Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers.

Teaser

Explore the potential of Quercetin, a natural flavonoid with diverse pharmacological activities, and its nanoformulations in managing various cancers.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501292466240627050638
2024-07-10
2025-05-22
Loading full text...

Full text loading...

References

  1. RajputA. Cancer: A sui generis threat and its global impact.Biosensor Based Advanced Cancer Diagnostics. KhanR. PariharA. SanghiS.K. Cambridge, MassachusettsAcademic Press202212510.1016/B978‑0‑12‑823424‑2.00019‑3
    [Google Scholar]
  2. KumarM. KulkarniA.J. SatapathyS.C. A hybridized data clustering for breast cancer prognosis and risk exposure using fuzzy c-means and cohort intelligence.Optimization in Machine Learning and Applications. KulkarniA.J. SatapathyS.C. SingaporeSpringer Singapore202011312610.1007/978‑981‑15‑0994‑0_7
    [Google Scholar]
  3. PatelA. Benign vs Malignant tumors.JAMA Oncol.2020691488148810.1001/jamaoncol.2020.259232729930
    [Google Scholar]
  4. WHOCancer.202Available From: https://www.who.int/news-room/fact-sheets/detail/cancer
  5. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  6. TangS.M. DengX.T. ZhouJ. LiQ.P. GeX.X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.202012110960410.1016/j.biopha.2019.10960431733570
    [Google Scholar]
  7. Deepika MauryaP.K. Health benefits of quercetin in age-related diseases.Molecules2022278249810.3390/molecules2708249835458696
    [Google Scholar]
  8. JanR. KhanM. AsafS. Lubna AsifS. KimK.M. Bioactivity and therapeutic potential of kaempferol and quercetin: new insights for plant and human health.Plants20221119262310.3390/plants1119262336235488
    [Google Scholar]
  9. TuH. MaD. LuoY. TangS. LiY. ChenG. WangL. HouZ. ShenC. LuH. ZhuangX. ZhangL. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway.Bioengineered20211216538655810.1080/21655979.2021.197387734528858
    [Google Scholar]
  10. XiangT. FangY. WangS. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.J. Huazhong Univ. Sci. Technolog. Med. Sci.201434574074410.1007/s11596‑014‑1345‑625318886
    [Google Scholar]
  11. WangW. YuanX. MuJ. ZouY. XuL. ChenJ. ZhuX. LiB. ZengZ. WuX. YinZ. WangQ. Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways.Phytomedicine202311815493310.1016/j.phymed.2023.15493337451151
    [Google Scholar]
  12. SrinivasanA. ThangavelC. LiuY. ShoyeleS. DenR.B. SelvakumarP. LakshmikuttyammaA. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer.Mol. Carcinog.201655574375610.1002/mc.2231825968914
    [Google Scholar]
  13. JingD. WuW. ChenX. XiaoH. ZhangZ. ChenF. ZhangZ. LiuJ. ShaoZ. PuF. Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 via the JAK2-STAT3-PDL1.Pharmacol. Res.202218210628710.1016/j.phrs.2022.10628735671921
    [Google Scholar]
  14. WangD. AliF. LiuH. ChengY. WuM. SaleemM.Z. ZhengH. WeiL. ChuJ. XieQ. ShenA. PengJ. Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: A target based networking pharmacology approach.Front. Pharmacol.202213100236310.3389/fphar.2022.100236336324691
    [Google Scholar]
  15. WangX. XueX. WangH. XuF. XinZ. WangK. CuiM. QinW. Quercetin inhibits human microvascular endothelial cells viability, migration and tube-formation in vitro through restraining microRNA-216a.J. Drug Target.202028660961610.1080/1061186X.2019.170026331791158
    [Google Scholar]
  16. IgbeI. ShenX.F. JiaoW. QiangZ. DengT. LiS. LiuW.L. LiuH.W. ZhangG.L. WangF. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase.Oncotarget201786911373411374810.18632/oncotarget.2255629371942
    [Google Scholar]
  17. SenggunpraiL. KukongviriyapanV. PrawanA. KukongviriyapanU. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cellsvia suppression of JAK/STAT signaling pathway.Phytother. Res.201428684184810.1002/ptr.506124038588
    [Google Scholar]
  18. ChenX. XuP. ZhangH. SuX. GuoL. ZhouX. WangJ. HuangP. ZhangQ. SunR. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro .Oncol. Lett.202122575410.3892/ol.2021.1301534539858
    [Google Scholar]
  19. KimS.H. YooE.S. WooJ.S. HanS.H. LeeJ.H. JungS.H. KimH.J. JungJ.Y. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation.Eur. J. Pharmacol.201986017256810.1016/j.ejphar.2019.17256831348906
    [Google Scholar]
  20. ErdoganS. TurkekulK. DibirdikI. DoganlarO. DoganlarZ.B. BilirA. OktemG. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway.Biomed. Pharmacother.201810779380510.1016/j.biopha.2018.08.06130142541
    [Google Scholar]
  21. LiuL. LiuY. ChengX. QiaoX. The alleviative effects of quercetin on cadmium-induced necroptosis via inhibition ROS/iNOS/NF-κB pathway in the chicken brain.Biol. Trace Elem. Res.202119941584159410.1007/s12011‑020‑02563‑433398654
    [Google Scholar]
  22. AhmadiM. ValizadehA. BazavarM. YousefiB. Investigating the role of quercetin in increasing the rate of cisplatin-induced apoptosis via the NF-κB pathway in MG-63 cancer cells.Drug Res.202272738538910.1055/a‑1842‑742435785813
    [Google Scholar]
  23. QiX. GaoC. YinC. FanJ. WuX. DiG. WangJ. GuoC. Development of quercetin-loaded PVCL–PVA–PEG micelles and application in inhibiting tumor angiogenesis through the PI3K/Akt/VEGF pathway.Toxicol. Appl. Pharmacol.202243711588910.1016/j.taap.2022.11588935065992
    [Google Scholar]
  24. Chrzanowska-WodnickaM. KrausA.E. GaleD. WhiteG.C.II VanSluysJ. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice.Blood200811152647265610.1182/blood‑2007‑08‑10971017993608
    [Google Scholar]
  25. LiY. WangZ. JinJ. ZhuS.X. HeG.Q. LiS.H. WangJ. CaiY. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway.Biochem. Biophys. Res. Commun.2020523494795310.1016/j.bbrc.2020.01.04831964531
    [Google Scholar]
  26. GlavianoA. FooA.S.C. LamH.Y. YapK.C.H. JacotW. JonesR.H. EngH. NairM.G. MakvandiP. GeoergerB. KulkeM.H. BairdR.D. PrabhuJ.S. CarboneD. PecoraroC. TehD.B.L. SethiG. CavalieriV. LinK.H. Javidi-SharifiN.R. ToskaE. DavidsM.S. BrownJ.R. DianaP. StebbingJ. FrumanD.A. KumarA.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol. Cancer202322113810.1186/s12943‑023‑01827‑637596643
    [Google Scholar]
  27. BaharM.E. KimH.J. KimD.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies.Signal Transduct. Target. Ther.20238145510.1038/s41392‑023‑01705‑z38105263
    [Google Scholar]
  28. Samatha JainM. Therapeutic strategies targeting Wnt/β-catenin signaling pathway in stem cells for ROS-induced cancer progression.Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. ChakrabortiS. SingaporeSpringer Singapore2021119
    [Google Scholar]
  29. JakowlewS.B. Transforming growth factor-β in cancer and metastasis.Cancer Metastasis Rev.200625343545710.1007/s10555‑006‑9006‑216951986
    [Google Scholar]
  30. YayanJ. FrankeK.J. BergerM. WindischW. RascheK. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review.Mol. Biol. Rep.202451116510.1007/s11033‑023‑08920‑538252369
    [Google Scholar]
  31. Shivani Quercetin-based nanoformulation: A potential approach for cancer treatment.Anticancer Agents Med Chem202323181983200710.2174/1871520623666230817101926
    [Google Scholar]
  32. ElsayedA.M. SherifN.M. HassanN.S. AlthobaitiF. HanafyN.A.N. SahyonH.A. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model.Int. J. Biol. Macromol.202118513415210.1016/j.ijbiomac.2021.06.08534147524
    [Google Scholar]
  33. LiX. ZhouN. WangJ. LiuZ. WangX. ZhangQ. LiuQ. GaoL. WangR. Quercetin suppresses breast cancer stem cells (CD44 + /CD24 − ) by inhibiting the PI3K/Akt/mTOR-signaling pathway.Life Sci.2018196566210.1016/j.lfs.2018.01.01429355544
    [Google Scholar]
  34. PrzybylskiP. LewińskaA. RzeszutekI. BłoniarzD. MoskalA. BetlejG. DeręgowskaA. Cybularczyk-CecotkaM. SzmatołaT. LitwinienkoG. WnukM. Mutation status and glucose availability affect the response to mitochondria-targeted quercetin derivative in breast cancer cells.Cancers20231523561410.3390/cancers1523561438067318
    [Google Scholar]
  35. TangH. KuangY. WuW. PengB. FuQ. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer.Mol. Med.202329112710.1186/s10020‑023‑00720‑837710176
    [Google Scholar]
  36. AlhakamyN.A. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: in vitro response surface optimization and anticancer activity against MCF-7 cells.Polymers20212719310.3390/polym14010093
    [Google Scholar]
  37. TangY. ZhangL. SunR. LuoB. ZhouY. ZhangY. LiangY. XiaoB. WangC. Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy.Asian J Pharmaceut Sci202318410083310.1016/j.ajps.2023.10083337635802
    [Google Scholar]
  38. GanthalaP.D. AlavalaS. ChellaN. AndugulapatiS.B. BathiniN.B. SistlaR. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition.Colloids Surf. B Biointerfaces202221111230510.1016/j.colsurfb.2021.11230534998178
    [Google Scholar]
  39. WangY. YuH. WangS. GaiC. CuiX. XuZ. LiW. ZhangW. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel.Mater. Sci. Eng. C202111911144210.1016/j.msec.2020.11144233321583
    [Google Scholar]
  40. LooC.Y. TrainiD. YoungP.M. ParumasivamT. LeeW-H. Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer – Part 2: Toxicity and endocytosis.J. Drug Deliv. Sci. Technol.20238210437510.1016/j.jddst.2023.104375
    [Google Scholar]
  41. RenK.W. LiY.H. WuG. RenJ.Z. LuH.B. LiZ.M. HanX.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells.Int. J. Oncol.20175041299131110.3892/ijo.2017.388628259895
    [Google Scholar]
  42. HarounA.M. El-SayedW.M. HassanR.E. Quercetin and l-arginine ameliorated the deleterious effects of copper oxide nanoparticles on the liver of mice through anti-inflammatory and anti-apoptotic pathways.Biol. Trace Elem. Res.202337775700
    [Google Scholar]
  43. AslA.M. KalaeeM. AbdoussM. HomamiS.S. Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe2O3 nanoparticles.Int. J. Biol. Macromol.2024257Pt 212862610.1016/j.ijbiomac.2023.12862638056757
    [Google Scholar]
  44. EninH.A.A. AlquthamiA.F. AlwagdaniA.M. YousefL.M. AlbuqamiM.S. AlharthiM.A. AlsaabH.O. Utilizing TPGS for optimizing quercetin nanoemulsion for colon cancer cells inhibition.Colloids and Interfaces2022634910.3390/colloids6030049
    [Google Scholar]
  45. PatilP. KilledarS. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer.J. Drug Deliv. Sci. Technol.20216310252310.1016/j.jddst.2021.102523
    [Google Scholar]
  46. Al-SamydaiA. Al QaralehM. Al AzzamK.M. MayyasA. NsairatH. Abu HajlehM.N. Al-HalasehL.K. Al-KarabliehN. AkourA. AlshaikF. AlshaerW. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy.Heliyon202396e1726710.1016/j.heliyon.2023.e1726737408902
    [Google Scholar]
  47. DasS. SahaM. MahataL.C. ChinaA. ChatterjeeN. Das SahaK. Quercetin and 5-Fu loaded chitosan nanoparticles trigger cell-cycle arrest and induce apoptosis in HCT116 cells via modulation of the p53/p21 axis.ACS Omega2023840368933690510.1021/acsomega.3c0393337841142
    [Google Scholar]
  48. LiS.F. HuT.G. WuH. Fabrication of colon-targeted ethyl cellulose/gelatin hybrid nanofibers: Regulation of quercetin release and its anticancer activity.Int. J. Biol. Macromol.2023253Pt 612717510.1016/j.ijbiomac.2023.12717537783248
    [Google Scholar]
  49. ColpanR.D. ErdemirA. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells.J. Microencapsul.202138638139310.1080/02652048.2021.194862334189998
    [Google Scholar]
  50. ShitoleA.A. SharmaN. GiramP. KhandwekarA. BaruahM. GarnaikB. KoratkarS. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer.Mater. Sci. Eng. C202011411103510.1016/j.msec.2020.11103532994029
    [Google Scholar]
  51. MousaviN. RahimiS. EmamiH. KazemiA.H. Mohammad Taghi KashiR. HeidarianR. The effect of quercetin nanosuspension on prostate cancer cell line LNCaP via Hedgehog Signaling Pathway.Rep. Biochem. Mol. Biol.2021101697510.52547/rbmb.10.1.6934277870
    [Google Scholar]
  52. yaghoubi Hosseini MotlaghN.S. moradi Haghiralsadat Carboxylated graphene oxide as a nanocarrier for drug delivery of quercetin as an effective anticancer agent.Iran. Biomed. J.202226432432910.52547/ibj.359836000200
    [Google Scholar]
  53. EssaD. KondiahP.P.D. KumarP. ChoonaraY.E. Design of Chitosan-Coated, Quercetin-Loaded PLGA Nanoparticles for Enhanced PSMA-Specific Activity on LnCap Prostate Cancer Cells.Biomedicines2023114120110.3390/biomedicines1104120137189819
    [Google Scholar]
  54. ChekuriS. Isolation and anticancer activity of quercetin from Acalypha indica L. against breast cancer cell lines MCF-7 and MDA-MB-231.3 Biotech2023138289
    [Google Scholar]
  55. KarimianA. MajidiniaM. MolianiA. AlemiF. AsemiZ. YousefiB. Fazlollahpour naghibiA. The modulatory effects of two bioflavonoids, quercetin and thymoquinone on the expression levels of DNA damage and repair genes in human breast, lung and prostate cancer cell lines.Pathol. Res. Pract.202224015414310.1016/j.prp.2022.15414336347210
    [Google Scholar]
  56. ManniA. SunY.W. SchellT.D. LutsivT. ThompsonH. ChenK.M. AliagaC. ZhuJ. El-BayoumyK. Complementarity between microbiome and immunity may account for the potentiating effect of quercetin on the antitumor action of cyclophosphamide in a triple-negative breast cancer model.Pharmaceuticals20231610142210.3390/ph1610142237895893
    [Google Scholar]
  57. Sannappa GowdaN.G. ShiragannavarV.D. PuttahanumantharayappaL.D. ShivakumarA.T. DallavalasaS. BasavarajuC.G. BhatS.S. PrasadS.K. VamadevaiahR.M. MadhunapantulaS.V. SanthekadurP.K. Quercetin activates vitamin D receptor and ameliorates breast cancer induced hepatic inflammation and fibrosis.Front. Nutr.202310115863310.3389/fnut.2023.115863337153919
    [Google Scholar]
  58. ZhouB. YangY. PangX. ShiJ. JiangT. ZhengX. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer.Biomed. Pharmacother.202316511507110.1016/j.biopha.2023.11507137390710
    [Google Scholar]
  59. BallavS. RanjanA. BasuS. Partial activation of PPAR- γ by synthesized quercetin derivatives modulates TGF- β 1-induced EMT in lung cancer cells.Adv. Biol.2023710230003710.1002/adbi.202300037
    [Google Scholar]
  60. ZhangM. LuA. WangH. YangJ. Quercetin downregulates the expression of IL15 in cancer cells through DNA methylation.Eur. Rev. Med. Pharmacol. Sci.20232762580259037013776
    [Google Scholar]
  61. TangZ. WangL. ChenY. ZhengX. WangR. LiuB. ZhangS. WangH. Quercetin reverses 5-fluorouracil resistance in colon cancer cells by modulating the NRF2/HO-1 pathway.Eur. J. Histochem.2023673371910.4081/ejh.2023.371937548240
    [Google Scholar]
  62. HeydariS. The effect of 8 weeks of quercetin supplementation and intermittent exercise on gene expression of Muc5Ac, Muc4 and polyphosphate in rats with colon cancer.Sport Sci Health Res20231511322
    [Google Scholar]
  63. ElmowafyM. ShalabyK. ElkomyM.H. AlsaidanO.A. GomaaH.A.M. HendawyO.M. AbdelgawadM.A. AliH.M. AhmedY.M. El-SayK.M. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats.Drug Deliv. Transl. Res.202313102568258810.1007/s13346‑023‑01338‑337000409
    [Google Scholar]
  64. RussoM. MocciaS. LuongoD. RussoG.L. Senolytic Flavonoids enhance type-I and type-II Cell death in human radioresistant colon cancer cells through AMPK/MAPK pathway.Cancers2023159266010.3390/cancers1509266037174126
    [Google Scholar]
  65. FuW. XuL. ChenY. LinX. HaoG. LiC. LiH. ZhangZ. ChenS. YouX. LiQ. Based on network pharmacology-quercetin, a component of fuzheng yiliu decoction suppressed prostate cancer by regulating PI3K/AKT pathway.Andrologia2023202311710.1155/2023/1445953
    [Google Scholar]
  66. NingY. The effect of quercetin in the yishen tongluo jiedu recipe on the development of prostate cancer through the akt1-related CXCL12/CXCR4 pathway.Comb. Chem. High Throughput Screen.202337259219
    [Google Scholar]
  67. HaoQ. HenningS.M. MagyarC.E. SaidJ. ZhongJ. RettigM.B. VadgamaJ.V. WangP. Enhanced chemoprevention of prostate cancer by combining arctigenin with green tea and quercetin in prostate-specific phosphatase and tensin homolog knockout mice.Biomolecules202414110510.3390/biom1401010538254705
    [Google Scholar]
  68. MirzaeiA. DeyhimfarR. Azodian GhajarH. MashhadiR. NooriM. DialamehH. AghsaeifardZ. AghamirS.M.K. Quercetin can be a more reliable treatment for metastatic prostate cancer than the localized disease: An in vitro study.J. Cell. Mol. Med.202327121725173410.1111/jcmm.1778337232542
    [Google Scholar]
  69. HuM. SongH. ChenL. Quercetin acts via the G3BP1/YWHAZ axis to inhibit glycolysis and proliferation in oral squamous cell carcinoma.Toxicol. Mech. Methods202333214115010.1080/15376516.2022.210348035945655
    [Google Scholar]
  70. GaoY. LiC. XueT. LinC. HouR. XiaQ. DingD. LiJ. WangD. FengY. Quercetin mediated TET1 expression through MicroRNA-17 induced cell apoptosis in melanoma cells.Biochem. Genet.202361276277710.1007/s10528‑022‑10286‑536136257
    [Google Scholar]
  71. Rocha-BritoK.J.P. Quercetin increases mitochondrial proteins (VDAC and SDH) and downmodulates AXL and PIM-1 tyrosine kinase receptors in NRAS melanoma cells.Biol Chem202140330261
    [Google Scholar]
  72. LiuW. ChenD. SuJ. ZhengR. KongR. ZhuB. DongH. LiY. Quercetin induced HepG2 cells apoptosis through ATM/JNK/STAT3 signaling pathways.Biocell202347118719410.32604/biocell.2022.023030
    [Google Scholar]
  73. GuanH. ZhangW. LiuH. JiangY. LiF. WuM. WaterhouseG.I.N. Sun-WaterhouseD. LiD. Quercetin induces apoptosis in HepG2 cells via directly interacting with YY1 to disrupt YY1-p53 interaction.Metabolites202313222910.3390/metabo1302022936837850
    [Google Scholar]
  74. AslaniF. AfarinR. Dehghani MadisehN. Beheshti NasabH. MonjeziS. IgderS. RashidiM. Potentiation of apoptotic effect of combination of etoposide and quercetin on HepG2 liver cancer cells.Hepat. Mon.2023231e13619410.5812/hepatmon‑136194
    [Google Scholar]
  75. YishaT. Study on the anti-tumor effects of the key component of traditional Chinese medicine nightshade in the treatment of human gastric cancer (SGC7901 cell line).2023Available From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12603/126030K/Study-on-the-anti-tumor-effects-of-the-key-component/10.1117/12.2673679.full#_=_
  76. ChenM. DuanC. PanJ. Quercetin increases doxorubicin-induced apoptosis through oxidative DNA damage in KATO III gastric cancer cells.Iran. Red Crescent Med. J.2021234
    [Google Scholar]
  77. ChanC.Y. HongS.C. ChangC.M. ChenY.H. LiaoP.C. HuangC.Y. Oral squamous cell carcinoma cells with acquired resistance to erlotinib are sensitive to anti-cancer effect of quercetin via pyruvate kinase M2 (PKM2).Cells202312117910.3390/cells1201017936611972
    [Google Scholar]
  78. SonH.K. KimD. Quercetin induces cell cycle arrest and apoptosis in YD10B and YD38 oral squamous cell carcinoma cells.Asian Pac. J. Cancer Prev.202324128328910.31557/APJCP.2023.24.1.28336708578
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501292466240627050638
Loading
/content/journals/cdt/10.2174/0113894501292466240627050638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test