Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Diabetes is a metabolic disorder caused by high glucose levels, leading to serious threats such as diabetic neuropathy and cardiovascular diseases. One of the most reliable measures for controlling postprandial hyperglycemia is to reduce the glucose level by inhibiting enzymes in the digestive system, such as Alpha-Glucosidase and Alpha-Amylase. Here, we have investigated the use of inhibitors to inhibit carbohydrate metabolism in order to restrict glucose levels in diabetic patients. Acarbose, Voglibose, and Miglitol are three inhibitors approved by the FDA that efficiently inhibit these two enzymes and thereby minimising hyperglycemia but are also significantly helpful in reducing the risk of cardiovascular effects. We also provide insight into the other known inhibitors currently available in the market. The adverse effects associated with other inhibitors emphasise the demand for the latest screening and validation in the development of potent inhibitors with greater efficacy and safety for the treatment of Type 2 diabetes. The recent findings suggest that Alpha-Glucosidase and Alpha-Amylase play a major role in carbohydrate metabolism and triggering the increase in glucose levels. This review provides the latest scientific literature findings related to these two enzymes as well as the role of primary and secondary inhibitors as potential candidates. Moreover, this review elaborates the framework on the mechanism of action, different plant sources of extraction of these enzymes, as well as kinetic assay of inhibitors and their interaction that can be used in future prospects to develop potential leads to combat Type 2 diabetes.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501313365240722100902
2024-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. IsmailL. MaterwalaH. Al KaabiJ. Association of risk factors with type 2 diabetes: A systematic review.Comput. Struct. Biotechnol. J.2021191759178510.1016/j.csbj.2021.03.00333897980
    [Google Scholar]
  2. UsmanB. SharmaN. SatijaS. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: An update.Curr. Pharm. Des.201925232510252510.2174/138161282566619071710454731333110
    [Google Scholar]
  3. ProençaC. RibeiroD. FreitasM. FernandesE. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review.Crit. Rev. Food Sci. Nutr.202262123137320710.1080/10408398.2020.186275533427491
    [Google Scholar]
  4. PoulsonB.G. SzczepskiK. LachowiczJ.I. JaremkoL. EmwasA.H. JaremkoM. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations.RSC Advances202010121522710.1039/C9RA09350H35492549
    [Google Scholar]
  5. DuarteC.M. JaremkoŁ. JaremkoM. Hypothesis: Potentially systemic impacts of elevated CO2 on the human proteome and health.Front. Public Health2020854332210.3389/fpubh.2020.54332233304871
    [Google Scholar]
  6. EmwasA.H. AlghrablyM. DhahriM. Living with the enemy: from protein-misfolding pathologies we know, to those we want to know.Ageing Res. Rev.20217010139110.1016/j.arr.2021.10139134119687
    [Google Scholar]
  7. Roig-ZamboniV. Cobucci-PonzanoB. IaconoR. Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease.Nat. Commun.201781111110.1038/s41467‑017‑01263‑329061980
    [Google Scholar]
  8. SimL. Quezada-CalvilloR. SterchiE.E. NicholsB.L. RoseD.R. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity.J. Mol. Biol.2008375378279210.1016/j.jmb.2007.10.06918036614
    [Google Scholar]
  9. DhitalS. WarrenF.J. ButterworthP.J. EllisP.R. GidleyM.J. Mechanisms of starch digestion by α -amylase—Structural basis for kinetic properties.Crit. Rev. Food Sci. Nutr.201757587589210.1080/10408398.2014.92204325751598
    [Google Scholar]
  10. MaurusR. BegumA. WilliamsL.K. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity.Biochemistry200847113332334410.1021/bi701652t18284212
    [Google Scholar]
  11. NawazM. TahaM. QureshiF. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives.BMC Chem.20201414310.1186/s13065‑020‑00695‑132685927
    [Google Scholar]
  12. MehtaA. ZitzmannN. RuddP.M. BlockT.M. DwekR.A. α‐Glucosidase inhibitors as potential broad based anti‐viral agents.FEBS Lett.19984301-2172210.1016/S0014‑5793(98)00525‑09678587
    [Google Scholar]
  13. KazeemM.I. AshafaA.O.T. Kinetics of inhibition of carbohydrate-metabolizing enzymes and mitigation of oxidative stress by Eucomis humilis Baker bulb.Beni. Suef Univ. J. Basic Appl. Sci.201761576310.1016/j.bjbas.2017.01.002
    [Google Scholar]
  14. GhomiM.K. DastyaftehN. MontazerM.N. Synthesis, in vitro potency of inhibition, enzyme kinetics and in silico studies of quinoline-based α-glucosidase inhibitors.Sci. Rep.202414150110.1038/s41598‑023‑50711‑238177164
    [Google Scholar]
  15. HossainU. DasA.K. GhoshS. SilP.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications.Food Chem. Toxicol.202014511173810.1016/j.fct.2020.11173832916220
    [Google Scholar]
  16. DerosaG. MaffioliP. D’AngeloA. FogariE. BianchiL. CiceroA.F.G. RETRACTED: Acarbose on insulin resistance after an oral fat load: A double-blind, placebo controlled study.J. Diabetes Complications201125425826610.1016/j.jdiacomp.2011.01.00321367625
    [Google Scholar]
  17. TsunodaT. SamadiA. BuradeS. MahmudT. Complete biosynthetic pathway to the antidiabetic drug acarbose.Nat. Commun.2022131345510.1038/s41467‑022‑31232‑435705566
    [Google Scholar]
  18. SalvatoreT. GiuglianoD. Pharmacokinetic-pharmacodynamic relationships of Acarbose.Clin. Pharmacokinet.19963029410610.2165/00003088‑199630020‑000028906894
    [Google Scholar]
  19. KakuK. Efficacy of voglibose in type 2 diabetes.Expert Opin. Pharmacother.20141581181119010.1517/14656566.2014.91895624798092
    [Google Scholar]
  20. DabhiA.S. BhattN.R. ShahM.J. Voglibose: An alpha glucosidase inhibitor.J. Clin. Diagn. Res.20137123023302724551718
    [Google Scholar]
  21. YamaguchiM. SajiT. MitaS. Pharmacokinetic and pharmacodynamic interaction of vildagliptin and voglibose in Japanese patients with Type 2 diabetes.Int. J. Clin. Pharmacol. Ther.201351864165110.5414/CP20190223782587
    [Google Scholar]
  22. LeeM.Y. ChoiD.S. LeeM.K. Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: randomized, parallel, open-label, active-controlled study.J. Korean Med. Sci.2014291909710.3346/jkms.2014.29.1.9024431911
    [Google Scholar]
  23. ScottL.J. SpencerC.M. Miglitol.Drugs200059352154910.2165/00003495‑200059030‑0001210776834
    [Google Scholar]
  24. CampbellL.K. BakerD.E. CampbellR.K. Miglitol: Assessment of its role in the treatment of patients with diabetes mellitus.Ann. Pharmacother.200034111291130110.1345/aph.1926911098345
    [Google Scholar]
  25. SugimotoS. NakajimaH. KosakaK. HosoiH. Review: Miglitol has potential as a therapeutic drug against obesity.Nutr. Metab.20151215110.1186/s12986‑015‑0048‑826628904
    [Google Scholar]
  26. AhrH.J. BobergM. BrendelE. KrauseH.P. SteinkeW. Pharmacokinetics of miglitol. Absorption, distribution, metabolism, and excretion following administration to rats, dogs, and man.Arzneimittelforschung19974767347459239452
    [Google Scholar]
  27. AnsariM.A. ChauhanW. ShoaibS. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions.Int. J. Obes.202347121179119910.1038/s41366‑023‑01369‑337696926
    [Google Scholar]
  28. DeaconC.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus.Nat. Rev. Endocrinol.2020161164265310.1038/s41574‑020‑0399‑832929230
    [Google Scholar]
  29. ThornberryN.A. GallwitzB. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4).Best Pract. Res. Clin. Endocrinol. Metab.200923447948610.1016/j.beem.2009.03.00419748065
    [Google Scholar]
  30. AliH. HoughtonP.J. SoumyanathA. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.J. Ethnopharmacol.2006107344945510.1016/j.jep.2006.04.00416678367
    [Google Scholar]
  31. ToulisK.A. NirantharakumarK. PourzitakiC. BarnettA.H. TahraniA.A. Glucokinase activators for type 2 diabetes: challenges and future developments.Drugs202080546747510.1007/s40265‑020‑01278‑z32162273
    [Google Scholar]
  32. AzizK.M.A. Management of type-1 and type-2 diabetes by insulin injections in diabetology clinics a scientific research review.Recent Pat. Endocr. Metab. Immune Drug Discov.20126214817010.2174/18722141280060460822559241
    [Google Scholar]
  33. TanK. TesarC. WiltonR. JedrzejczakR.P. JoachimiakA. Interaction of antidiabetic α‐glucosidase inhibitors and gut bacteria α‐glucosidase.Protein Sci.20182781498150810.1002/pro.344429761590
    [Google Scholar]
  34. GongL. FengD. WangT. RenY. LiuY. WangJ. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia.Food Sci. Nutr.20208126320633710.1002/fsn3.198733312519
    [Google Scholar]
  35. AhmadG. HosseinF. FaribaS-f. MansourM. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase.Iran. J. Basic Med. Sci.20081119
    [Google Scholar]
  36. BarberE. HoughtonM.J. WilliamsonG. Flavonoids as human intestinal α-glucosidase inhibitors.Foods2021108193910.3390/foods1008193934441720
    [Google Scholar]
  37. BischoffH. The mechanism of alpha-glucosidase inhibition in the management of diabetes.Clin. Invest. Med.19951843033118549017
    [Google Scholar]
  38. RasouliH. Hosseini-GhazviniS.M.B. AdibiH. KhodarahmiR. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes.Food Funct.2017851942195410.1039/C7FO00220C28470323
    [Google Scholar]
  39. KashtohH. BaekK.H. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes.Plants20221120272210.3390/plants1120272236297746
    [Google Scholar]
  40. SebastianiG. CeccarelliE. CastagnaM.G. DottaF. G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives.Best Pract. Res. Clin. Endocrinol. Metab.201832220121310.1016/j.beem.2018.02.00529678286
    [Google Scholar]
  41. ZhangL.B. ZhangL. DongS.Y. SessaE.B. GaoX.F. EbiharaA. Molecular circumscription and major evolutionary lineages of the fern genus Dryopteris (Dryopteridaceae).BMC Evol. Biol.201212118010.1186/1471‑2148‑12‑18022971160
    [Google Scholar]
  42. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.1000125249787
    [Google Scholar]
  43. AfifiA.F. KamelE.M. KhalilA.A. FoaadM.A. FawziandE.M. HousenyM. Purification and characterization of a-amylase from penicilliumolsonii under the effect of some antioxidant vitamins.Glob J BiotechnolBiochem200831142
    [Google Scholar]
  44. LinM.Z. ChaiW.M. ZhengY.L. HuangQ. Ou-YangC. Inhibitory kinetics and mechanism of rifampicin on α-glucosidase: Insights from spectroscopic and molecular docking analyses.Int. J. Biol. Macromol.20191221244125210.1016/j.ijbiomac.2018.09.07730227201
    [Google Scholar]
  45. ProençaC. FreitasM. RibeiroD. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study.J. Enzyme Inhib. Med. Chem.20173211216122810.1080/14756366.2017.136850328933564
    [Google Scholar]
  46. AhmedS. AliM. RumaR. Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes.Molecules20222714452610.3390/molecules2714452635889399
    [Google Scholar]
  47. KhanF. SrivastavaV. KumarA. Epitope based peptide prediction from proteome of enterotoxigenic E.coli.Int. J. Pept. Res. Ther.201824232333610.1007/s10989‑017‑9617‑1
    [Google Scholar]
  48. KijewskaM. SharfalddinA.A. JaremkoŁ. Lossen rearrangement of p-toluenesulfonates of n-oxyimides in basic condition, theoretical study, and molecular docking.Front Chem.2021966253310.3389/fchem.2021.66253333937199
    [Google Scholar]
  49. IrajiA. Shareghi-BrojeniD. MojtabaviS. FaramarziM.A. AkbarzadehT. SaeediM. Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: A new class of α-glucosidase inhibitors.Sci. Rep.2022121864710.1038/s41598‑022‑11771‑y35606520
    [Google Scholar]
  50. MoorthyN.S.H.N. RamosM.J. FernandesP.A. Studies on α-glucosidase inhibitors development: magic molecules for the treatment of carbohydrate mediated diseases.Mini Rev. Med. Chem.201212871372010.2174/13895571280126483722512574
    [Google Scholar]
  51. KhanF. KumarA. An integrative docking and simulation-based approach towards the development of epitope-based vaccine against enterotoxigenic Escherichia coli.Netw. Model. Anal. Health Inform. Bioinform.20211011110.1007/s13721‑021‑00287‑633619446
    [Google Scholar]
  52. KhanF. SrivastavaV. KumarA. Computational identification and characterization of potential t-cell epitope for the utility of vaccine design against enterotoxigenic Escherichia coli.Int. J. Pept. Res. Ther.201925128930210.1007/s10989‑018‑9671‑3
    [Google Scholar]
  53. ZhangL. WangP. YangZ. Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques.Food Hydrocoll.202010110545510.1016/j.foodhyd.2019.105455
    [Google Scholar]
  54. NiM. HuX. GongD. ZhangG. Inhibitory mechanism of vitexin on α-glucosidase and its synergy with acarbose.Food Hydrocoll.202010510582410.1016/j.foodhyd.2020.105824
    [Google Scholar]
  55. ChenS. LinB. GuJ. Binding interaction of betulinic acid to α-glucosidase and its alleviation on postprandial hyperglycemia.Molecules2022278251710.3390/molecules2708251735458714
    [Google Scholar]
  56. MuhammedM.T. Aki-YalcinE. Pharmacophore modeling in drug discovery: methodology and current status.J Turk Chem Soc Sect A: Chem20218374976210.18596/jotcsa.927426
    [Google Scholar]
  57. WolberG. LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.J. Chem. Inf. Model.200545116016910.1021/ci049885e15667141
    [Google Scholar]
  58. Gulçinİ. TaslimiP. Sulfonamide inhibitors: A patent review 2013-present.Expert Opin. Ther. Pat.201828754154910.1080/13543776.2018.148740029886770
    [Google Scholar]
  59. PatilS.M. MartizR.M. SatishA.M. Discovery of novel coumarin derivatives as potential dual inhibitors against α-glucosidase and α-amylase for the management of post-prandial hyperglycemia via molecular modelling approaches.Molecules20222712388810.3390/molecules2712388835745030
    [Google Scholar]
  60. MauryaA.K. MulpuruV. MishraN. Discovery of novel coumarin analogs against the α-glucosidase protein target of diabetes mellitus: pharmacophore-based QSAR, docking, and molecular dynamics simulation studies.ACS Omega2020550322343224910.1021/acsomega.0c0387133376861
    [Google Scholar]
  61. ChenafaH. MesliF. DaoudI. AchiriR. GhalemS. NeghraA. In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling.J. Biomol. Struct. Dyn.202240146308632910.1080/07391102.2021.188234033554773
    [Google Scholar]
  62. El KhatabiK. El-MernissiR. AanouzI. Identification of novel acetylcholinesterase inhibitors through 3D-QSAR, molecular docking, and molecular dynamics simulation targeting Alzheimer’s disease.J. Mol. Model.2021271030210.1007/s00894‑021‑04928‑534581863
    [Google Scholar]
  63. SharmaS. RavichandranV. JainP.K. MouryaV.K. AgrawalR.K. Prediction of caspase-3 inhibitory activity of 1,3-dioxo-4-methyl-2,3-dihydro-1h-pyrrolo[3,4-c] quinolines: QSAR study.J. Enzyme Inhib. Med. Chem.200823342443110.1080/1475636070165247618569350
    [Google Scholar]
  64. KirstgenM. MüllerS.F. LowjagaK.A.A.T. Identification of Novel HBV/HDV entry inhibitors by pharmacophore- and QSAR-guided virtual screening.Viruses2021138148910.3390/v1308148934452354
    [Google Scholar]
  65. Abu-OdehA. ShehadehM. SuaifanG.A.R.Y. KaramehN. Abdel RahmanD. KandilY. In Vitro and In Vivo antidiabetic activity, phenolic content and microscopical characterization of Terfezia claveryi.Molecules20222715484310.3390/molecules2715484335956793
    [Google Scholar]
  66. DongQ. HuN. YueH. WangH. Inhibitory activity and mechanism investigation of hypericin as a novel α-glucosidase inhibitor.Molecules20212615456610.3390/molecules2615456634361714
    [Google Scholar]
  67. TundisR. LoizzoM.R. MenichiniF. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update.Mini Rev. Med. Chem.201010431533110.2174/13895571079133100720470247
    [Google Scholar]
  68. KarA. ChoudharyB.K. BandyopadhyayN.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats.J. Ethnopharmacol.200384110510810.1016/S0378‑8741(02)00144‑712499084
    [Google Scholar]
  69. Adhikari Bikash Roles of alkaloids from medicinal plants in the management of diabetes mellitus.J. Chem.202120212691525
    [Google Scholar]
  70. DeyA. MukherjeeA. Plant-derived alkaloids: A promising window for neuroprotective drug discovery. Discovery and Development of Neuroprotective Agents from Natural Products.Amsterdam, The NetherlandsElsevier2017273320
    [Google Scholar]
  71. ĆorkovićI. Gašo-SokačD. PichlerA. ŠimunovićJ. KopjarM. Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase.Life20221211169210.3390/life1211169236362847
    [Google Scholar]
  72. KimY. KeoghJ. CliftonP. Polyphenols and glycemic control.Nutrients2016811710.3390/nu801001726742071
    [Google Scholar]
  73. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  74. KimK. TsaoR. YangR. CuiS. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions.Food Chem.200695346647310.1016/j.foodchem.2005.01.032
    [Google Scholar]
  75. ThollD. Biosynthesis and biological functions of terpenoids in plants.Adv. Biochem. Eng. Biotechnol.20151486310610.1007/10_2014_29525583224
    [Google Scholar]
  76. AryaeianN. Khorshidi SedehiS. ArablouT. Polyphenols and their effects on diabetes management: A review.Med. J. Islam. Repub. Iran201731188689210.14196/mjiri.31.13429951434
    [Google Scholar]
  77. HodaM. HemaiswaryaS. DobleM. Pharmacokinetics and Pharmacodynamics of Polyphenols.Role of Phenolic Phytochemicals in Diabetes Management.SingaporeSpringer201915917310.1007/978‑981‑13‑8997‑9_7
    [Google Scholar]
  78. XiaoJ.B. HöggerP. Dietary polyphenols and type 2 diabetes: current insights and future perspectives.Curr. Med. Chem.2014221233810.2174/092986732166614070613080725005188
    [Google Scholar]
  79. AliZ RehmanW RasheedL New 1,3,4-thiadiazole derivatives as α-glucosidase inhibitors: design, synthesis, DFT, ADME, and In Vitro enzymatic studies. ACS Omega202497acsomega.3c05854.10.1021/acsomega.3c0585438405480
    [Google Scholar]
  80. LiuY. WangR. RenC. Two myricetin-derived flavonols from Morella rubra Leaves as Potent α-glucosidase inhibitors and structure-activity relationship study by computational chemistry.Oxid. Med. Cell. Longev.2022202211610.1155/2022/901294335498126
    [Google Scholar]
  81. PagánJ.A. TangumaJ. Health care affordability and complementary and alternative medicine utilization by adults with diabetes.Diabetes Care20073082030203110.2337/dc07‑043317519426
    [Google Scholar]
  82. AdinorteyC.A. KwarkoG.B. KorantengR. Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase.Curr. Issues Mol. Biol.202244296398710.3390/cimb4402006435723349
    [Google Scholar]
  83. HostalekU. GwiltM. HildemannS. Therapeutic use of metformin in prediabetes and diabetes prevention.Drugs201575101071109410.1007/s40265‑015‑0416‑826059289
    [Google Scholar]
  84. BrownE. WildingJ.P.H. BarberT.M. AlamU. CuthbertsonD.J. Weight loss variability with SGLT2 inhibitors and GLP‐1 receptor agonists in type 2 diabetes mellitus and obesity: Mechanistic possibilities.Obes. Rev.201920681682810.1111/obr.1284130972878
    [Google Scholar]
  85. SolaD. RossiL. SchiancaG.P.C. State of the art paper Sulfonylureas and their use in clinical practice.Arch. Med. Sci.20154484084810.5114/aoms.2015.5330426322096
    [Google Scholar]
  86. Guardado-MendozaR. PriolettaA. Jiménez-CejaL.M. SosaleA. FolliF. State of the art paper The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus.Arch. Med. Sci.20135593694310.5114/aoms.2013.3499124273582
    [Google Scholar]
  87. OlmsteadR.G. ZjhraM.L. LohmannL.G. GroseS.O. EckertA.J. A molecular phylogeny and classification of Bignoniaceae.Am. J. Bot.20099691731174310.3732/ajb.090000421622359
    [Google Scholar]
  88. TaibM. RezzakY. BouyazzaL. LyoussiB. Medicinal uses, phytochemistry, and pharmacological activities of Quercus species.Evid. Based Complement. Alternat. Med.2020202012010.1155/2020/192068332802116
    [Google Scholar]
  89. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑134421444
    [Google Scholar]
  90. GaoZ. AliZ. ZhaoJ. Phytochemical investigation of the rhizomes of dryopteris crassirhizoma.Phytochem. Lett.20081418819010.1016/j.phytol.2008.09.005
    [Google Scholar]
  91. HuY.J. LanQ. SuB.J. ChenZ.F. LiangD. Structurally diverse abietane-type Diterpenoids from the aerial parts of Gaultheria leucocarpa var. yunnanensis.Phytochemistry202220111325510.1016/j.phytochem.2022.11325535636565
    [Google Scholar]
  92. NayakaN.M.D.M.W. SasadaraM.M.V. SanjayaD.A. Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications.Molecules2021268232110.3390/molecules2608232133923576
    [Google Scholar]
  93. BiswasP. AnandU. SahaS.C. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes.J. Cell. Mol. Med.202226113083311910.1111/jcmm.1732335502487
    [Google Scholar]
  94. GhazaliN.A. ElmyA. YuenL.C. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat.J. Ayurveda Integr. Med.20167419820810.1016/j.jaim.2016.08.00827889427
    [Google Scholar]
  95. PatilS.M. ShirahattiP.S. RamuR. Azadirachta indica A. Juss (neem) against diabetes mellitus: A critical review on its phytochemistry, pharmacology, and toxicology.J. Pharm. Pharmacol.202274568171010.1093/jpp/rgab09834562010
    [Google Scholar]
  96. SatyanarayanaK. SravanthiK. ShakerI.A. PonnulakshmiR. Molecular approach to identify antidiabetic potential of Azadirachta indica.J. Ayurveda Integr. Med.20156316517410.4103/0975‑9476.15795026604551
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501313365240722100902
Loading
/content/journals/cdt/10.2174/0113894501313365240722100902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test