
    [Google Scholar]
  103. RonD. WalterP. Signal integration in the endoplasmic reticulum unfolded protein response.Nat. Rev. Mol. Cell Biol.20078751952910.1038/nrm219917565364
    [Google Scholar]
  104. Nunes-SouzaV. César-GomesC.J. Da FonsecaL.J.S. GuedesG.D.S. SmaniottoS. RabeloL.A. Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy.Oxid. Med. Cell. Longev.2016201611710.1155/2016/198796027057272
    [Google Scholar]
  105. MeyJ.T. EricksonM.L. AxelrodC.L. KingW.T. FlaskC.A. McCulloughA.J. KirwanJ.P. β-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro.Am. J. Physiol. Endocrinol. Metab.20203191E187E19510.1152/ajpendo.00058.202032396388
    [Google Scholar]
  106. CavaleriF. BasharE. Potential Synergies of β -Hydroxybutyrate and Butyrate on the Modulation of Metabolism, Inflammation, Cognition, and General Health.J. Nutr. Metab.2018201811310.1155/2018/719576029805804
    [Google Scholar]
  107. LeeA.K. KimD.H. BangE. ChoiY.J. ChungH.Y. β-Hydroxybutyrate Suppresses Lipid Accumulation in Aged Liver through GPR109A-mediated Signaling.Aging Dis.202011477779010.14336/AD.2019.092632765945
    [Google Scholar]
  108. MøllerN. Ketone Body, 3-Hydroxybutyrate: Minor Metabolite - Major Medical Manifestations.J. Clin. Endocrinol. Metab.202010592884289210.1210/clinem/dgaa37032525972
    [Google Scholar]
  109. KrikorianR. ShidlerM.D. DangeloK. CouchS.C. BenoitS.C. CleggD.J. Dietary ketosis enhances memory in mild cognitive impairment.Neurobiol. Aging201233242510.1016/j.neurobiolaging.2010.10.006
    [Google Scholar]
  110. FalkenhainK. DaraeiA. ForbesS.C. LittleJ.P. Effects of exogenous ketone supplementation on blood glucose: a systematic review and meta-analysis.Adv. Nutr.20221351697171410.1093/advances/nmac03635380602
    [Google Scholar]
  111. StefanM. SharpM. GheithR. LoweryR. WilsonJ. The effect of exogenous beta-hydroxybutyrate salt supplementation on metrics of safety and health in adolescents.Nutrients202113385410.3390/nu1303085433807731
    [Google Scholar]
  112. BergJ.M. TymoczkoJ.L. StryerL. BiochemistryFreeman Publishing2012
    [Google Scholar]
  113. KimD.Y. RhoJ.M. The ketogenic diet and epilepsy.Curr. Opin. Clin. Nutr. Metab. Care200811211312010.1097/MCO.0b013e3282f44c0618301085
    [Google Scholar]
  114. KoeslagJ.H. NoakesT.D. SloanA.W. Post-exercise ketosis.J. Physiol.19803011799010.1113/jphysiol.1980.sp0131906997456
    [Google Scholar]
  115. HassanH.M.A. CooperG.A.A. Determination of β-hydroxybutyrate in blood and urine using gas chromatography- mass spectrometry.J. Anal. Toxicol.200933850250710.1093/jat/33.8.50219874659
    [Google Scholar]
  116. ChenJ. HouH. ChenH. LuoY. HeY. ZhangL. ZhangY. LiuH. ZhangF. LiuY. WangA. HuQ. Identification of β-hydroxybutyrate as a potential biomarker for female papillary thyroid cancer.Bioanalysis201911646147010.4155/bio‑2018‑027330892060
    [Google Scholar]
  117. AchantaL.B. RaeC.D. β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms.Neurochem. Res.2017421354910.1007/s11064‑016‑2099‑227826689
    [Google Scholar]
  118. XiangY. WangQ.Q. LanX.Q. ZhangH.J. WeiD.X. Function and treatment strategies of β-hydroxybutyrate in aging.Smart Mater. Med.2023416017210.1016/j.smaim.2022.09.003
    [Google Scholar]
  119. Dmitrieva-PosoccoO. WongA.C. LundgrenP. GolosA.M. DescampsH.C. DohnalováL. CramerZ. TianY. YuehB. EskiocakO. EgervariG. LanY. LiuJ. FanJ. KimJ. MadhuB. SchneiderK.M. KhoziainovaS. AndreevaN. WangQ. LiN. FurthE.E. BailisW. KelsenJ.R. HamiltonK.E. KaestnerK.H. BergerS.L. EpsteinJ.A. JainR. LiM. BeyazS. LengnerC.J. KatonaB.W. GrivennikovS.I. ThaissC.A. LevyM. β-Hydroxybutyrate suppresses colorectal cancer.Nature2022605790816016510.1038/s41586‑022‑04649‑635477756
    [Google Scholar]
  120. WangL. ChenP. XiaoW. β-hydroxybutyrate as an anti-aging metabolite.Nutrients20211310342010.3390/nu1310342034684426
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501312168240821082224
Loading
/content/journals/cdt/10.2174/0113894501312168240821082224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test