Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

An important sensation that warns of potential harm to a specific area of the body is pain. The prevalence of pain-related conditions globally is a significant and growing public health issue. Chronic pain affects an estimated 1.5 billion people worldwide, with prevalence rates varying by region and demographic factors. Along with diabetes, cardiovascular disease, and cancer, pain is among the most frequent medical diseases. Opioid analgesics are the mainstay of current pain therapies, which are ineffective. Opioid addiction and its potentially fatal side effects necessitate novel treatment strategies. Nanotechnology offers potential advantages in pain management by enabling targeted drug delivery, which can enhance the efficacy and reduce the side effects of analgesic medications. Additionally, nanoparticles can be designed to release drugs in a controlled manner, improving pain relief duration and consistency. This approach also allows for the delivery of therapeutics across biological barriers, potentially enhancing treatment outcomes for chronic pain conditions. Nanomedicine enables sensitive and focused treatments with fewer side effects than existing clinical pain medicines; it is worth exploring as a potential solution to these problems. Furthermore, medication delivery systems that use nanomaterials are being used to treat pain. Whether it's the distribution of a single medication or a combination of therapies, this review seeks to summarise the ways in which drug delivery systems based on nanomaterials can be utilised to successfully treat and alleviate pain. For the purpose of writing this paper, we consulted several online libraries, including Pubmed, Science Direct, Pubmed Prime, and the Cochrane Library, to gather fresh and up-to-date material. This overview delves into the ins and outs of pain's pathophysiology, the present state of pain treatment, potential new pain treatment targets, and the various initiatives that have been launched and are still in the works to address pain with nanotechnology. Recent developments in nanomaterials-based scavenging, gene therapy for pain aetiology, and nanoparticle-based medicine delivery for side effect reduction are highlighted. Analgesics have been further covered in our discussion on FDA-approved pharmaceuticals and clinical advancements.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501315521240725065617
2024-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. RaffaeliW. ArnaudoE. Pain as a disease: An overview.J. Pain Res.2017102003200810.2147/JPR.S13886428860855
    [Google Scholar]
  2. a NicolsonK.P. SmithB.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies.Br J Anaesth20191232e273e28310.1016/j.bja.2019.03.023310798362024
    [Google Scholar]
  3. b Queremel MilaniDA. DavisDD. Pain Management Medications.2024StatPearlsTreasure Island (FL): StatPearls Publishing
    [Google Scholar]
  4. RikardS.M. StrahanA.E. SchmitK.M. GuyG.P.Jr Chronic pain among adults united states, 2019–2021.MMWR Morb. Mortal. Wkly. Rep.2023721537938510.15585/mmwr.mm7215a137053114
    [Google Scholar]
  5. BlancoC. WileyT.R.A. LloydJ.J. LopezM.F. VolkowN.D. America’s opioid crisis: The need for an integrated public health approach.Transl. Psychiatry202010116710.1038/s41398‑020‑0847‑132522999
    [Google Scholar]
  6. BhansaliD. TengS.L. LeeC.S. SchmidtB.L. BunnettN.W. LeongK.W. Nanotechnology for pain management: Current and future therapeutic interventions.Nano Today20213910122310.1016/j.nantod.2021.10122334899962
    [Google Scholar]
  7. MedaR.T. NuguruS.P. RachakondaS. SripathiS. KhanM.I. PatelN. Chronic pain-induced depression: A review of prevalence and management.Cureus2022148e2841610.7759/cureus.2841636171845
    [Google Scholar]
  8. ZajacovaA. Grol-ProkopczykH. ZimmerZ. Sociology of chronic pain.J. Health Soc. Behav.202162330231710.1177/0022146521102596234283649
    [Google Scholar]
  9. ZhuY. YaoY. KuangR. ChenZ. DuZ. QuS. Global research trends of nanotechnology for pain management.Front. Bioeng. Biotechnol.202311124966710.3389/fbioe.2023.124966737701493
    [Google Scholar]
  10. BabaieS. TaghvimiA. HongJ.H. HamishehkarH. AnS. KimK.H. Recent advances in pain management based on nanoparticle technologies.J. Nanobiotechnology202220129010.1186/s12951‑022‑01473‑y35717383
    [Google Scholar]
  11. XuY. DongX. XuH. JiaoP. ZhaoL.X. SuG. Nanomaterial-based drug delivery systems for pain treatment and relief: From the delivery of a single drug to co-delivery of multiple therapeutics.Pharmaceutics2023159230910.3390/pharmaceutics1509230937765278
    [Google Scholar]
  12. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  13. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x37919282
    [Google Scholar]
  14. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  15. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano1303057436770535
    [Google Scholar]
  16. AtaideJ.A. CocoJ.C. dos SantosÉ.M. Beraldo-AraujoV. SilvaJ.R.A. de CastroK.C. LopesA.M. FilipczakN. YalamartyS.S.K. TorchilinV.P. MazzolaP.G. Co-encapsulation of drugs for topical application—a review.Molecules2023283144910.3390/molecules2803144936771111
    [Google Scholar]
  17. ChenJ. JinT. ZhangH. Nanotechnology in chronic pain relief.Front. Bioeng. Biotechnol.2020868210.3389/fbioe.2020.0068232637406
    [Google Scholar]
  18. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: A brief review.Global Health Journal202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  19. ForteG. GiuffridaV. ScuderiA. PazzagliaM. Future treatment of neuropathic pain in spinal cord injury: The challenges of nanomedicine, supplements or opportunities?Biomedicines2022106137310.3390/biomedicines1006137335740395
    [Google Scholar]
  20. SneddonL.U. Comparative physiology of nociception and pain.Physiology2018331637310.1152/physiol.00022.201729212893
    [Google Scholar]
  21. MearsL. MearsJ. The pathophysiology, assessment, and management of acute pain.Br. J. Nurs.2023322586510.12968/bjon.2023.32.2.5836715521
    [Google Scholar]
  22. KangY. TrewernL. JackmanJ. McCartneyD. SoniA. Chronic pain: Definitions and diagnosis.BMJ2023381e07603610.1136/bmj‑2023‑07603637369384
    [Google Scholar]
  23. Classification of chronic pain, descriptions of chronic pain syndromes and definitions of pain terms, prepared by the international association for the study of pain, subcommittee on taxonomy.Pain1986Suppl. 31226
    [Google Scholar]
  24. GosselinR.D. SuterM.R. JiR.R. DecosterdI. Glial cells and chronic pain.Neuroscientist201016551953110.1177/107385840936082220581331
    [Google Scholar]
  25. PremkumarL. SikandP. TRPV1: A target for next generation analgesics.Curr. Neuropharmacol.20086215116310.2174/15701590878453388819305794
    [Google Scholar]
  26. HabibA.M. WoodJ.N. CoxJ.J. Sodium channels and pain.Handb. Exp. Pharmacol.2015227395610.1007/978‑3‑662‑46450‑2_325846613
    [Google Scholar]
  27. KollerG. SchwarzerA. HalfterK. SoykaM. Pain management in opioid maintenance treatment.Expert Opin. Pharmacother.201920161993200510.1080/14656566.2019.165227031418602
    [Google Scholar]
  28. De PintoM. CahanaA. Medical management of acute pain in patients with chronic pain.Expert Rev. Neurother.201212111325133810.1586/ern.12.12323234394
    [Google Scholar]
  29. GhanemC.I. PérezM.J. ManautouJ.E. MottinoA.D. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity.Pharmacol. Res.201610911913110.1016/j.phrs.2016.02.02026921661
    [Google Scholar]
  30. KarandikarY. BelsareP. PanditraoA. Effect of drugs modulating serotonergic system on the analgesic action of paracetamol in mice.Indian J. Pharmacol.201648328128510.4103/0253‑7613.18287427298498
    [Google Scholar]
  31. YoonE. BabarA. ChoudharyM. KutnerM. PyrsopoulosN. Acetaminopheninduced hepatotoxicity: A comprehensive update.J. Clin. Transl. Hepatol.20164213114227350943
    [Google Scholar]
  32. SindrupS.H. OttoM. FinnerupN.B. JensenT.S. Antidepressants in the treatment of neuropathic pain.Basic Clin. Pharmacol. Toxicol.200596639940910.1111/j.1742‑7843.2005.pto_96696601.x15910402
    [Google Scholar]
  33. LunnM.P.T. HughesR.A.C. WiffenP.J. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia.Cochrane Libr.2014201510CD00711510.1002/14651858.CD007115.pub324385423
    [Google Scholar]
  34. O’NeillJ. BrockC. OlesenA.E. AndresenT. NilssonM. DickensonA.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain.Pharmacol. Rev.201264493997110.1124/pr.112.00616323023032
    [Google Scholar]
  35. VyveyM. Steroids as pain relief adjuvants.Can. Fam. Physician2010561212951297, e41521156893
    [Google Scholar]
  36. MemişD. TuranA. KaramanlioğluB. PamukçuZ. KurtI. Adding dexmedetomidine to lidocaine for intravenous regional anesthesia.Anesth. Analg.200498383584014980948
    [Google Scholar]
  37. Calasans-MaiaJ.A. Zapata-SudoG. SudoR.T. Dexmedetomidine prolongs spinal anaesthesia induced by levobupivacaine 0.5% in guinea-pigs.J. Pharm. Pharmacol.201057111415142010.1211/jpp.57.11.000616259773
    [Google Scholar]
  38. KanaziG.E. AouadM.T. Jabbour-KhouryS.I. Al JazzarM.D. AlameddineM.M. Al-YamanR. BulbulM. BarakaA.S. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block.Acta Anaesthesiol. Scand.200650222222710.1111/j.1399‑6576.2006.00919.x16430546
    [Google Scholar]
  39. YoshitomiT. KohjitaniA. MaedaS. HiguchiH. ShimadaM. MiyawakiT. Dexmedetomidine enhances the local anesthetic action of lidocaine via an alpha-2A adrenoceptor.Anesth. Analg.200810719610110.1213/ane.0b013e318176be7318635472
    [Google Scholar]
  40. RehniA.K. JaggiA.S. SinghN. Opioid withdrawal syndrome: Emerging concepts and novel therapeutic targets.CNS Neurol. Disord. Drug Targets201312111212510.2174/187152731131201001723244430
    [Google Scholar]
  41. CorderG. CastroD.C. BruchasM.R. ScherrerG. Endogenous and exogenous opioids in pain.Annu. Rev. Neurosci.201841145347310.1146/annurev‑neuro‑080317‑06152229852083
    [Google Scholar]
  42. KiyatkinE.A. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl.Neuropharmacology201915121922610.1016/j.neuropharm.2019.02.00830735692
    [Google Scholar]
  43. KhademiH. KamangarF. BrennanP. MalekzadehR. Opioid therapy and its side effects: A review.Arch. Iran Med.2016191287087627998163
    [Google Scholar]
  44. Del VecchioG. SpahnV. SteinC. Novel opioid analgesics and side effects.ACS Chem. Neurosci.2017881638164010.1021/acschemneuro.7b0019528603962
    [Google Scholar]
  45. SkolnickP. The opioid epidemic: Crisis and solutions.Annu. Rev. Pharmacol. Toxicol.201858114315910.1146/annurev‑pharmtox‑010617‑05253428968188
    [Google Scholar]
  46. HayekS.M. ShahA. Nerve blocks for chronic pain.Neurosurg. Clin. N. Am.201425480981710.1016/j.nec.2014.07.00625240668
    [Google Scholar]
  47. AguirreJ. Del MoralA. CoboI. BorgeatA. BlumenthalS. The role of continuous peripheral nerve blocks.Anesthesiol. Res. Pract.2012201212010.1155/2012/56087922761615
    [Google Scholar]
  48. LeonardG. GoffauxP. MarchandS. Deciphering the role of endogenous opioids in high-frequency TENS using low and high doses of naloxone.Pain2010151121521910.1016/j.pain.2010.07.01220728275
    [Google Scholar]
  49. WolterT. Spinal cord stimulation for neuropathic pain: Current perspectives.J. Pain Res.2014765166310.2147/JPR.S3758925429237
    [Google Scholar]
  50. AlmeidaJ.P.M. ChenA.L. FosterA. DrezekR. in vivo biodistribution of nanoparticles.Nanomedicine20116581583510.2217/nnm.11.7921793674
    [Google Scholar]
  51. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  52. ChenD. QuX. ShaoJ. WangW. DongX. Anti-vascular nano agents: A promising approach for cancer treatment.J. Mater. Chem. B Mater. Biol. Med.20208152990300410.1039/C9TB02957E32211649
    [Google Scholar]
  53. ZehraM. ZubairiW. HasanA. ButtH. RamzanA. AzamM. MehmoodA. FalahatiM. ChaudhryA.A. RehmanI.U. YarM. Oxygen generating polymeric nano fbers that stimulate angiogenesis and show efcient wound healing in a diabetic wound model.Int. J. Nanomedicine2020153511352210.2147/IJN.S24891132547010
    [Google Scholar]
  54. PretoriusD. SerpooshanV. ZhangJ. Nano-medicine in the cardiovascular system.Front. Pharmacol.20211264018210.3389/fphar.2021.64018233746761
    [Google Scholar]
  55. GopalanD. PandeyA. AlexA.T. KalthurG. PandeyS. UdupaN. MutalikS. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers.Nanotechnology2021321414200210.1088/1361‑6528/abcdcb33238254
    [Google Scholar]
  56. García-PardoJ. NovioF. NadorF. CavaliereI. Suárez-GarcíaS. Lope-PiedrafitaS. CandiotaA.P. Romero-GimenezJ. Rodríguez-GalvánB. BovéJ. VilaM. LorenzoJ. Ruiz-MolinaD. LopePiedraftaS. CandiotaAP. Romero-GimenezJ. Rodríguez-GalvánB. BovéJ. Bioinspired theranostic coordination polymer nanoparticles for intranasal dopamine replacement in parkinson’s disease.ACS Nano20211558592860910.1021/acsnano.1c00453
    [Google Scholar]
  57. WangZ.L. Nanostructures of zinc oxide.Mater. Today200476263310.1016/S1369‑7021(04)00286‑X
    [Google Scholar]
  58. BaxterJ.B. AydilE.S. Nanowire-based dye-sensitized solar cells.Appl. Phys. Lett.200586505311410.1063/1.1861510
    [Google Scholar]
  59. SudhaM. SenthilkumarS. HariharanR. SuganthiA. RajarajanM. Syn thesis, characterization and study of photocatalytic activity of surface modifed ZnO nanoparticles by PEG capping.J Solgel Sci Technol2013653301310
    [Google Scholar]
  60. AnS. JoshiB.N. LeeM.W. KimN.Y. YoonS.S. Electrospun graphene-ZnO nanofiber mats for photocatalysis applications.Appl. Surf. Sci2014294242810.1016/j.apsusc.2013.12.159
    [Google Scholar]
  61. JoshiB.N. AnS. JoH.S. SongK.Y. ParkH.G. HwangS. Al-DeyabS.S. YoonW.Y. YoonS.S. Flexible, freestanding, and binder-free SnOx–ZnO/carbon nanofber composites for lithium ion battery anodes.ACS Appl. Mater. Interfaces20168149446945310.1021/acsami.6b0109326999581
    [Google Scholar]
  62. KimM. YoonH. OhmT.Y. JoH.S. AnS. ChoiS.K. ParkH. Al-DeyabS.S. MinB.K. SwihartM.T. YoonS.S. Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes.Appl. Catal. B201720147948510.1016/j.apcatb.2016.08.058
    [Google Scholar]
  63. TripathyN. KimD.H. Metal oxide modified ZnO nanomaterials for biosensor applications.Nano Converg2018512710.1186/s40580‑018‑0159‑930467757
    [Google Scholar]
  64. PathakT.K. SwartH.C. Structural and luminescence properties of ZnO nanoparticles synthesized by mixture of fuel approach in solution combustion method in zinc oxide based nano materials and devicesIntechOpen2019
    [Google Scholar]
  65. Seok JoH. SamuelE. KwonH.J. JoshiB. KimM.W. KimT.G. SwihartM.T. YoonS.S. Highly flexible transparent substrate-free photoanodes using ZnO nanowires on nickel microfibers.Chem. Eng. J.2019363132210.1016/j.cej.2019.01.099
    [Google Scholar]
  66. MirzaeiH. DarroudiM. Zinc oxide nanoparticles: Biological synthesis and biomedical applications.Ceram. Int.201743190791410.1016/j.ceramint.2016.10.051
    [Google Scholar]
  67. HambidgeK.M. MillerL.V. WestcottJ.E. ShengX. KrebsN.F. Zinc bioavailability and homeostasis.Am. J. Clin. Nutr.20109151478S1483S10.3945/ajcn.2010.28674I20200254
    [Google Scholar]
  68. NozakiC. VergnanoA.M. FilliolD. OuagazzalA.M. Le GoffA. CarvalhoS. ReissD. Gaveriaux-RuffC. NeytonJ. PaolettiP. KiefferB.L. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit.Nat. Neurosci20111481017102210.1038/nn.284421725314
    [Google Scholar]
  69. TakedaA. MinamiA. SekiY. OkuN. Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus.J. Neurosci. Res.200475222522910.1002/jnr.1084614705143
    [Google Scholar]
  70. MartinK.J. GonzálezE.A. SlatopolskyE. Clinical consequences and management of hypomagnesemia.J. Am. Soc. Nephrol.200920112291229510.1681/ASN.200711119418235082
    [Google Scholar]
  71. SoaveP. ContiG. CostaR. ArcangeliA. Magnesium and anaesthesia.Curr. Drug Targets200910873474310.2174/13894500978898248719702521
    [Google Scholar]
  72. IseriL.T. FrenchJ.H. Magnesium: Nature’s physiologic calcium blocker.Am. Heart J.1984108118819310.1016/0002‑8703(84)90572‑66375330
    [Google Scholar]
  73. JahangiriL. KesmatiM. NajafzadehH. Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine.Eur. Rev. Med. Pharmacol. Sci.201317202706271024174350
    [Google Scholar]
  74. KavosiN. NajafzadehH. BavariM. EsmailiradA. Efect of nano-particle of magnesium oxide on ketamine-induced anesthesia in rabbit.Curr Res J Biol Sci.20124592595
    [Google Scholar]
  75. BeckerS. CekoM. Louis-FosterM. ElfassyN.M. LeytonM. ShirY. SchweinhardtP. Dopamine and pain sensitivity: Neither sulpiride nor acute phenylalanine and tyrosine depletion have efects on thermal pain sensations in healthy volunteers.PLoS One2013811e8076610.1371/journal.pone.0080766
    [Google Scholar]
  76. SerafiniR.A. PryceK.D. ZachariouV. The mesolimbic dopamine system in chronic pain and associated afective comorbidities.Biol. Psychiatry2020871647310.1016/j.biopsych.2019.10.01831806085
    [Google Scholar]
  77. MegatS. ShiersS. MoyJ.K. Barragan-IglesiasP. PradhanG. SealR.P. DussorG. PriceT.J. A critical role for dopamine D5 receptors in pain chronicity in male mice.J. Neurosci.201838237939710.1523/JNEUROSCI.2110‑17.201729167404
    [Google Scholar]
  78. NandhagopalR. TroianoA.R. MakE. SchulzerM. BushnellM.C. StoesslA.J. Response to heat pain stimulation in idiopathic parkinson’s disease.Pain Med.201011683484010.1111/j.1526‑4637.2010.00866.x20624238
    [Google Scholar]
  79. NosratiN. Hassanpour-EzzatiM. MousaviS.Z. RezagholiyanS. Comparison of MnO2 nanoparticles and microparticles distribution in CNS and muscle and efect on acute pain threshold in rats.Nanomed. J.20141180190
    [Google Scholar]
  80. WoodP.B. Role of central dopamine in pain and analgesia.Expert Rev. Neurother.20088578179710.1586/14737175.8.5.78118457535
    [Google Scholar]
  81. Martínez-BanderasAI AiresA Plaza-GarcíaS ColásL MorenoJA RavasiT MerzabanJS Ramos-CabrerP CortajarenaAL Magnetic core– shell nanowires as MRI contrast agents for cell tracking.J Nanobiotech nol2020184210.1186/s12951‑020‑00597‑3
    [Google Scholar]
  82. Mohammadi ZiaraniG. MalmirM. LashgariN. BadieiA. The role of hollow magnetic nanoparticles in drug delivery.RSC Advances2019943250942510610.1039/C9RA01589B
    [Google Scholar]
  83. HaghighiA.H. FaghihZ. KhorasaniM.T. FarjadianF. Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells.J. Magn. Magn. Mater.201949016547910.1016/j.jmmm.2019.165479
    [Google Scholar]
  84. WuP.C. HsiaoH.T. LinY.C. ShiehD.B. LiuY.C. The analgesia efficiency of ultrasmall magnetic iron oxide nanoparticles in mice chronic inflammatory pain model.Nanomedicine20171361975198110.1016/j.nano.2017.05.00528539274
    [Google Scholar]
  85. ManthaV.R.R. NairH.K. VenkataramananR. GaoY.Y. MatyjaszewskiK. DongH. LiW. LandsittelD. CohenE. LariviereW.R. Nanoanesthesia.Anesth. Analg.201411861355136210.1213/ANE.000000000000017524722259
    [Google Scholar]
  86. IranshahyM. Hanafi-BojdM.Y. AghiliS.H. IranshahiM. NabaviS.M. SaberiS. FilosaR. NezhadI.F. HasanpourM. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: Synthesis, biological assays and therapeutic potential a review.RSC Advances20231332222502226710.1039/D3RA02772D37492509
    [Google Scholar]
  87. ZhaoY. ZhangZ. PanZ. LiuY. Advanced bioactive nanomaterials for biomedical applications.Exploration2021132021008910.1002/EXP.2021008937323697
    [Google Scholar]
  88. Jimenez-VargasN.N. GongJ. WisdomM.J. JensenD.D. LatorreR. HegronA. TengS. DiCelloJ.J. RajasekharP. VeldhuisN.A. CarboneS.E. YuY. Lopez-LopezC. Jaramillo-PolancoJ. CanalsM. ReedD.E. LomaxA.E. SchmidtB.L. LeongK.W. VannerS.J. HallsM.L. BunnettN.W. PooleD.P. Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain.Proc. Natl. Acad. Sci. USA202011726152811529210.1073/pnas.200050011732546520
    [Google Scholar]
  89. PugliaC. BlasiP. RizzaL. SchoubbenA. BoninaF. RossiC. RicciM. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation.Int. J. Pharm.20083571-229530410.1016/j.ijpharm.2008.01.04518343059
    [Google Scholar]
  90. VishwakarmaV.K. PaswanS.K. AroraT. VermaR.K. YadavH.N. Pain allaying epalrestat-loaded lipid nanoformulation for the diabetic neuropathic pain interventions: Design, development, and animal study.Curr. Drug Metab.202223757158310.2174/138920022366622081015263335950248
    [Google Scholar]
  91. Rodrigues da SilvaG.H. LemesJ.B.P. GeronimoG. Freitas de LimaF. de MouraL.D. Carvalho dos SantosA. CarvalhoN.S. MalangeK.F. BreitkreitzM.C. ParadaC.A. de PaulaE. Lipid nanoparticles loaded with butamben and designed to improve anesthesia at inflamed tissues.Biomater. Sci.2021993378338910.1039/D1BM00077B33949447
    [Google Scholar]
  92. KangQ. LiuJ. ZhaoY. LiuX. LiuX.Y. WangY.J. MoN.L. WuQ. Transdermal delivery system of nanostructured lipid carriers loaded with celastrol and indomethacin: Optimization, characterization and efficacy evaluation for rheumatoid arthritis.Artif. Cells Nanomed. Biotechnol.201846sup3Suppl. S358559710.1080/21691401.2018.150359930306802
    [Google Scholar]
  93. YuanS. ChenJ. FengS. LiM. SunY. LiuY. Combination anesthetic therapy: Co-delivery of ropivacaine and meloxicam using transcriptional transactivator peptide modified nanostructured lipid carriers in vitro and in vivo.Drug Deliv.202229126326910.1080/10717544.2021.202369535014916
    [Google Scholar]
  94. RahmaniF. NaderpourS. NejadB.G. RahimzadeganM. EbrahimiZ.N. KamaliH. NosratiR. The recent insight in the release of anticancer drug loaded into PLGA microspheres.Med. Oncol.202340822910.1007/s12032‑023‑02103‑937410278
    [Google Scholar]
  95. HanF.Y. LiuY. KumarV. XuW. YangG. ZhaoC.X. WoodruffT.M. WhittakerA.K. SmithM.T. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation.Int. J. Pharm.202058111929110.1016/j.ijpharm.2020.11929132259638
    [Google Scholar]
  96. LimS. AnS.B. JungM. JoshiH.P. KumarH. KimC. SongS.Y. LeeJ.R. KangM. HanI. KimB.S. Local delivery of senolytic drug inhibits intervertebral disc degeneration and restores intervertebral disc structure.Adv. Healthc. Mater.2022112210148310.1002/adhm.20210148334699690
    [Google Scholar]
  97. KaoC.W. TsengY.Y. LiuK.S. LiuY.W. ChenJ.C. HeH.L. KauY.C. LiuS.J. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds.Int. J. Nanomedicine2019144007401610.2147/IJN.S20240231213812
    [Google Scholar]
  98. AssaliM. ShawahnaR. DayyehS. ShareefM. AlhimonyI.A. Dexamethasone-diclofenac loaded polylactide nanoparticles: Preparation, release and anti-inflammatory activity.Eur. J. Pharm. Sci.201812217918410.1016/j.ejps.2018.07.01229981402
    [Google Scholar]
  99. ForouhariS. BeygiZ. MansooriZ. HajsharifiS. HeshmatniaF. GheibihayatS.M. Liposomes: Ideal drug delivery systems in breast cancer.Biotechnol. Appl. Biochem.20226951867188410.1002/bab.225334505736
    [Google Scholar]
  100. Abu LilaA.S. IshidaT. Liposomal delivery systems: Design optimization and current applications.Biol. Pharm. Bull.201740111010.1248/bpb.b16‑0062428049940
    [Google Scholar]
  101. CeredaC.M.S. BrunettoG.B. de AraújoD.R. de PaulaE. Iposomal formulations of prilocainelidocaine.Can. J. Anaesth.2006531092109717079635
    [Google Scholar]
  102. RohM.S. KucherO.A. ShickK.M. KnolhoffD.R. McGarveyJ.S. PetersonS.C. Intramuscular liposomal bupivacaine decreases length of stay and opioid usage following lumbar spinal fusion.Clin. Spine Surg.2020338E359E36310.1097/BSD.000000000000100632427717
    [Google Scholar]
  103. Elron-GrossI. GlucksamY. MargalitR. Liposomal dexamethasone–diclofenac combinations for local osteoarthritis treatment.Int. J. Pharm.20093761-2849110.1016/j.ijpharm.2009.04.02519409466
    [Google Scholar]
  104. ShomoronyA. SantamariaC.M. ZhaoC. RweiA.Y. MehtaM. ZurakowskiD. KohaneD.S. Prolonged duration local anesthesia by combined delivery of capsaicin and tetrodotoxin loaded liposomes.Anesth. Analg.2019129370971710.1213/ANE.000000000000410831425210
    [Google Scholar]
  105. FranzèS. AngeloL. CasiraghiA. MinghettiP. CilurzoF. Design of liposomal lidocaine/cannabidiol fixed combinations for local neuropathic pain treatment.Pharmaceutics2022149191510.3390/pharmaceutics1409191536145663
    [Google Scholar]
  106. ConcellónA. San AnselmoM. Hernández-AinsaS. RomeroP. MarcosM. SerranoJ.L. Micellar nanocarriers from dendritic macromolecules containing fluorescent coumarin moieties.Polymers20201212287210.3390/polym1212287233266142
    [Google Scholar]
  107. Rodríguez-PrietoT. Hernández-BreijoB. OrtegaM.A. GómezR. Sánchez-NievesJ. GuijarroL.G. Dendritic nanotheranostic for the delivery of infliximab: A potential carrier in rheumatoid arthritis therapy.Int. J. Mol. Sci.20202123910110.3390/ijms2123910133266032
    [Google Scholar]
  108. KoçF.E. ŞenelM. Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers.Int. J. Pharm.20134511-2182210.1016/j.ijpharm.2013.04.06223628406
    [Google Scholar]
  109. DimatteoR. DarlingN.J. SeguraT. In situ forming injectable hydrogels for drug delivery and wound repair.Adv. Drug Deliv. Rev.201812716718410.1016/j.addr.2018.03.00729567395
    [Google Scholar]
  110. ZhangY. ShiK. YangX. ChenW. WangT. KangY. GongD. QianZ. ZhangW. Sustained release of levobupivacaine from temperature-sensitive injectable hydrogel for long-term local anesthesia in postoperative pain management.Biomaterials202329912212910.1016/j.biomaterials.2023.12212937167892
    [Google Scholar]
  111. OhK.S. HwangC. LeeH.Y. SongJ.S. ParkH.J. LeeC.K. SongI. LimT.H. Preclinical studies of ropivacaine extended-release from a temperature responsive hydrogel for prolonged relief of pain at the surgical wound.Int. J. Pharm.201955822523010.1016/j.ijpharm.2019.01.01130654057
    [Google Scholar]
  112. LiH. TangQ. WangY. LiM. WangY. ZhuH. GengF. WuD. PengL. ZhaoG. ZouL. ShiS. Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia.Int. J. Pharm.202261112129110.1016/j.ijpharm.2021.12129134780929
    [Google Scholar]
  113. ZhouY. QuanG. WuQ. ZhangX. NiuB. WuB. HuangY. PanX. WuC. Mesoporous silica nanoparticles for drug and gene delivery.Acta Pharm. Sin. B20188216517710.1016/j.apsb.2018.01.00729719777
    [Google Scholar]
  114. GouK. WangY. GuoX. WangY. BianY. ZhaoH. GuoY. PangY. XieL. LiS. LiH. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs.Acta Biomater.202113457659210.1016/j.actbio.2021.07.02334280558
    [Google Scholar]
  115. FoleyP.L. UleryB.D. KanH.M. BurksM.V. CuiZ. WuQ. NairL.S. LaurencinC.T. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia.Biomaterials201334102539254610.1016/j.biomaterials.2012.12.03523321347
    [Google Scholar]
  116. ZhangY. YueY. ChangM. Local anaesthetic pain relief therapy: in vitro and in vivo evaluation of a nanotechnological formulation co-loaded with ropivacaine and dexamethasone.Biomed. Pharmacother.20179644344910.1016/j.biopha.2017.09.12429031203
    [Google Scholar]
  117. BurkiI.K. KhanM.K. KhanB.A. UzairB. BragaV.A. JamilQ.A. Formulation development, characterization, and evaluation of a novel dexibuprofen-capsaicin skin emulgel with improved in vivo anti-inflammatory and analgesic effects.AAPS PharmSciTech202021621110.1208/s12249‑020‑01760‑732737606
    [Google Scholar]
  118. XieJ. XiaoD. ZhaoJ. HuN. BaoQ. JiangL. YuL. Mesoporous silica particles as a multifunctional delivery system for pain relief in experimental neuropathy.Adv. Healthc. Mater.20165101213122110.1002/adhm.20150099627028159
    [Google Scholar]
  119. KopachO. ZhengK. DongL. SapelkinA. VoitenkoN. SukhorukovG.B. RusakovD.A. Nano-engineered microcapsules boost the treatment of persistent pain.Drug Deliv.201825143544710.1080/10717544.2018.143198129383961
    [Google Scholar]
  120. HeT. ZhangC. VedadghavamiA. MehtaS. ClarkH.A. PorterR.M. BajpayeeA.G. Multi-arm avidin nano-construct for intra-cartilage delivery of small molecule drugs.J. Control. Release202031810912310.1016/j.jconrel.2019.12.02031843642
    [Google Scholar]
  121. ZamanM. HanifM. ShaheryarZ.A. Development of tizanidine HCl-Meloxicam loaded mucoadhesive buccal films: in-vitro and in-vivo evaluation.PLoS One2018133e019441010.1371/journal.pone.019441029566073
    [Google Scholar]
  122. El-FekyG.S. Farouk AbdulmaguidR. ZayedG.M. KamelR. Mucosal co-delivery of ketorolac and lidocaine using polymeric wafers for dental application.Drug Deliv.2018251354210.1080/10717544.2017.141344529226726
    [Google Scholar]
  123. BerryP.H. ChapmanC.R. CovingtonE.C. DahlJ.L. KatzJ.A. MiaskowskiC. McLeanM.J. Pain: Current understanding of assessment, management, and treatments.VANational Pharmaceutical Council and the Joint Commission for the Accreditation of Healthcare Organizations2001b44
    [Google Scholar]
  124. HuaS. WuS.Y. The use of lipid-based nanocarriers for targeted pain therapies.Front. Pharmacol.2013414310.3389/fphar.2013.0014324319430
    [Google Scholar]
  125. VaneJ.R. BottingR.M. Mechanism of action of nonsteroidal anti-inflammatory drugs.Am. J. Med.199810432S8S10.1016/S0002‑9343(97)00203‑99572314
    [Google Scholar]
  126. WongrakpanichS. WongrakpanichA. MelhadoK. RangaswamiJ. A comprehensive review of non-steroidal anti-infammatory drug use in the elderly.Aging Dis.20189114315010.14336/AD.2017.030629392089
    [Google Scholar]
  127. HeathJ.R. Nanotechnologies for biomedical science and translational medicine.Proc. Natl. Acad. Sci. USA201511247144361444310.1073/pnas.151520211226598663
    [Google Scholar]
  128. KhanI. KhanM. UmarM.N. OhD.H. Nanobiotechnology and its applications in drug delivery system: A review.IET Nanobiotechnol.20159639640010.1049/iet‑nbt.2014.006226647817
    [Google Scholar]
  129. El-HabashyS.E. AllamA.N. El-KamelA.H. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: Formulation and in vitro/in vivo evaluation.Int. J. Nanomedicine2016112369238027307735
    [Google Scholar]
  130. JavadzadehY. AhadiF. DavaranS. MohammadiG. SabzevariA. AdibkiaK. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles.Colloids Surf. B Biointerfaces201081249850210.1016/j.colsurfb.2010.07.04720719477
    [Google Scholar]
  131. KhachaneP. DateA.A. NagarsenkerM.S. Eudragit EPO nanoparticles: Application in improving therapeutic efficacy and reducing ulcerogenicity of meloxicam on oral administration.J. Biomed. Nanotechnol.20117459059710.1166/jbn.2011.132221870464
    [Google Scholar]
  132. NarayananD. M GG. HL. KoyakuttyM. NairS. MenonD. Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug Ibuprofen-Sodium: Anin vitro and in vivo analysis.Nanomedicine20139681882810.1016/j.nano.2013.02.00123428986
    [Google Scholar]
  133. ZhangL. ZhangQ. WangX. ZhangW. LinC. ChenF. YangX. PanW. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen.Int. J. Pharm.20154921-2404510.1016/j.ijpharm.2015.07.01126162980
    [Google Scholar]
  134. SugiharaH. YamamotoH. KawashimaY. TakeuchiH. Effectiveness of submicronized chitosan-coated liposomes in oral absorption of indomethacin.J. Liposome Res.2012221727910.3109/08982104.2011.62112822329417
    [Google Scholar]
  135. RaffinR.P. LimaA. LorenzoniR. AntonowM.B. TurraC. AlvesM.P. FaganS.B. Natural lipid nanoparticles containing nimesulide: Synthesis, characterization and in vivo antiedematogenic and antinociceptive activities.J. Biomed. Nanotechnol.20128230931510.1166/jbn.2012.137722515082
    [Google Scholar]
  136. GuilhermeV.A. RibeiroL.N.M. AlcântaraA.C.S. CastroS.R. Rodrigues da SilvaG.H. da SilvaC.G. BreitkreitzM.C. Clemente-NapimogaJ. MacedoC.G. AbdallaH.B. BonfanteR. CeredaC.M.S. de PaulaE. Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration.Sci. Rep.2019911116010.1038/s41598‑019‑47486‑w31371737
    [Google Scholar]
  137. OhD.H. DinF. KimD.W. KimJ.O. YongC.S. ChoiH.G. Flurbiprofen-loaded nanoparticles prepared with polyvinylpyrrolidone using shirasu porous glass membranes and a spray-drying technique: Nano-sized formation and improved bioavailability.J. Microencapsul.201330767468010.3109/02652048.2013.77444723444868
    [Google Scholar]
  138. NitaL.E. ChiriacA.P. NistorM.T. TartauL. Indomethacin-loaded polymer nanocarriers based on poly(2-hydroxyethyl methacrylate- co- 3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane): Preparation, in vitro and in vivo evaluation.J. Biomed. Mater. Res. B Appl. Biomater.2012100B41121113310.1002/jbm.b.3267922447566
    [Google Scholar]
  139. BallantyneJ.C. ShinN.S. Efficacy of opioids for chronic pain: A review of the evidence.Clin. J. Pain200824646947810.1097/AJP.0b013e31816b2f2618574357
    [Google Scholar]
  140. WoodL.D. NeumillerJ.J. CarlsonJ. SetterS.M. CorbettC.F. Challenges of medication management in hospitalized patients with parkinson’s disease.Am. J. Health Syst. Pharm.201067232059206310.2146/ajhp10017021098379
    [Google Scholar]
  141. NgwulukaN.C. ChoonaraY.E. ModiG. du ToitL.C. KumarP. NdesendoV.M.K. PillayV. Design of an interpolyelectrolyte gastroretentive matrix for the site-specific zero-order delivery of levodopa in parkinson’s disease.AAPS PharmSciTech201314260561910.1208/s12249‑013‑9945‑123494468
    [Google Scholar]
  142. TuL. LiaoZ. LuoZ. WuY.L. HerrmannA. HuoS. Ultrasound-controlled drug release and drug activation for cancer therapy.Exploration2021132021002310.1002/EXP.2021002337323693
    [Google Scholar]
  143. TaylorA. McLeodG. Basic pharmacology of local anaesthetics.BJA Educ.2020202344110.1016/j.bjae.2019.10.00233456928
    [Google Scholar]
  144. SunderlandS. YarnoldC.H. HeadS.J. OsbornJ.A. PurssellA. PeelJ.K. SchwarzS.K.W. Regional versus general anesthesia and the incidence of unplanned health care resource utilization for postoperative pain after wrist fracture surgery: Results from a retrospective quality improvement project.Reg. Anesth. Pain Med.2016411222710.1097/AAP.000000000000032526650425
    [Google Scholar]
  145. BoogaertsJ.G. LafontN.D. DeclercqA.G. LuoH.C. GravetE.T. BianchiJ.A. LegrosF.J. Epidural administration of liposome associated bupivacaine for the management of postsurgical pain: A first study.J. Clin. Anesth.19946431532010.1016/0952‑8180(94)90079‑57946368
    [Google Scholar]
  146. Silva De MeloN.F. De AraújoD.R. GrilloR. MoraesC.M. De MatosA.P. PaulaE. RosaA.H. FracetoL.F. Benzocaine-loaded polymeric nanocapsules: Study of the anesthetic activities.J. Pharm. Sci.201210131157116510.1002/jps.2282922105694
    [Google Scholar]
  147. MunizB.V. BaratelliD. Di CarlaS. SerpeL. da SilvaC.B. GuilhermeV.A. RibeiroL.N.M. CeredaC.M.S. de PaulaE. VolpatoM.C. GroppoF.C. FracetoL.F. Franz-MontanM. Hybrid hydrogel composed of polymeric nanocapsules co-loading lidocaine and prilocaine for topical intraoral anesthesia.Sci. Rep.2018811797210.1038/s41598‑018‑36382‑430568251
    [Google Scholar]
  148. GrilloR. de MeloN.F.S. de AraújoD.R. de PaulaE. RosaA.H. FracetoL.F. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine.J. Drug Target.201018968869910.3109/1061186100364973820196632
    [Google Scholar]
  149. Franz-MontanM. SilvaA.L.R. CogoK. BergamaschiC.C. VolpatoM.C. RanaliJ. de PaulaE. GroppoF.C. Liposome-encapsulated ropivacaine for topical anesthesia of human oral mucosa.Anesth. Analg.200710461528153110.1213/01.ane.0000262040.19721.2617513653
    [Google Scholar]
  150. FisherR. HungO. MezeiM. StewartR. Topical anaesthesia of intact skin: Liposome-encapsulated tetracaine vs EMLA.Br. J. Anaesth.199881697297310.1093/bja/81.6.97210211031
    [Google Scholar]
  151. CeredaC.M.S. MecattiD. PapiniJ. BuenoD. Franz-MontanM. RochaT. Pedrazzoli JúniorJ. de PaulaE. de AraújoD.R. GrilloR. FracetoL. CalafattiS.A. TofoliG. Bupivacaine in alginate and chitosan nanoparticles: Anin vivo evaluation of efficacy, pharmacokinetics, and local toxicity.J. Pain Res.20181168369110.2147/JPR.S15869529670395
    [Google Scholar]
  152. LiuQ. SantamariaC.M. WeiT. ZhaoC. JiT. YangT. ShomoronyA. WangB.Y. KohaneD.S. Hollow silica nanoparticles penetrate the peripheral nerve and enhance the nerve blockade from tetrodotoxin.Nano Lett.2018181323710.1021/acs.nanolett.7b0246129227106
    [Google Scholar]
  153. ZhaoC. LiuA. SantamariaC.M. ShomoronyA. JiT. WeiT. GordonA. ElofssonH. MehtaM. YangR. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity.Nat. Commun.201910114
    [Google Scholar]
  154. Al-WaeliH. NicolauB. StoneL. Abu NadaL. GaoQ. AbdallahM.N. AbdulkaderE. SuzukiM. MansourA. Al SubaieA. TamimiF. Chronotherapy of non-steroidal anti-inflammatory drugs may enhance postoperative recovery.Sci. Rep.202010146810.1038/s41598‑019‑57215‑y31949183
    [Google Scholar]
  155. LiuG. GaoJ. AiH. ChenX. Applications and potential toxicity of magnetic iron oxide nanoparticles.Small201399-101533154510.1002/smll.20120153123019129
    [Google Scholar]
  156. MendozaG. ArrueboM. Light-triggered nanoparticles for pain management.Expert Opin. Drug Deliv.202017562763310.1080/17425247.2020.173767032116072
    [Google Scholar]
  157. LinsleyC.S. WuB.M. Recent advances in light-responsive on-demand drug-delivery systems.Ther. Deliv.2017828910710.4155/tde‑2016‑006028088880
    [Google Scholar]
  158. WangY. KohaneD.S. External triggering and triggered targeting strategies for drug delivery.Nat. Rev. Mater.2017261702010.1038/natrevmats.2017.20
    [Google Scholar]
  159. RweiA.Y. LeeJ.J. ZhanC. LiuQ. OkM.T. ShankarappaS.A. LangerR. KohaneD.S. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes.Proc. Natl. Acad. Sci. USA201511251157191572410.1073/pnas.151879111226644576
    [Google Scholar]
  160. RweiA.Y. WangB.Y. JiT. ZhanC. KohaneD.S. Enhanced triggering of local anesthetic particles by photosensitization and photothermal effect using a common wavelength.Nano Lett.201717117138714510.1021/acs.nanolett.7b0417629058443
    [Google Scholar]
  161. Ortiz de SolorzanoI. AlejoT. AbadM. Bueno-AlejoC. MendozaG. AndreuV. IrustaS. SebastianV. ArrueboM. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery.J. Colloid Interface Sci.201953317118110.1016/j.jcis.2018.08.06930153594
    [Google Scholar]
  162. AlejoT. AndreuV. MendozaG. SebastianV. ArrueboM. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating.J. Colloid Interface Sci.201852323424410.1016/j.jcis.2018.03.10729626761
    [Google Scholar]
  163. YangQ. NanayakkaraG.K. DrummerC. SunY. JohnsonC. CuetoR. FuH. ShaoY. WangL. YangW.Y. TangP. LiuL.W. GeS. ZhouX.D. KhanM. WangH. YangX. Low-intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking.Front. Physiol.2017881810.3389/fphys.2017.0081829109687
    [Google Scholar]
  164. MillerD.L. SmithN.B. BaileyM.R. CzarnotaG.J. HynynenK. MakinI.R. Bioeffects committee of the american institute of ultrasound.J. Ultrasound Med.20123162363410.7863/jum.2012.31.4.62322441920
    [Google Scholar]
  165. AiyerR. NooriS.A. ChangK.V. JungB. RasheedA. BansalN. OttestadE. GulatiA. Pain Med.2019
    [Google Scholar]
  166. TharkarP. VaranasiR. WongW.S.F. JinC.T. ChrzanowskiW. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond.Front. Bioeng. Biotechnol.2019732410.3389/fbioe.2019.0032431824930
    [Google Scholar]
  167. CullionK. PetishnokL.C. SunT. SantamariaC.M. PembertonG.L. McDannoldN.J. KohaneD.S. Local anesthesia enhanced with increasing high-frequency ultrasound intensity.Drug Deliv. Transl. Res.20201051507151610.1007/s13346‑020‑00760‑132307675
    [Google Scholar]
  168. KimG.W. KangC. OhY.B. KoM.H. SeoJ.H. LeeD. Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles.Theranostics2017792463247610.7150/thno.1892228744328
    [Google Scholar]
  169. JungE. NohJ. KangC. YooD. SongC. LeeD. Ultrasound imaging and on-demand therapy of peripheral arterial diseases using H2O2-Activated bubble generating anti-inflammatory polymer particles.Biomaterials201817917518510.1016/j.biomaterials.2018.07.00329990676
    [Google Scholar]
  170. van WalsemA. PandhiS. NixonR.M. GuyotP. KarabisA. MooreR.A. Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors in patients with osteoarthritis or rheumatoid arthritis: A network meta-analysis.Arthritis Res. Ther.20151716610.1186/s13075‑015‑0554‑025879879
    [Google Scholar]
  171. FalyarC.R. Ultrasound-guided ankle blocks: A review of current practices.AANA J.201583535736426638458
    [Google Scholar]
  172. JengC.L. TorrilloT.M. RosenblattM.A. Complications of peripheral nerve blocks, Br.J. Anaesth.2010105Suppl. 1S97S107
    [Google Scholar]
  173. PatelS. JanaS. ChettyR. ThakoreS. SinghM. DevkarR. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo.Drug Chem. Toxicol.20194211810.1080/01480545.2017.141311029281933
    [Google Scholar]
  174. AgotegarayM.A. CampeloA.E. ZyslerR.D. GumilarF. BrasC. GandiniA. MinettiA. MassheimerV.L. LassalleV.L. Magnetic nanoparticles for drug targeting: From design to insights into systemic toxicity. Preclinical evaluation of hematological, vascular and neurobehavioral toxicology.Biomater. Sci.20175477278310.1039/C6BM00954A28256646
    [Google Scholar]
  175. ToropovaY. GolovkinA. MalashichevaA. KorolevD. GorshkovA. GareevK. AfoninM. GalagudzaM. In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles.Int. J. Nanomedicine20171259360310.2147/IJN.S12258028144141
    [Google Scholar]
  176. AgotegarayM. PalmaS. LassalleV. Novel chitosan coated magnetic nanocarriers for the targeted diclofenac delivery.J. Nanosci. Nanotechnol.20141453343334710.1166/jnn.2014.825624734550
    [Google Scholar]
  177. WuH. LiF. WangS. LuJ. LiJ. DuY. SunX. ChenX. GaoJ. LingD. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing.Biomaterials2018151667710.1016/j.biomaterials.2017.10.01829078200
    [Google Scholar]
  178. ZhuL. ZhouZ. MaoH. YangL. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.Nanomedicine2017121738710.2217/nnm‑2016‑031627876448
    [Google Scholar]
  179. AmanzadehE. EsmaeiliA. AbadiR.E.N. KazemipourN. PahlevanneshanZ. BeheshtiS. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP.Sci. Rep.201991687610.1038/s41598‑019‑43345‑w31053743
    [Google Scholar]
  180. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and antioxidant activities of a combination of terminalia arjuna and commiphora mukul on experimental animals BT - advances in biomedical engineering and technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021175188
    [Google Scholar]
  181. Dib-HajjS.D. YangY. BlackJ.A. WaxmanS.G. The NaV1.7 sodium channel: From molecule to man.Nat. Rev. Neurosci.2013141496210.1038/nrn340423232607
    [Google Scholar]
  182. FaberC.G. HoeijmakersJ.G.J. AhnH.S. ChengX. HanC. ChoiJ.S. EstacionM. LauriaG. VanhoutteE.K. GerritsM.M. Dib-HajjS. DrenthJ.P.H. WaxmanS.G. MerkiesI.S.J. Gain of function Na V 1.7 mutations in idiopathic small fiber neuropathy.Ann. Neurol.2012711263910.1002/ana.2248521698661
    [Google Scholar]
  183. BannwarthB. KostineM. Nerve growth factor antagonists: Is the future of monoclonal antibodies becoming clearer?Drugs201777131377138710.1007/s40265‑017‑0781‑628660479
    [Google Scholar]
  184. NairA.S. Tanezumab: Finally a monoclonal antibody for pain relief.Indian J. Palliat. Care201824338438530111960
    [Google Scholar]
  185. JensenD.D. LieuT. HallsM.L. VeldhuisN.A. ImlachW.L. MaiQ.N. PooleD.P. QuachT. AurelioL. ConnerJ. HerenbrinkC.K. BarlowN. SimpsonJ.S. ScanlonM.J. GrahamB. McCluskeyA. RobinsonP.J. EscriouV. NassiniR. MaterazziS. GeppettiP. HicksG.A. ChristieM.J. PorterC.J.H. CanalsM. BunnettN.W. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief.Sci. Transl. Med.20179392eaal344710.1126/scitranslmed.aal344728566424
    [Google Scholar]
  186. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  187. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of losartan potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  188. MüllerC.E. Emerging structures and ligands for P2X3 and P2X4 receptors—towards novel treatments of neuropathic pain.Purinergic Signal.20106214514810.1007/s11302‑010‑9182‑y20806006
    [Google Scholar]
  189. JungY.H. KimY.O. LinH. ChoJ.H. ParkJ.H. LeeS.D. BaeJ. KangK.M. KimY.G. PaeA.N. KoH. ParkC.S. YoonM.H. KimY.C. Discovery of potent antiallodynic agents for neuropathic pain targeting P2X3 receptors.ACS Chem. Neurosci.2017871465147810.1021/acschemneuro.6b0040128323403
    [Google Scholar]
  190. GinnettiA.T. PaoneD.V. StaufferS.R. PotteigerC.M. ShawA.W. DengJ. MulhearnJ.J. NguyenD.N. SegerdellC. AnquandahJ. CalamariA. ChengG. LeitlM.D. LiangA. MooreE. PanigelJ. UrbanM. WangJ. FillgroveK. TangC. CookS. KaneS. SalvatoreC.A. GrahamS.L. BurgeyC.S. Identification of second-generation P2X3 antagonists for treatment of pain.Bioorg. Med. Chem. Lett.20182881392139610.1016/j.bmcl.2018.02.03929548573
    [Google Scholar]
  191. ShepherdA.J. MickleA.D. GoldenJ.P. MackM.R. HalabiC.M. de KloetA.D. SamineniV.K. KimB.S. KrauseE.G. GereauR.W.IV MohapatraD.P. Macrophage angiotensin II type 2 receptor triggers neuropathic pain.Proc. Natl. Acad. Sci. USA201811534E8057E806610.1073/pnas.172181511530082378
    [Google Scholar]
  192. FarrarJ.T. Advances in clinical research methodology for pain clinical trials.Nat. Med.201016111284129310.1038/nm.224920948532
    [Google Scholar]
  193. LasagnaL. BeecherH.K. The analgesic effectiveness of nalorphine and nalorphine-morphine combinations in man.J. Pharmacol. Exp. Ther.1954112335636313212647
    [Google Scholar]
  194. BeecherH.K. Measurement of subjective responses: Quantitative efects of drugs.New YorkOxford University Press1959
    [Google Scholar]
  195. AndreuV. ArrueboM. Current progress and challenges of nanoparticle-based therapeutics in pain management.J. Control. Release201826918921310.1016/j.jconrel.2017.11.01829146243
    [Google Scholar]
  196. DoenickeA.W. RoizenM.F. RauJ. KellermannW. BablJ. Reducing pain during propofol injection: The role of the solvent.Anesth. Analg.19968234724748623945
    [Google Scholar]
  197. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  198. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.2021582156161
    [Google Scholar]
  199. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  200. LarsenR. BeerhalterU. ErdkönigR. LarsenB. [Injection pain from propofol-MCT-LCT in children. A comparison with propofol-LCT].Anaesthesist200150967667810.1007/s00101010021311593871
    [Google Scholar]
  201. ShevalkarG. PaiR. VaviaP. nanostructured lipid carrier of propofol: A promising alternative to marketed soybean oil -based nanoemul - sion.AAPS PharmSciTech201920520110.1208/s12249‑019‑1408‑x31139968
    [Google Scholar]
  202. ChakravarthyK.V. BoehmF.J. ChristoP.J. Nanotechnology: A promising new paradigm for the control of pain.Pain Med.201819223224310.1093/pm/pnx13129036629
    [Google Scholar]
  203. Chinnagounder PeriyasamyP. LeijtenJ.C.H. DijkstraP.J. KarperienM. PostJ.N. Nanomaterials for the local and targeted delivery of osteoarthritis drugs.J. Nanomater.2012201211310.1155/2012/673968
    [Google Scholar]
  204. PottaS.G. MinemiS. NukalaR.K. PeinadoC. LamprouD.A. UrquhartA. DouroumisD. Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility.J. Microencapsul.2011281748110.3109/02652048.2010.52994821171818
    [Google Scholar]
  205. Lopes-de-AraújoJ. NevesA.R. GouveiaV.M. MouraC.C. NunesC. ReisS. Oxaprozin-loaded lipid nanoparticles towards overcoming NSAIDs side-efects.Pharm. Res.201633230131410.1007/s11095‑015‑1788‑x26350105
    [Google Scholar]
  206. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  207. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT advances in biomedical engineering and technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021207220
    [Google Scholar]
  208. KhachaneP. DateA.A. NagarsenkerM.S. Positively charged polymeric nanoparticles: Application in improving therapeutic efficacy of meloxicam after oral administration.Pharmazie201166533433821699066
    [Google Scholar]
  209. KumarR. NagarwalR.C. DhanawatM. PanditJ.K. in-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles.J. Biomed. Nanotechnol.20117332533310.1166/jbn.2011.129021830472
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501315521240725065617
Loading
/content/journals/cdt/10.2174/0113894501315521240725065617
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): analgesic; combination therapy; Drug delivery; nanoformulation; nanomedicine; pain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test