Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies.

Objective

Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it.

Conclusion

This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501313781240627062206
2024-07-19
2025-05-24
Loading full text...

Full text loading...

References

  1. AbbasZ. RehmanS. An overview of cancer treatment modalities.Neoplasm20181139157
    [Google Scholar]
  2. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. canc. res. pract.201744127129
    [Google Scholar]
  3. RoskoskiR.Jr Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.Pharmacol. Res.201913947148810.1016/j.phrs.2018.11.03530508677
    [Google Scholar]
  4. DingL. CaoJ. LinW. ChenH. XiongX. AoH. YuM. LinJ. CuiQ. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer.Int. J. Mol. Sci.2020216196010.3390/ijms2106196032183020
    [Google Scholar]
  5. DeshpandeA. SicinskiP. HindsP.W. Cyclins and cdks in development and cancer: A perspective.Oncogene200524172909291510.1038/sj.onc.120861815838524
    [Google Scholar]
  6. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  7. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: A changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc260219238148
    [Google Scholar]
  8. Ghafouri-FardS. KhoshbakhtT. HussenB.M. DongP. GasslerN. TaheriM. BaniahmadA. DilmaghaniN.A. A review on the role of cyclin dependent kinases in cancers.Cancer Cell Int.202222132510.1186/s12935‑022‑02747‑z36266723
    [Google Scholar]
  9. TiganA-S. BelluttiF. KollmannK. TebbG. SexlV. CDK6—a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation.Oncogene201635243083309110.1038/onc.2015.40726500059
    [Google Scholar]
  10. SherrC.J. BeachD. ShapiroG.I. Targeting CDK4 and CDK6: From discovery to therapy.Cancer Discov.20166435336710.1158/2159‑8290.CD‑15‑089426658964
    [Google Scholar]
  11. ZhaoH. WangY. HeY. ZhangP. ZengC. DuT. ShenQ. ZhaoS. ANKRD29, as a new prognostic and immunological biomarker of non–small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway.Biol. Direct20231812810.1186/s13062‑023‑00385‑737277814
    [Google Scholar]
  12. FasslA. GengY. SicinskiP. CDK4 and CDK6 kinases: From basic science to cancer therapy.Science20223756577eabc149510.1126/science.abc149535025636
    [Google Scholar]
  13. GoelS. BergholzJ.S. ZhaoJ.J. Targeting CDK4 and CDK6 in cancer.Nat. Rev. Cancer202222635637210.1038/s41568‑022‑00456‑335304604
    [Google Scholar]
  14. Nilmani D’costaM. BotheA. DasS. Udhaya KumarS. GnanasambandanR. George Priya DossC. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells.Adv. Protein Chem. Struct. Biol.202313512517710.1016/bs.apcsb.2022.11.00837061330
    [Google Scholar]
  15. AdonT. ShanmugarajanD. KumarH.Y. CDK4/6 inhibitors: A brief overview and prospective research directions.RSC Advances20211147292272924610.1039/D1RA03820F35479560
    [Google Scholar]
  16. CostelloJ.F. PlassC. ArapW. ChapmanV.M. HeldW.A. BergerM.S. Su HuangH.J. CaveneeW.K. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA.Cancer Res.1997577125012549102208
    [Google Scholar]
  17. LuH. Schulze-GahmenU. Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition.J. Med. Chem.200649133826383110.1021/jm060038816789739
    [Google Scholar]
  18. SusantiN.M.P. TjahjonoD.H. Cyclin-dependent kinase 4 and 6 inhibitors in cell cycle dysregulation for breast cancer treatment.Molecules20212615446210.3390/molecules2615446234361615
    [Google Scholar]
  19. Ataei-NazariS. AmoushahiM. MadsenJ.F. JensenJ. HeuckA. Mohammadi-SangcheshmehA. Lykke-HartmannK. Cyclin-dependent kinase 6 (CDK6) as a potent regulator of the ovarian primordial-to-primary follicle transition.Front. Cell Dev. Biol.202210103691710.3389/fcell.2022.103691736619863
    [Google Scholar]
  20. ZhangJ. XuD. ZhouY. ZhuZ. YangX. Mechanisms and implications of CDK4/6 inhibitors for the treatment of NSCLC.Front. Oncol.20211167604110.3389/fonc.2021.67604134395246
    [Google Scholar]
  21. ZhangX. SunY. ChengS. YaoY. HuaX. ShiY. JinX. PanJ. HuM.G. YingP. HouX. XiaD. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells.Cell Cycle2022219984100210.1080/15384101.2022.203998135167417
    [Google Scholar]
  22. LiG.S. HuangZ.G. LiD.M. TangY.L. ZhengJ.H. YangL. FengY. PengJ.X. LiJ.X. TangY.X. ZengN.Y. JinM.H. TianJ. LiuJ. ZhouH.F. ChenG. ChenF. CDK6 is a novel predictive and prognosis biomarker correlated with immune infiltrates in multiple human neoplasms, including small cell lung carcinoma.Funct. Integr. Genomics202323433210.1007/s10142‑023‑01253‑337950078
    [Google Scholar]
  23. KleinK. Witalisz-SieprackaA. GotthardtD. AgererB. LockerF. GrausenburgerR. KnabV.M. BergthalerA. SexlV. T cell-intrinsic CDK6 Is dispensable for anti-viral and anti-tumor responses in vivo .Front. Immunol.20211265097710.3389/fimmu.2021.65097734248938
    [Google Scholar]
  24. KallasA. PookM. TreiA. MaimetsT. Assessment of the potential of CDK2 inhibitor NU6140 to influence the expression of pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells.Int J Cell Biol.20142014280638
    [Google Scholar]
  25. ZhangW. SuiY. NiJ. YangT. Insights into the Nanog gene: A propeller for stemness in primitive stem cells.Int. J. Biol. Sci.201612111372138110.7150/ijbs.1634927877089
    [Google Scholar]
  26. EngelandK. Cell cycle regulation: p53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z35361964
    [Google Scholar]
  27. AbukhdeirA.M. ParkB.H. p21 and p27: roles in carcinogenesis and drug resistance.Expert Rev. Mol. Med.200810e1910.1017/S146239940800074418590585
    [Google Scholar]
  28. TianY. QiM. HongZ. LiY. YuanY. DuY. ChenL. ChenL. Activation of transient receptor potential vanilloid 4 promotes the proliferation of stem cells in the adult hippocampal dentate gyrus.Mol. Neurobiol.20175485768577910.1007/s12035‑016‑0113‑y27660267
    [Google Scholar]
  29. YousufM. ShamsiA. AnjumF. ShafieA. IslamA. HaqueQ.M.R. ElasbaliA.M. YadavD.K. HassanM.I. Effect of pH on the structure and function of cyclin-dependent kinase 6.PLoS One2022172e026369310.1371/journal.pone.026369335148332
    [Google Scholar]
  30. ChoY.S. AngoveH. BrainC. ChenC.H.T. ChengH. ChengR. ChopraR. ChungK. CongreveM. DagostinC. DavisD.J. FeltellR. GiraldesJ. HiscockS.D. KimS. KovatsS. LaguB. LewryK. LooA. LuY. LuzzioM. ManiaraW. McMenaminR. MortensonP.N. BenningR. O’ReillyM. ReesD.C. ShenJ. SmithT. WangY. WilliamsG. WoolfordA.J.A. WronaW. XuM. YangF. HowardS. Fragment-based discovery of 7-azabenzimidazoles as potent, highly selective, and orally active CDK4/6 inhibitors.ACS Med. Chem. Lett.20123644544910.1021/ml200241a24900493
    [Google Scholar]
  31. AmaliaE. DiantiniA. SubarnasA. Overview of current and future targets of breast cancer medicines.J. Pharmac. Sci. Res.201911623852397
    [Google Scholar]
  32. YousufM. KhanP. ShamsiA. ShahbaazM. HasanG.M. HaqueQ.M.R. ChristoffelsA. IslamA. HassanM.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy.ACS Omega2020542274802749110.1021/acsomega.0c0397533134711
    [Google Scholar]
  33. LimS. KaldisP. Cdks, cyclins and CKIs: roles beyond cell cycle regulation.Development2013140153079309310.1242/dev.09174423861057
    [Google Scholar]
  34. LuH. ChangD.J. BaratteB. MeijerL. Schulze-GahmenU. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin.J. Med. Chem.200548373774310.1021/jm049353p15689157
    [Google Scholar]
  35. BussH. HandschickK. JurrmannN. PekkonenP. BeuerleinK. MüllerH. WaitR. SaklatvalaJ. OjalaP.M. SchmitzM.L. NaumannM. KrachtM. Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression.PLoS One2012712e5184710.1371/journal.pone.005184723300567
    [Google Scholar]
  36. KaldisP. The CDK-Activating Kinase (CAK).Springer Science & Business Media2003
    [Google Scholar]
  37. KaldisP. OjalaP.M. TongL. MäkeläT.P. SolomonM.J. CAK-independent activation of CDK6 by a viral cyclin.Mol. Biol. Cell200112123987399910.1091/mbc.12.12.398711739795
    [Google Scholar]
  38. YousufM. AlamM. ShamsiA. KhanP. HasanG.M. Rizwanul HaqueQ.M. HassanM.I. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications.Int. J. Biol. Macromol.202221839440810.1016/j.ijbiomac.2022.07.15635878668
    [Google Scholar]
  39. ChakrabortyS. Sen, A.Rediscovering Cancer: From Mechanism to Therapy.Apple Academic Press201881134
    [Google Scholar]
  40. NardoneV. BarbarinoM. AngrisaniA. CorrealeP. PastinaP. CappabiancaS. ReginelliA. MuttiL. MiraccoC. GiannicolaR. GiordanoA. PirtoliL. CDK4, CDK6/cyclin-D1 complex inhibition and radiotherapy for cancer control: a role for autophagy.Int. J. Mol. Sci.20212216839110.3390/ijms2216839134445095
    [Google Scholar]
  41. KozarK. SicinskiP. Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes.Cell Cycle20054338839110.4161/cc.4.3.155115738651
    [Google Scholar]
  42. ScheicherR. Hoelbl-KovacicA. BelluttiF. TiganA.S. Prchal-MurphyM. HellerG. SchneckenleithnerC. Salazar-RoaM. Zöchbauer-MüllerS. ZuberJ. MalumbresM. KollmannK. SexlV. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation.Blood201512519010110.1182/blood‑2014‑06‑58441725342715
    [Google Scholar]
  43. GoelS. DeCristoM.J. WattA.C. BrinJonesH. SceneayJ. LiB.B. KhanN. UbellackerJ.M. XieS. Metzger-FilhoO. HoogJ. EllisM.J. MaC.X. RammS. Kropi.e. WinerE.P. RobertsT.M. KimH.J. McAllisterS.S. ZhaoJ.J. CDK4/6 inhibition triggers anti-tumour immunity.Nature2017548766847147510.1038/nature2346528813415
    [Google Scholar]
  44. ViolaJ.P.B. CarvalhoL.D.S. FonsecaB.P.F. TeixeiraL.K. NFAT transcription factors: from cell cycle to tumor development.Braz. J. Med. Biol. Res.200538333534410.1590/S0100‑879X200500030000315761612
    [Google Scholar]
  45. MognolG.P. CarneiroF.R.G. RobbsB.K. FagetD.V. ViolaJ.P.B. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.Cell Death Dis.201674e2199e219910.1038/cddis.2016.9727100893
    [Google Scholar]
  46. ChenW. ZhangW. ChenM. YangC. FangT. WangH. ReidL.M. HeZ. Applications and mechanisms of the cyclin-dependent kinase 4/6 inhibitor, PD-0332991, in solid tumors.Cell Oncol.20224561053107110.1007/s13402‑022‑00714‑436087253
    [Google Scholar]
  47. ZhangZ. GolombL. MeyersonM. Functional genomic analysis of CDK4 and CDK6 gene dependency across human cancer cell lines.Cancer Res.202282112171218410.1158/0008‑5472.CAN‑21‑242835395071
    [Google Scholar]
  48. KimS. LeongA. KimM. YangH.W. CDK4/6 initiates Rb inactivation and CDK2 activity coordinates cell-cycle commitment and G1/S transition.Sci. Rep.20221211681010.1038/s41598‑022‑20769‑536207346
    [Google Scholar]
  49. ZhouY. NakajimaR. ShirasawaM. FikriyantiM. ZhaoL. IwanagaR. BradfordA.P. KurayoshiK. ArakiK. OhtaniK. Expanding roles of the E2F-RB-p53 pathway in tumor suppression.Biology20231212151110.3390/biology1212151138132337
    [Google Scholar]
  50. IvanovaI.A. D’SouzaS.J.A. DagninoL. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.Int. J. Biol. Sci.200512879510.7150/ijbs.1.8715951853
    [Google Scholar]
  51. ZhanL. ZhangY. WangW. SongE. FanY. WeiB. E2F1: A promising regulator in ovarian carcinoma.Tumour Biol.20163732823283110.1007/s13277‑015‑4770‑726749284
    [Google Scholar]
  52. D’AmiciS. CeccarelliS. VescarelliE. RomanoF. FratiL. MarcheseC. AngeloniA. TNFα modulates fibroblast growth factor receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif.PLoS One201384e6149110.1371/journal.pone.006149123613863
    [Google Scholar]
  53. LaurentiE. FrelinC. XieS. FerrariR. DunantC.F. ZandiS. NeumannA. PlumbI. DoulatovS. ChenJ. AprilC. FanJ.B. IscoveN. DickJ.E. CDK6 levels regulate quiescence exit in human hematopoietic stem cells.Cell Stem Cell201516330231310.1016/j.stem.2015.01.01725704240
    [Google Scholar]
  54. ZhangL. LiY. HuC. ChenY. ChenZ. ChenZ.S. ZhangJ.Y. FangS. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells.Mol. Cancer202221110310.1186/s12943‑022‑01524‑w35459184
    [Google Scholar]
  55. RoncatoR. AngeliniJ. PaniA. CecchinE. Sartore-BianchiA. SienaS. De MattiaE. ScaglioneF. ToffoliG. CDK4/6 inhibitors in breast cancer treatment: potential interactions with drug, gene, and pathophysiological conditions.Int. J. Mol. Sci.20202117635010.3390/ijms2117635032883002
    [Google Scholar]
  56. AndrikopoulouA. ShalitA. ZografosE. KoutsoukosK. KorakitiA.M. LiontosM. DimopoulosM.A. ZagouriF. MicroRNAs as potential predictors of response to CDK4/6 inhibitor treatment.Cancers20211316411410.3390/cancers1316411434439268
    [Google Scholar]
  57. AkbariM. AdiliA. FarajiA. PakdelA. AslaminabadR. NasrabadiD. SadeghvandS. SaeediH. TahavoriM. ShabaniA. BaradaranB. Restoration of miR-124 serves as a promising therapeutic approach in CRC by affecting CDK6 which is itself a prognostic and diagnostic factor.Gene Rep.20212410127410.1016/j.genrep.2021.101274
    [Google Scholar]
  58. KowalczykW. WaliszczakG. JachR. Dulińska-LitewkaJ. Steroid receptors in breast cancer: Understanding of molecular function as a basis for effective therapy development.Cancers (Basel)20211319477910.3390/cancers1319477934638264
    [Google Scholar]
  59. LinM. ChenY. JinY. HuX. ZhangJ. Comparative overall survival of CDK4/6 inhibitors plus endocrine therapy vs. endocrine therapy alone for hormone receptor-positive, HER2-negative metastatic breast cancer.J. Cancer202011247127713610.7150/jca.4894433193875
    [Google Scholar]
  60. PiezzoM. ChiodiniP. RiemmaM. CoccoS. CaputoR. CiannielloD. Di GioiaG. Di LauroV. RellaF.D. FuscoG. IodiceG. NuzzoF. PacilioC. PensabeneM. LaurentiisM.D. Progression-free survival and overall survival of CDK 4/6 inhibitors plus endocrine therapy in metastatic breast cancer: A systematic review and meta-analysis.Int. J. Mol. Sci.20202117640010.3390/ijms2117640032899139
    [Google Scholar]
  61. WangL. GaoS. LiD. RanX. ShengZ. WuW. YangX. CDK4/6 inhibitors plus endocrine therapy improve overall survival in advanced HR+/HER2− breast cancer: A meta-analysis of randomized controlled trials.Breast J.20202671439144310.1111/tbj.1370331828901
    [Google Scholar]
  62. LloydM.R. SpringL.M. BardiaA. WanderS.A. Mechanisms of resistance to CDK4/6 blockade in advanced hormone receptor–positive, HER2-negative breast cancer and emerging therapeutic opportunities.Clin. Cancer Res.202228582183010.1158/1078‑0432.CCR‑21‑294734725098
    [Google Scholar]
  63. PiezzoM. CoccoS. CaputoR. CiannielloD. GioiaG.D. LauroV.D. FuscoG. MartinelliC. NuzzoF. PensabeneM. LaurentiisM.D. Targeting cell cycle in breast cancer: CDK4/6 inhibitors.Int. J. Mol. Sci.20202118647910.3390/ijms2118647932899866
    [Google Scholar]
  64. GeorgeM.A. QureshiS. OmeneC. ToppmeyerD.L. GanesanS. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer.Front. Oncol.20211169310410.3389/fonc.2021.69310434327137
    [Google Scholar]
  65. LimJ.T.E. MansukhaniM. WeinsteinI.B. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells.Proc. Natl. Acad. Sci.2005102145156516110.1073/pnas.050120310215790678
    [Google Scholar]
  66. KhleifS.N. DeGregoriJ. YeeC.L. OttersonG.A. KayeF.J. NevinsJ.R. HowleyP.M. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity.Proc. Natl. Acad. Sci.19969394350435410.1073/pnas.93.9.43508633069
    [Google Scholar]
  67. de BrotS. MonganN.P. The cell cycle and androgen signaling interactions in prostate cancer.Precision Molecular Pathology of Prostate CancerSpringerCham201838140410.1007/978‑3‑319‑64096‑9_22
    [Google Scholar]
  68. CaksaS. AplinA.E. PROactively TACkling CDK4/6 therapy resistance.Nat. Can.20212437237310.1038/s43018‑021‑00193‑w35121999
    [Google Scholar]
  69. ZhuX. LuoC. LinK. BuF. YeF. HuangC. LuoH. HuangJ. ZhuZ. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway.Biosci. Trends2020142839510.5582/bst.2019.0127232132307
    [Google Scholar]
  70. ZhouY. LiX. MoritaY. HachimuraS. MiyakawaT. TakahashiS. TanokuraM. Identification of the effects of chondroitin sulfate on inhibiting CDKs in colorectal cancer based on bioinformatic analysis and experimental validation.Front. Oncol.20211170593910.3389/fonc.2021.70593934595111
    [Google Scholar]
  71. FanY. LiH. LiangX. XiangZ. CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle.Oncotarget2017812199341994610.18632/oncotarget.1525328193906
    [Google Scholar]
  72. WijnenR. PecoraroC. CarboneD. FiujiH. AvanA. PetersG.J. GiovannettiE. DianaP. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC).Cancers20211317438910.3390/cancers1317438934503199
    [Google Scholar]
  73. GoodwinC.M. WatersA.M. KlompJ.E. JavaidS. BryantK.L. StalneckerC.A. Drizyte-MillerK. PapkeB. YangR. AmparoA.M. Ozkan-DagliyanI. BaldelliE. CalvertV. PierobonM. SorrentinoJ.A. BeelenA.P. BublitzN. LüthenM. WoodK.C. PetricoinE.F.III SersC. McReeA.J. CoxA.D. DerC.J. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer.Cancer Res.202383114115710.1158/0008‑5472.CAN‑22‑039136346366
    [Google Scholar]
  74. SrivastavaR.K. ChenQ. SiddiquiI. SarvaK. ShankarS. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1).Cell Cycle20076232953296110.4161/cc.6.23.495118156803
    [Google Scholar]
  75. WangC. LuoH. ChenX. ZhangY. LuD. LiuX. YinF. LiS. KongL. WangX. Discovery of dual PARP and CDK6 inhibitors for triple-negative breast cancer with wild-type BRCA.Bioorg. Chem.202313910668310.1016/j.bioorg.2023.10668337379778
    [Google Scholar]
  76. DaiM. BoudreaultJ. WangN. PouletS. DaliahG. YanG. MoamerA. BurgosS.A. SabriS. AliS. LebrunJ.J. Differential regulation of cancer progression by CDK4/6 plays a central role in DNA replication and repair pathways.Cancer Res.20218151332134610.1158/0008‑5472.CAN‑20‑212133372040
    [Google Scholar]
  77. ChenP. LeeN.V. HuW. XuM. FerreR.A. LamH. BergqvistS. SolowiejJ. DiehlW. HeY.A. YuX. NagataA. VanArsdaleT. MurrayB.W. Spectrum and degree of CDK drug interactions predicts clinical performance.Mol. Cancer Ther.201615102273228110.1158/1535‑7163.MCT‑16‑030027496135
    [Google Scholar]
  78. TolaneyS.M. SahebjamS. Le RhunE. BachelotT. KabosP. AwadaA. YardleyD. ChanA. ConteP. DiérasV. LinN.U. BearM. ChapmanS.C. YangZ. ChenY. AndersC.K. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor–positive breast cancer.Clin. Cancer Res.202026205310531910.1158/1078‑0432.CCR‑20‑176432694159
    [Google Scholar]
  79. CoronaS.P. GeneraliD. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2– advanced breast cancer.Drug Des. Devel. Ther.20181232133010.2147/DDDT.S13778329497278
    [Google Scholar]
  80. YangL. XueJ. YangZ. WangM. YangP. DongY. HeX. BaoG. PengS. Side effects of CDK4/6 inhibitors in the treatment of HR+/HER2− advanced breast cancer: A systematic review and meta-analysis of randomized controlled trials.Ann. Palliat. Med.20211055590559910.21037/apm‑21‑109634107710
    [Google Scholar]
  81. SammonsS.L. ToppingD.L. BlackwellK.L. HR+, HER2-advanced breast cancer and CDK4/6 inhibitors: mode of action, clinical activity, and safety profiles.Curr. Cancer Drug Targets201717763764928359238
    [Google Scholar]
  82. AgostinettoE. AreccoL. de AzambujaE. Adjuvant CDK4/6 inhibitors for early breast cancer: how to choose wisely?Oncol. Ther.2023202311137989811
    [Google Scholar]
  83. O’LearyB. FinnR.S. TurnerN.C. Treating cancer with selective CDK4/6 inhibitors.Nat. Rev. Clin. Oncol.201613741743010.1038/nrclinonc.2016.2627030077
    [Google Scholar]
  84. WattA.C. GoelS. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer.Breast Cancer Res.20222411710.1186/s13058‑022‑01510‑635248122
    [Google Scholar]
  85. SobhaniN. D’AngeloA. PittacoloM. RovielloG. MiccoliA. CoronaS.P. BernocchiO. GeneraliD. OttoT. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer.Cells20198432110.3390/cells804032130959874
    [Google Scholar]
  86. OgataR. KishinoE. SaitohW. KoikeY. KurebayashiJ. Resistance to cyclin-dependent kinase (CDK) 4/6 inhibitors confers cross-resistance to other CDK inhibitors but not to chemotherapeutic agents in breast cancer cells.Breast Cancer202128120621510.1007/s12282‑020‑01150‑832860163
    [Google Scholar]
  87. HuangZ. LiX. TangB. LiH. ZhangJ. SunR. MaJ. PanY. YanB. ZhouY. DingD. YanY. JimenezR. OrmeJ.J. JinX. YangJ. HuangH. JiaZ. SETDB1 modulates degradation of phosphorylated RB and anticancer efficacy of CDK4/6 inhibitors.Cancer Res.202383687588910.1158/0008‑5472.CAN‑22‑026436637424
    [Google Scholar]
  88. HecklerM. AliL.R. Clancy-ThompsonE. QiangL. VentreK.S. LenehanP. RoehleK. LuomaA. BoelaarsK. PetersV. McCrearyJ. BoschertT. WangE.S. SuoS. MarangoniF. MempelT.R. LongH.W. WucherpfennigK.W. DouganM. GrayN.S. YuanG.C. GoelS. TolaneyS.M. DouganS.K. Inhibition of CDK4/6 promotes CD8 T-cell memory formation.Cancer Discov.202111102564258110.1158/2159‑8290.CD‑20‑154033941591
    [Google Scholar]
  89. CazzanigaM.E. CiaccioA. DanesiR. DuhouxF.P. GirmeniaC. ZamanK. LindmanH. LuppiF. MavroudisD. ParisI. OlubukolaA. SamreenA. SchemC. SingerC. SnegovoyA. Late onset toxicities associated with the use of CDK 4/6 inhibitors in hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) metastatic breast cancer patients: A multidisciplinary, pan-EU position paper regarding their optimal management. The GIOCONDA project.Front. Oncol.202313124727010.3389/fonc.2023.124727037954071
    [Google Scholar]
  90. LuoX. ZhaoY. TangP. DuX. LiF. WangQ. LiR. HeJ. Discovery of new small-molecule cyclin-dependent kinase 6 inhibitors through computational approaches.Mol. Divers.202125136738210.1007/s11030‑020‑10120‑332770459
    [Google Scholar]
  91. NuwayhidS. StockettD. HydeJ. AleshinA. WalkerD.H. ArkinM.R. SNS-032 is a potent and selective inhibitor of CDK2, 7 and 9 and induces cell death by inhibiting cell cycle progression and the expression of antiapoptotic proteins.Proc Am Assoc Cancer Res200647491
    [Google Scholar]
  92. ShapiroG.I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol.Clin. Cancer Res.200410124270s4275s10.1158/1078‑0432.CCR‑04002015217973
    [Google Scholar]
  93. SenderowiczA.M. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials.Invest. New Drugs199917331332010.1023/A:100635300890310665481
    [Google Scholar]
  94. BüyükkaramikliN.C. de GrootS. RiemsmaR. FayterD. ArmstrongN. PortegijsP. DuffyS. KleijnenJ. AlM.J. Ribociclib with an aromatase inhibitor for previously untreated, HR-positive, HER2-negative, locally advanced or metastatic breast cancer: An Evidence Review Group perspective of a NICE Single Technology Appraisal.PharmacoEconomics201937214115310.1007/s40273‑018‑0708‑430194622
    [Google Scholar]
  95. O’ShaughnessyJ. PetrakovaK. SonkeG.S. ConteP. ArteagaC.L. CameronD.A. HartL.L. VillanuevaC. JakobsenE. BeckJ.T. LindquistD. SouamiF. MondalS. GermaC. HortobagyiG.N. Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2− advanced breast cancer in the randomized MONALEESA-2 trial.Breast Cancer Res. Treat.2018168112713410.1007/s10549‑017‑4518‑829164421
    [Google Scholar]
  96. GelbertL.M. CaiS. LinX. Sanchez-MartinezC. del PradoM. LallenaM.J. TorresR. AjamieR.T. WishartG.N. FlackR.S. NeubauerB.L. YoungJ. ChanE.M. IversenP. CronierD. KreklauE. de DiosA. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine.Invest. New Drugs201432582583710.1007/s10637‑014‑0120‑724919854
    [Google Scholar]
  97. HopeI. EndicottJ.A. WattJ.E. Emerging approaches to CDK inhibitor development, a structural perspective.RSC Chemical Biology20234214616410.1039/D2CB00201A36794018
    [Google Scholar]
  98. HuangJ. ZhengL. SunZ. LiJ. CDK4/6 inhibitor resistance mechanisms and treatment strategies (Review).Int. J. Mol. Med.202250412810.3892/ijmm.2022.518436043521
    [Google Scholar]
  99. XuX. PanX. WangT. WangJ. YangB. HeQ. DingL. Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies.Acta Pharmacol. Sin.202142217117810.1038/s41401‑020‑0416‑432504067
    [Google Scholar]
  100. TadesseS. YuM. KumarasiriM. LeB.T. WangS. Targeting CDK6 in cancer: State of the art and new insights.Cell Cycle201514203220323010.1080/15384101.2015.108444526315616
    [Google Scholar]
  101. SharmaV. SharmaP.C. KumarV. in silico molecular docking analysis of natural pyridoacridines as anticancer agents.Adv. Chem.2016201654093871910.1155/2016/5409387
    [Google Scholar]
  102. RobertsP.J. KumarasamyV. WitkiewiczA.K. KnudsenE.S. Chemotherapy and CDK4/6 inhibitors: Unexpected bedfellows.Mol. Cancer Ther.20201981575158810.1158/1535‑7163.MCT‑18‑116132546660
    [Google Scholar]
  103. YipH.Y.K. PapaA. Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments.Cells202110365910.3390/cells1003065933809714
    [Google Scholar]
  104. MalumbresM. PevarelloP. BarbacidM. BischoffJ.R. CDK inhibitors in cancer therapy: what is next?Trends Pharmacol. Sci.2008291162110.1016/j.tips.2007.10.01218054800
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501313781240627062206
Loading
/content/journals/cdt/10.2174/0113894501313781240627062206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test