Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The main epidemiological and clinical data on colorectal cancer, as well as the features of molecular pathology, are discussed in the literature review. Efforts are being putto identify promising targets, particularly small non-coding nucleotide sequences, which can lead to new treatments for this disease.

The discovery of significant mutations that contribute to the development of colorectal tumors is a major step in the advancement of molecular oncology, as these mutations give rise to heterogeneous tumors that differ in their origin. These mutations play a significant role in the progression of the disease and are now being targeted for treatment. The prognosis for a disease is influenced by the patient's sensitivity to antitumor therapy. However, new approaches to finding effective targets for antitumor treatments face new fundamental challenges due to clinical issues. These issues include the epigenetic regulation of markers of oncogenesis, which allows for the development of new therapeutic strategies.

RNA interference, in particular, has been linked to non-copying RNA sequences such as microRNAs. These microRNAs are associated with certain processes that can influence all aspects of oncogenesis. The diversity of microRNAs allows for a differentiated approach when treating tumors in various locations.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501304351240703113651
2024-07-24
2025-05-28
Loading full text...

Full text loading...

References

  1. ImadFE. DrissiH. TawfiqN. BendahhouK. JoutiNT. BeniderA. RadallahD. Epidemiological; nutritional and anatomopathological features of patients with colorectal cancer in the greater Casablanca region.Pan Afr Med J.2019313256
    [Google Scholar]
  2. ChongW. ZhuX. RenH. YeC. XuK. WangZ. JiaS. ShangL. LiL. ChenH. Integrated multi-omics characterization of KRAS mutant colorectal cancer.Theranostics202212115138515410.7150/thno.7308935836817
    [Google Scholar]
  3. AkimotoN. UgaiT. ZhongR. HamadaT. FujiyoshiK. GiannakisM. WuK. CaoY. NgK. OginoS. Rising incidence of early-onset colorectal cancer — a call to action.Nat. Rev. Clin. Oncol.202118423024310.1038/s41571‑020‑00445‑133219329
    [Google Scholar]
  4. VenugopalA. CarethersJ.M. Epidemiology and biology of early onset colorectal cancer.EXCLI J.20222116218235221839
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.2020713209249
    [Google Scholar]
  6. FerlayJ. ErvikM. LamF. Global Cancer Observatory: Cancer Today.Lyon, FranceInternational Agency for Research on Cancer2018
    [Google Scholar]
  7. BallesterV. RashtakS. BoardmanL. Clinical and molecular features of young-onset colorectal cancer.World J. Gastroenterol.20162251736174410.3748/wjg.v22.i5.173626855533
    [Google Scholar]
  8. AhnenD.J. WadeS.W. JonesW.F. SifriR. Mendoza SilveirasJ. GreenamyerJ. GuiffreS. AxilbundJ. SpiegelA. YouY.N. The increasing incidence of young-onset colorectal cancer: a call to action.Mayo Clin. Proc.201489221622410.1016/j.mayocp.2013.09.00624393412
    [Google Scholar]
  9. SpirinaL.V. KondakovaI.V. TarasenkoN.V. SlonimskayaE.M. UsyninE.A. GorbunovA.K. YurmazovZ.A. ChigevskayaS.Y. Targeting of the AKT/m-TOR Pathway: Biomarkers of Resistance to Cancer Therapy-AKT/m-TOR Pathway and Resistance to Cancer Therapy.Zhongguo Fei Ai Za Zhi2018211636629357975
    [Google Scholar]
  10. TakahashiY. SugaiT. HabanoW. IshidaK. EizukaM. OtsukaK. SasakiA. Takayuki Matsumoto MorikawaT. UnnoM. SuzukiH. Molecular differences in the microsatellite stable phenotype between left-sided and right-sided colorectal cancer.Int. J. Cancer2016139112493250110.1002/ijc.3037727509333
    [Google Scholar]
  11. MouradovD. GreenfieldP. LiS. InE.J. StoreyC. SakthianandeswarenA. GeorgesonP. BuchananD.D. WardR.L. HawkinsN.J. SkinnerI. JonesI.T. GibbsP. MaC. LiewY.J. FungK.Y.C. SieberO.M. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer.Gastroenterology2023165110412010.1053/j.gastro.2023.03.20536933623
    [Google Scholar]
  12. HuangW. LiW. XuN. LiH. ZhangZ. ZhangX. HeT. YaoJ. XuM. HeQ. GuoL. ZhangS. Differences in DNA damage repair gene mutations between left- and right-sided colorectal cancer.Cancer Med.2023129101871019810.1002/cam4.571637096801
    [Google Scholar]
  13. MeiW.J. MiM. QianJ. XiaoN. YuanY. DingP.R. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review.Front. Immunol.202213101958210.3389/fimmu.2022.101958236618386
    [Google Scholar]
  14. ZhengJ. HuangB. NieX. ZhuY. HanN. LiY. The clinicopathological features and prognosis of tumor MSI in East Asian colorectal cancer patients using NCI panel.Future Oncol.201814141355136410.2217/fon‑2017‑066229366338
    [Google Scholar]
  15. HanK. TangJ.H. LiaoL.E. JiangW. SuiQ.Q. XiaoB.Y. LiW.R. HongZ.G. LiY. KongL.H. LiD.D. ZhangX.S. PanZ.Z. SteeleS.R. DingP.R. Neoadjuvant Immune Checkpoint Inhibition Improves Organ Preservation in T4bM0 Colorectal Cancer With Mismatch Repair Deficiency: A Retrospective Observational Study.Dis. Colon Rectum20236610e996e100510.1097/DCR.000000000000246635485833
    [Google Scholar]
  16. ViñalD. Martinez-PerezD. Martínez-RecioS. RuizI. Jiménez BouD. PeñaJ. Martin-MontalvoG. Rueda-LaraA. AlamedaM. Gutiérrez SainzL. CustodioA.B. PalaciosM.E. GhanemI. Rodriguez SalasN. FeliuJ. Clinicopathological characteristics and outcomes of patients with deficient mismatch repair colorectal cancer.J. Clin. Oncol.2022404_suppl18118110.1200/JCO.2022.40.4_suppl.181
    [Google Scholar]
  17. StefaniC. MiricescuD. Stanescu-SpinuI.I. NicaR.I. GreabuM. TotanA.R. JingaM. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now?Int. J. Mol. Sci.202122191026010.3390/ijms22191026034638601
    [Google Scholar]
  18. ChenJ. ZhouL. GaoJ. LuT. WangJ. WuH. LiangZ. Clinicopathological Characteristics and Mutation Spectrum of Colorectal Adenocarcinoma With Mucinous Component in a Chinese Cohort: Comparison With Classical Adenocarcinoma.Front. Oncol.20201091791710.3389/fonc.2020.0091732582557
    [Google Scholar]
  19. SacdalanD.L. GarciaR.L. DiwaM.H. SacdalanD.B. Clinicopathologic Factors Associated with Mismatch Repair Status Among Filipino Patients with Young-Onset Colorectal Cancer.Cancer Manag. Res.2021132105211510.2147/CMAR.S28661833688253
    [Google Scholar]
  20. ReynoldsI.S. FurneyS.J. KayE.W. McNamaraD.A. PrehnJ.H.M. BurkeJ.P. Meta-analysis of the molecular associations of mucinous colorectal cancer.Br. J. Surg.2019106668269110.1002/bjs.1114230945755
    [Google Scholar]
  21. HugenN. SimonsM. HalilovićA. van der PostR.S. BogersA.J. Marijnissen-van ZantenM.A.J. de WiltJ.H.W. NagtegaalI.D. The molecular background of mucinous carcinoma beyond MUC2.J. Pathol. Clin. Res.20151131710.1002/cjp2.127499889
    [Google Scholar]
  22. LiddellC. Droy-DupréL. MétairieS. AiraudF. VolteauC. BezieauS. LaboisseC.L. MosnierJ.F. Mapping clinicopathological entities within colorectal mucinous adenocarcinomas: a hierarchical clustering approach.Mod. Pathol.20173081177118910.1038/modpathol.2017.1828429715
    [Google Scholar]
  23. HolowatyjA.N. WenW. GibbsT. SeagleH.M. KellerS.R. EdwardsD.R.V. WashingtonM.K. EngC. PereaJ. ZhengW. GuoX. Racial/Ethnic and Sex Differences in Somatic Cancer Gene Mutations among Patients with Early-Onset Colorectal Cancer.Cancer Discov.202313357057910.1158/2159‑8290.CD‑22‑076436520636
    [Google Scholar]
  24. LinJ. QiuM. XuR. DobsA.S. Comparison of survival and clinicopathologic features in colorectal cancer among African American, Caucasian, and Chinese patients treated in the United States: Results from the surveillance epidemiology and end results (SEER) database.Oncotarget2015632339353394310.18632/oncotarget.522326375551
    [Google Scholar]
  25. HolowatyjA.N. RuterbuschJ.J. RozekL.S. CoteM.L. StoffelE.M. Racial/Ethnic Disparities in Survival Among Patients With Young-Onset Colorectal Cancer.J. Clin. Oncol.201634182148215610.1200/JCO.2015.65.099427138583
    [Google Scholar]
  26. SenLu. Future therapeutic implications of new molecular mechanism of colorectal cancer.World J Gastroenterol202329162359236810.3748/wjg.v29.i16.2359
    [Google Scholar]
  27. TsukanovA.S. DemidovaI.A. TsaurG.A. Diagnosis of Lynch syndrome in cancer patients: The position of the interregional organization of molecular geneticists in oncology and oncohematology.2023691714
    [Google Scholar]
  28. ZhangX. WuT. CaiX. DongJ. XiaC ZhouY. DingR YangR. TanJ ZhangL. ZhangY. WangY. DongC. LiY. Neoadjuvant immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: New strategies and unveiled opportunities.Front Immunol.202213795972
    [Google Scholar]
  29. PasevichD.M. SushkouS.A. SemenovV.M. Molecular Genetic Aspects of Malignant Colon Tumors.2016242184192
    [Google Scholar]
  30. MargetisN. KouloukoussaM. PavlouK. VrakasS. Mariolis-SapsakosT. K-ras Mutations as the Earliest Driving Force in a Subset of Colorectal Carcinomas In vivo 201731452754210.21873/invivo.1109128652417
    [Google Scholar]
  31. QiuJ. LiM. SuC. LiangY. OuR. ChenX. HuangC. ZhangY. YeY. LiaoW. ZhangC. FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer.Front. Oncol.20221289404310.3389/fonc.2022.89404335898871
    [Google Scholar]
  32. WangC. LiX. RenL. MaC. WuM. LiangW. ZhaoJ. LiS. TanQ. LiaoY. SunL. ZhangX. HeY. Gankyrin as Potential Biomarker for Colorectal Cancer With Occult Liver Metastases.Front. Oncol.20211165685210.3389/fonc.2021.65685234395241
    [Google Scholar]
  33. ZhaoM. MishraL. DengC.X. The role of TGF-β/SMAD4 signaling in cancer.Int. J. Biol. Sci.201814211112310.7150/ijbs.2323029483830
    [Google Scholar]
  34. TherkildsenC. BergmannT.K. Henrichsen-SchnackT. LadelundS. NilbertM. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.Acta Oncol.201453785286410.3109/0284186X.2014.89503624666267
    [Google Scholar]
  35. LuX. LiY. LiY. ZhangX. ShiJ. FengH. YuZ. GaoY. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis.BMC Cancer2023231111710.1186/s12885‑023‑11600‑z37974093
    [Google Scholar]
  36. WuJ.B. LiX.J. LiuH. LiuY.J. LiuX.P. Association of KRAS, NRAS, BRAF and PIK3CA gene mutations with clinicopathological features, prognosis and ring finger protein 215 expression in patients with colorectal cancer.Biomed. Rep.202319610410.3892/br.2023.168638025833
    [Google Scholar]
  37. KitO.I. VodolazhskyD.I. [Molecular biology of colorectal cancer in clinical practice].Mol. Biol. (Mosk.)201549453154026299852
    [Google Scholar]
  38. ChenY. ShiY. LinJ. YeY. WangX. ChenG. GuoZ. Combined Analysis of EGFR and PTEN Status in Patients With KRAS Wild-Type Metastatic Colorectal Cancer.Medicine20159440e169810.1097/MD.000000000000169826448020
    [Google Scholar]
  39. CoccoE. ScaltritiM. DrilonA. NTRK fusion-positive cancers and TRK inhibitor therapy.Nat. Rev. Clin. Oncol.2018151273174710.1038/s41571‑018‑0113‑030333516
    [Google Scholar]
  40. CremoliniC. RossiniD. Dell’AquilaE. LonardiS. ConcaE. Del ReM. BusicoA. PietrantonioF. DanesiR. AprileG. TamburiniE. BaroneC. MasiG. PantanoF. PucciF. CorsiD.C. PellaN. BergamoF. RofiE. BarbaraC. FalconeA. SantiniD. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan.JAMA Oncol.20195334335010.1001/jamaoncol.2018.508030476968
    [Google Scholar]
  41. Algebra Examples.Available from: https://www.mathway.com/ru/popular-problems/Algebra/706842(accessed on 26-6-2024)
  42. DongQ. ChenC. HuY. ZhangW. YangX. QiY. ZhuC. ChenX. ShenX. JiW. Clinical application of molecular residual disease detection by circulation tumor DNA in solid cancers and a comparison of technologies: review article.Cancer Biol. Ther.2023241227412310.1080/15384047.2023.227412337955635
    [Google Scholar]
  43. KimN.H. SongS.H. ChoiY.H. HwangK.H. YunJ.S. SongH. ChaS.Y. ChoS.B. LeeI. KimH.S. YookJ.I. Competing endogenous RNA of snail and Zeb1 UTR in therapeutic resistance of colorectal cancer.Int. J. Mol. Sci.20212217958910.3390/ijms2217958934502497
    [Google Scholar]
  44. LiJ. XuQ. LuoC. ChenL. YingJ. Clinicopathologic characteristics of resectable colorectal cancer with mismatch repair protein defects in Chinese population.Medicine20209924e2055410.1097/MD.000000000002055432541478
    [Google Scholar]
  45. TanjakP. ChaiboonchoeA. SuwatthanarakT. AcharayothinO. ThanormjitK. ChanthercrobJ. SuwatthanarakT. WannasuphapholB. ChumchuenK. SuktitipatB. SampattavanichS. KorphaisarnK. PongpaibulA. PoungvarinN. GroveH. RiansuwanW. TrakarnsangaA. MethasateA. PithukpakornM. ChinswangwatanakulV. The KRAS-mutant consensus molecular subtype 3 reveals an immunosuppressive tumor microenvironment in colorectal cancer.Cancers2023154109810.3390/cancers1504109836831441
    [Google Scholar]
  46. WangL. ChoK.B. LiY. TaoG. XieZ. GuoB. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer.Int. J. Mol. Sci.20192022575810.3390/ijms2022575831744051
    [Google Scholar]
  47. PandeR. ParikhA. ShenodaB. RamanathanS. AlexanderG.M. SchwartzmanR.J. AjitS.K. Hsa-miR-605 regulates the proinflammatory chemokine CXCL5 in complex regional pain syndrome.Biomed. Pharmacother.202114011178810.1016/j.biopha.2021.11178834062414
    [Google Scholar]
  48. WangH. MicroRNAs and apoptosis in colorectal cancer.Int. J. Mol. Sci.20202115535310.3390/ijms2115535332731413
    [Google Scholar]
  49. WangQ. HaoX. XuG. LvT. Downregulated KIF3B induced by miR-605-3p inhibits the progression of colon cancer via inactivating Wnt/β-Catenin.J. Oncol.202120211810.1155/2021/504698134422048
    [Google Scholar]
  50. HansenT. NielsenB. JakobsenA. SørensenF. Intra-tumoural vessel area estimated by expression of epidermal growth factor-like domain 7 and microRNA-126 in primary tumours and metastases of patients with colorectal cancer: a descriptive study.J. Transl. Med.20151311010.1186/s12967‑014‑0359‑y25592646
    [Google Scholar]
  51. YamakuchiM. YagiS. ItoT. LowensteinC.J. MicroRNA-22 regulates hypoxia signaling in colon cancer cells.PLoS One201165e2029110.1371/journal.pone.002029121629773
    [Google Scholar]
  52. YanG. WangL. Role of ELK1 in regulating colorectal cancer progression: miR-31-5p/CDIP1 axis in CRC pathogenesis.PeerJ202311e1560210.7717/peerj.1560237547727
    [Google Scholar]
  53. WangX. ZhangD. YangY. LiX. LiH. ZhangX. LongJ. LuY. LiuL. YangG. LiuJ. HongJ. WuH. MaX. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway.Front. Immunol.202314108980910.3389/fimmu.2023.108980936776858
    [Google Scholar]
  54. WangH. LiangL. FangJ-Y. XuJ. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers.Oncogene201635162011201910.1038/onc.2015.30426257062
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501304351240703113651
Loading
/content/journals/cdt/10.2174/0113894501304351240703113651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test