Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Corticosteroids are widely utilized for their anti-inflammatory and immunosuppressive properties but often lead to ocular complications, including ocular hypertension. If untreated, ocular hypertension can progress to optic nerve atrophy and eventually result in steroid-induced glaucoma, which poses a risk of irreversible visual damage. Approximately 40% of individuals experience increased intraocular pressure after steroid use, and around 6% develop glaucoma. Although steroid-induced glaucoma is usually temporary and reversible if the treatment duration is under a year, prolonged exposure can cause permanent vision impairment. The pathogenesis of steroid-induced glaucoma is suggested to arise from increased outflow resistance of aqueous humor, primarily due to decreased expression of matrix metalloproteinases. This deficiency promotes the deposition of extracellular matrix and the dysfunction of trabecular meshwork cells. Additionally, modifications in the actin cytoskeleton increase the stiffness and alter the morphology of trabecular meshwork, further impeding aqueous humor outflow. Molecular changes, such as elevated expression of the MYOC gene, have also been implicated in restricting aqueous outflow. Various animal models, including rats, mice, primates, rabbits, cattle, sheep, cats, and dogs, have been developed to study steroid-induced glaucoma. These models exhibit pathological, pathophysiological, and molecular similarities to human disease, making them valuable for research. This review aims to summarize common animal models of steroid-induced ocular hypertension, discussing their advantages and limitations. The goal is to help researchers select appropriate models for future studies, thereby advancing the understanding of disease mechanisms and developing preventive strategies.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501333936240801053620
2024-09-01
2025-01-27
Loading full text...

Full text loading...

References

  1. VandewalleJ. LuypaertA. De BosscherK. LibertC. Therapeutic Mechanisms of Glucocorticoids.Trends Endocrinol. Metab.2018291425410.1016/j.tem.2017.10.01029162310
    [Google Scholar]
  2. WoodsA.C. Clinical and experimental observation on the use of ACTH and cortisone in ocular inflammatory disease.Am. J. Ophthalmol.19503391325135110.1016/0002‑9394(50)91827‑7
    [Google Scholar]
  3. Fassbender AdeniranJ.M. JusufbegovicD. SchaalS. Common and Rare Ocular Side-effects of the Dexamethasone Implant.Ocul. Immunol. Inflamm.201725683484010.1080/09273948.2016.118428427379861
    [Google Scholar]
  4. RobertiG. OddoneF. AgnifiliL. KatsanosA. MichelessiM. MastropasquaL. QuarantaL. RivaI. TangaL. ManniG. Steroid-induced glaucoma: Epidemiology, pathophysiology, and clinical management.Surv. Ophthalmol.202065445847210.1016/j.survophthal.2020.01.00232057761
    [Google Scholar]
  5. SihotaR. KonkalV.L. DadaT. AgarwalH.C. SinghR. Prospective, long-term evaluation of steroid-induced glaucoma.Eye (Lond.)2008221263010.1038/sj.eye.670247416823461
    [Google Scholar]
  6. TeoB.H.K. Au EongJ.T.W. Au EongK.G. Steroid-induced glaucoma: an avoidable cause of irreversible blindness.BMJ Case Rep.2023169e25470910.1136/bcr‑2023‑25470937666571
    [Google Scholar]
  7. GuptaS. ShahP. GrewalS. ChaurasiaA.K. GuptaV. Steroid-induced glaucoma and childhood blindness.Br. J. Ophthalmol.201599111454145610.1136/bjophthalmol‑2014‑30655726002945
    [Google Scholar]
  8. ClarkR. NosieA. WalkerT. FaralliJ.A. FillaM.S. Barrett-WiltG. PetersD.M. Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells.Mol. Cell. Proteomics201312119420610.1074/mcp.M112.01974523105009
    [Google Scholar]
  9. SheppardJ.D. ComstockT.L. CavetM.E. Impact of the Topical Ophthalmic Corticosteroid Loteprednol Etabonate on Intraocular Pressure.Adv. Ther.201633453255210.1007/s12325‑016‑0315‑826984315
    [Google Scholar]
  10. ClarkA.F. WordingerR.J. The role of steroids in outflow resistance.Exp. Eye Res.200988475275910.1016/j.exer.2008.10.00418977348
    [Google Scholar]
  11. El-ShabrawiY. EckhardtM. BergholdA. FaulbornJ. AuboeckL. ManggeH. ArdjomandN. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone.Eye200014337538310.1038/eye.2000.9211027004
    [Google Scholar]
  12. ClarkA.F. BrotchieD. ReadA.T. HellbergP. English-WrightS. PangI.H. EthierC.R. GriersonI. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue.Cell Motil. Cytoskeleton2005602839510.1002/cm.2004915593281
    [Google Scholar]
  13. FautschM.P. BahlerC.K. JewisonD.J. JohnsonD.H. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment.Invest. Ophthalmol. Vis. Sci.200041134163416811095610
    [Google Scholar]
  14. OverbyD.R. ClarkA.F. Animal models of glucocorticoid-induced glaucoma.Exp. Eye Res.2015141152210.1016/j.exer.2015.06.00226051991
    [Google Scholar]
  15. BorrásT. BuieL.K. SpigaM.G. Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy.Gene Ther.201623543844910.1038/gt.2016.1426855269
    [Google Scholar]
  16. RybkinI. GeromettaR. FridmanG. CandiaO. DaniasJ. Model systems for the study of steroid-induced IOP elevation.Exp. Eye Res.2017158515810.1016/j.exer.2016.07.01327450911
    [Google Scholar]
  17. PangI.H. ClarkA.F. Inducible rodent models of glaucoma.Prog. Retin. Eye Res.20207510079910.1016/j.preteyeres.2019.10079931557521
    [Google Scholar]
  18. Vidal-SanzM. Salinas-NavarroM. Nadal-NicolásF.M. Alarcón-MartínezL. Valiente-SorianoF.J. Miralles de ImperialJ. Avilés-TriguerosM. Agudo-BarriusoM. Villegas-PérezM.P. Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas.Prog. Retin. Eye Res.201231112710.1016/j.preteyeres.2011.08.00121946033
    [Google Scholar]
  19. ChenS. ZhangX. The Rodent Model of Glaucoma and Its Implications.Asia Pac. J. Ophthalmol20154423624110.1097/APO.000000000000012226147015
    [Google Scholar]
  20. ChenL. ZhaoY. ZhangH. Comparative Anatomy of the Trabecular Meshwork, the Optic Nerve Head and the Inner Retina in Rodent and Primate Models Used for Glaucoma Research.VisionBasel, Switzerland201611
    [Google Scholar]
  21. FicarrottaK.R. BelloS.A. MohamedY.H. PassagliaC.L. Aqueous Humor Dynamics of the Brown-Norway Rat.Invest. Ophthalmol. Vis. Sci.20185962529253710.1167/iovs.17‑2291529847660
    [Google Scholar]
  22. LeiY. OverbyD.R. Boussommier-CallejaA. StamerW.D. EthierC.R. Outflow physiology of the mouse eye: pressure dependence and washout.Invest. Ophthalmol. Vis. Sci.20115231865187110.1167/iovs.10‑601921169533
    [Google Scholar]
  23. OverbyD.R. BertrandJ. SchichtM. PaulsenF. StamerW.D. Lütjen-DrecollE. The structure of the trabecular meshwork, its connections to the ciliary muscle, and the effect of pilocarpine on outflow facility in mice.Invest. Ophthalmol. Vis. Sci.20145563727373610.1167/iovs.13‑1369924833737
    [Google Scholar]
  24. AiharaM LindseyJD WeinrebRN Aqueous Humor Dynamics in Mice.Investigative Opthalmology & Visual Science20034412
    [Google Scholar]
  25. LiR. LiuJ.H. Telemetric monitoring of 24 h intraocular pressure in conscious and freely moving C57BL/6J and CBA/CaJ mice.Mol. Vis.20081474574918431454
    [Google Scholar]
  26. FernandesK.A. HarderJ.M. WilliamsP.A. RauschR.L. KiernanA.E. NairK.S. AndersonM.G. JohnS.W.M. HowellG.R. LibbyR.T. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities.Exp. Eye Res.2015141425610.1016/j.exer.2015.06.01926116903
    [Google Scholar]
  27. OverbyD.R. BertrandJ. TektasO.Y. Boussommier-CallejaA. SchichtM. EthierC.R. WoodwardD.F. StamerW.D. Lütjen-DrecollE. Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice.Invest. Ophthalmol. Vis. Sci.20145584922493310.1167/iovs.14‑1442925028360
    [Google Scholar]
  28. RazaliN. AgarwalR. AgarwalP. KapitonovaM.Y. Kannan KuttyM. SmirnovA. Salmah BakarN. IsmailN.M. Anterior and posterior segment changes in rat eyes with chronic steroid administration and their responsiveness to antiglaucoma drugs.Eur. J. Pharmacol.2015749738010.1016/j.ejphar.2014.11.02925481859
    [Google Scholar]
  29. CassidyP.S. KellyR.A. Reina-TorresE. SherwoodJ.M. HumphriesM.M. KiangA.S. FarrarG.J. O’BrienC. CampbellM. StamerW.D. OverbyD.R. HumphriesP. O’CallaghanJ. siRNA targeting Schlemm’s canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model.Mol. Ther. Methods Clin. Dev.202120869410.1016/j.omtm.2020.10.02233376757
    [Google Scholar]
  30. PatelG.C. PhanT.N. MaddineniP. KasettiR.B. MillarJ.C. ClarkA.F. ZodeG.S. Dexamethasone-Induced Ocular Hypertension in Mice.Am. J. Pathol.2017187471372310.1016/j.ajpath.2016.12.00328167045
    [Google Scholar]
  31. SherwoodJ.M. Reina-TorresE. BertrandJ.A. RoweB. OverbyD.R. Measurement of Outflow Facility Using iPerfusion.PLoS One2016113e015069410.1371/journal.pone.015069426949939
    [Google Scholar]
  32. RenR. HumphreyA.A. KopczynskiC. GongH. Rho Kinase Inhibitor AR-12286 Reverses Steroid-Induced Changes in Intraocular Pressure, Effective Filtration Areas, and Morphology in Mouse Eyes.Invest. Ophthalmol. Vis. Sci.2023642710.1167/iovs.64.2.736734964
    [Google Scholar]
  33. RenR. HumphreyA.A. SwainD.L. GongH. Relationships between Intraocular Pressure, Effective Filtration Area, and Morphological Changes in the Trabecular Meshwork of Steroid-Induced Ocular Hypertensive Mouse Eyes.Int. J. Mol. Sci.202223285410.3390/ijms2302085435055036
    [Google Scholar]
  34. MarcusA.J. IezhitsaI. AgarwalR. VassilievP. SpasovA. ZhukovskayaO. AnisimovaV. IsmailN.M. Intraocular pressure-lowering effects of imidazo[1,2-a]- and pyrimido[1,2-a]benzimidazole compounds in rats with dexamethasone-induced ocular hypertension.Eur. J. Pharmacol.2019850758710.1016/j.ejphar.2019.01.05930716317
    [Google Scholar]
  35. MiyaraN. ShinzatoM. YamashiroY. IwamatsuA. KariyaK. SawaguchiS. Proteomic analysis of rat retina in a steroid-induced ocular hypertension model: Potential vulnerability to oxidative stress.Jpn. J. Ophthalmol.2008522849010.1007/s10384‑007‑0507‑518626730
    [Google Scholar]
  36. KowalT.J. ProssedaP.P. NingK. WangB. AlvaradoJ. SendayenB.E. JabbehdariS. StamerW.D. HuY. SunY. Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model.Transl. Vis. Sci. Technol.20211061010.1167/tvst.10.6.1034111256
    [Google Scholar]
  37. HorngC.T. YangY.L. ChenC.C. HuangY.S. ChenC. ChenF.A. Intraocular pressure-lowering effect of Cordyceps cicadae mycelia extract in a glaucoma rat model.Int. J. Med. Sci.20211841007101410.7150/ijms.4791233456358
    [Google Scholar]
  38. KumarS. ShahS. DeutschE.R. TangH.M. DaniasJ. Triamcinolone acetonide decreases outflow facility in C57BL/6 mouse eyes.Invest. Ophthalmol. Vis. Sci.20135421280128710.1167/iovs.12‑1122323322580
    [Google Scholar]
  39. MaddineniP. KasettiR.B. PatelP.D. MillarJ.C. KiehlbauchC. ClarkA.F. ZodeG.S. CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma.Mol. Neurodegener.20201514810.1186/s13024‑020‑00400‑932854767
    [Google Scholar]
  40. RodrigoM.J. Garcia-HerranzD. Aragón-NavasA. SubiasM. Martinez-RincónT. Mendez-MartínezS. CardielM.J. García-FeijooJ. RuberteJ. Herrero-VanrellR. PabloL. Garcia-MartinE. Bravo-OsunaI. Long-term corticosteroid-induced chronic glaucoma model produced by intracameral injection of dexamethasone-loaded PLGA microspheres.Drug Deliv.20212812427244610.1080/10717544.2021.199824534763590
    [Google Scholar]
  41. Aragón-NavasA. RodrigoM.J. Garcia-HerranzD. MartinezT. SubiasM. MendezS. RuberteJ. PampalonaJ. Bravo-OsunaI. Garcia-FeijooJ. PabloL.E. Garcia-MartinE. Herrero-VanrellR. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres.Drug Deliv.20222912357237410.1080/10717544.2022.209671235904152
    [Google Scholar]
  42. WangC. LiL. LiuZ. Experimental research on the relationship between the stiffness and the expressions of fibronectin proteins and adaptor proteins of rat trabecular meshwork cells.BMC Ophthalmol.201717126810.1186/s12886‑017‑0662‑529284449
    [Google Scholar]
  43. LiangX. LiN. RongY. WangJ. ZhangH. Identification of proteomic changes for dexamethasone-induced ocular hypertension using a tandem mass tag (TMT) approach.Exp. Eye Res.202221610891410.1016/j.exer.2021.10891434979099
    [Google Scholar]
  44. SatoK. NishiguchiK.M. MaruyamaK. MoritohS. FujitaK. IkutaY. KasaiH. NakazawaT. Topical ocular dexamethasone decreases intraocular pressure and body weight in rats.J. Negat. Results Biomed.2016151510.1186/s12952‑016‑0048‑x26971048
    [Google Scholar]
  45. ZodeG.S. SharmaA.B. LinX. SearbyC.C. BuggeK. KimG.H. ClarkA.F. SheffieldV.C. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma.J. Clin. Invest.201412451956196510.1172/JCI6977424691439
    [Google Scholar]
  46. MermoudA. BaerveldtG. MincklerD.S. PrataJ.A.Jr RaoN.A. Aqueous humor dynamics in rats.Graefes Arch. Clin. Exp. Ophthalmol.1996234S1Suppl. 1S198S20310.1007/BF023430728871174
    [Google Scholar]
  47. KrebsM.P. CollinG.B. HicksW.L. YuM. CharetteJ.R. ShiL.Y. WangJ. NaggertJ.K. PeacheyN.S. NishinaP.M. Mouse models of human ocular disease for translational research.PLoS One2017128e018383710.1371/journal.pone.018383728859131
    [Google Scholar]
  48. FarjoR. YuJ. OthmanM.I. YoshidaS. ShethS. GlaserT. BaehrW. SwaroopA. Mouse eye gene microarrays for investigating ocular development and disease.Vision Res.200242446347010.1016/S0042‑6989(01)00219‑X11853762
    [Google Scholar]
  49. WhitlockN.A. McKnightB. CorcoranK.N. RodriguezL.A. RiceD.S. Increased intraocular pressure in mice treated with dexamethasone.Invest. Ophthalmol. Vis. Sci.201051126496650310.1167/iovs.10‑543020671272
    [Google Scholar]
  50. Barbosa-AlfaroD. Andrés-GuerreroV. Fernandez-BuenoI. García-GutiérrezM.T. Gil-AlegreE. Molina-MartínezI.T. Pastor-JimenoJ.C. Herrero-VanrellR. Bravo-OsunaI. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies.Pharmaceutics202113222810.3390/pharmaceutics1302022833562155
    [Google Scholar]
  51. YanZ. TianZ. ChenH. DengS. LinJ. LiaoH. YangX. GeJ. ZhuoY. Analysis of a method for establishing a model with more stable chronic glaucoma in rhesus monkeys.Exp. Eye Res.2015131566210.1016/j.exer.2014.12.01225536534
    [Google Scholar]
  52. KimY. YangJ. KimJ.Y. LeeJ.M. SonW.C. MoonB.G. HL3501, a Novel Selective A3 Adenosine Receptor Antagonist, Lowers Intraocular Pressure (IOP) in Animal Glaucoma Models.Transl. Vis. Sci. Technol.20221123010.1167/tvst.11.2.3035191964
    [Google Scholar]
  53. GoslingAA KilandJA RutkowskiLE HoefsA EllinwoodNM McLellanGJ Effects of topical corticosteroid administration on intraocular pressure in normal and glaucomatous cats.Veterinary ophthalmology2016Suppl 1Suppl 1697610.1111/vop.12355
    [Google Scholar]
  54. GeromettaR. KumarS. ShahS. AlvarezL. CandiaO. DaniasJ. Reduction of steroid-induced intraocular pressure elevation in sheep by tissue plasminogen activator.Invest. Ophthalmol. Vis. Sci.201354137903790910.1167/iovs.13‑1280124176900
    [Google Scholar]
  55. CandiaO.A. GeromettaR.M. DaniasJ. Tissue plasminogen activator reduces the elevated intraocular pressure induced by prednisolone in sheep.Exp. Eye Res.201412811411610.1016/j.exer.2014.10.00425304217
    [Google Scholar]
  56. DaniasJ. GeromettaR. GeY. RenL. PanagisL. MittagT.W. CandiaO.A. PodosS.M. Gene expression changes in steroid-induced IOP elevation in bovine trabecular meshwork.Invest. Ophthalmol. Vis. Sci.201152128636864510.1167/iovs.11‑756321980000
    [Google Scholar]
  57. SeemanJ. HubbardW.C. GabeltB.T. KaufmanP.K. 3Alpha,5beta-tetrahydrocortisol effect on outflow facility.J. Ocul. Pharmacol. Ther.2002181353910.1089/10807680231723319911858613
    [Google Scholar]
  58. CandiaOA GeromettaR MillarJC PodosSM Suppression of corticosteroid-induced ocular hypertension in sheep by anecortave.Archives of ophthalmology20101283338343
    [Google Scholar]
  59. SheppardLB The anatomy and histology of the normal rabbit eye with special reference to the ciliary zone.Archives of ophthalmology19626787100
    [Google Scholar]
  60. PerlmanI. Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques.Doc. Ophthalmol.2009118132810.1007/s10633‑008‑9153‑618998183
    [Google Scholar]
  61. AbdoM. HaddadS. EmamM. Development of the New Zealand White Rabbit Eye: I. Pre- and Postnatal Development of Eye Tunics.Anat. Histol. Embryol.201746542343010.1111/ahe.1228428703411
    [Google Scholar]
  62. YamagiwaY. KurataM. SatohH. Histological Features of Postnatal Development of the Eye in White Rabbits.Toxicol. Pathol.202149341943710.1177/019262332091546032323615
    [Google Scholar]
  63. BergmansonJ.P.G. The anatomy of the rabbit aqueous outflow pathway.Acta Ophthalmol.198563549350110.1111/j.1755‑3768.1985.tb05234.x4072628
    [Google Scholar]
  64. KumarS. AcharyaS. BeuermanR. PalkamaA. Numerical solution of ocular fluid dynamics in a rabbit eye: parametric effects.Ann. Biomed. Eng.200634353054410.1007/s10439‑005‑9048‑616450187
    [Google Scholar]
  65. EdwardD.P. BouhenniR. Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis).Transactions of the American Ophthalmological Society2011;109:66-114
    [Google Scholar]
  66. LiuJ.H.K. Circadian rhythm of intraocular pressure.J. Glaucoma19987214114710.1097/00061198‑199804000‑000149559503
    [Google Scholar]
  67. McLarenJ.W. TrocmeS.D. RelfS. BrubakerR.F. Rate of flow of aqueous humor determined from measurements of aqueous flare.Invest. Ophthalmol. Vis. Sci.19903123393462303332
    [Google Scholar]
  68. LqbalZ. MuhammadZ. ShahM.T. BashirS. KhanT. KhanM.D. Relationship between the concentration of copper and iron in the aqueous humour and intraocular pressure in rabbits treated with topical steroids.Clin. Exp. Ophthalmol.2002301283510.1046/j.1442‑9071.2002.00480.x11885791
    [Google Scholar]
  69. BonomiL PerfettiS NoyaE BellucciR TomazzoliL Experimental corticosteroid ocular hypertension in the rabbit.Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie Albrecht von Graefe's archive for clinical and experimental ophthalmology197820927382
    [Google Scholar]
  70. SongZ. GaoH. LiuH. SunX. Metabolomics of rabbit aqueous humor after administration of glucocorticosteroid.Curr. Eye Res.201136656357010.3109/02713683.2011.56641021591866
    [Google Scholar]
  71. ZerniiE.Y. BaksheevaV.E. IomdinaE.N. AverinaO.A. PermyakovS.E. PhilippovP.P. ZamyatninA.A. SeninI.I. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches.CNS Neurol. Disord. Drug Targets201615326729110.2174/187152731566615111012495726553163
    [Google Scholar]
  72. QinY. LamS. YamG.H.F. ChoyK.W. LiuD.T.L. ChiuT.Y.H. LiW.Y. LamD.S.C. PangC.P. FanD.S.P. A rabbit model of age-dependant ocular hypertensive response to topical corticosteroids.Acta Ophthalmol.201290655956310.1111/j.1755‑3768.2010.02016.x21044276
    [Google Scholar]
  73. KnepperP.A. BreenM. WeinsteinH.G. BlacikL.J. Intraocular pressure and glycosaminoglycan distribution in the rabbit eye: Effect of age and dexamethasone.Exp. Eye Res.197827556757510.1016/0014‑4835(78)90141‑0720430
    [Google Scholar]
  74. LorenzettiO.J. Effects of corticosteroids on ocular dynamics in rabbits.J. Pharmacol. Exp. Ther.197017537637725489927
    [Google Scholar]
  75. NakamuraT. FujiwaraK. SaitouM. TsukiyamaT. Non-human primates as a model for human development.Stem Cell Reports20211651093110310.1016/j.stemcr.2021.03.02133979596
    [Google Scholar]
  76. FingertJ.H. ClarkA.F. CraigJ.E. AlwardW.L. SnibsonG.R. McLaughlinM. TuttleL. MackeyD.A. SheffieldV.C. StoneE.M. Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced ocular hypertension.Invest. Ophthalmol. Vis. Sci.200142114515211133859
    [Google Scholar]
  77. ClarkA.F. SteelyH.T. DickersonJ.E.Jr English-WrightS. StropkiK. McCartneyM.D. JacobsonN. ShepardA.R. ClarkJ.I. MatsushimaH. PeskindE.R. LeverenzJ.B. WilkinsonC.W. SwiderskiR.E. FingertJ.H. SheffieldV.C. StoneE.M. Glucocorticoid induction of the glaucoma gene MYOC in human and monkey trabecular meshwork cells and tissues.Invest. Ophthalmol. Vis. Sci.20014281769178011431441
    [Google Scholar]
  78. BeckerB. Intraocular pressure response to topical corticosteroids.Invest. Ophthalmol.1965419820514283013
    [Google Scholar]
  79. EzranC. KaranewskyC.J. PendletonJ.L. SholtzA. BiermannM.R. WillickJ. RazafindrakotoA. ZohdyS. AlbertelliM.A. KrasnowM.A. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.Genetics2017206265166410.1534/genetics.116.19944828592502
    [Google Scholar]
  80. PhillipsK.A. BalesK.L. CapitanioJ.P. ConleyA. CzotyP.W. ’t HartB.A. HopkinsW.D. HuS.L. MillerL.A. NaderM.A. NathanielszP.W. RogersJ. ShivelyC.A. VoytkoM.L. Why primate models matter.Am. J. Primatol.201476980182710.1002/ajp.2228124723482
    [Google Scholar]
  81. GeromettaR PodosSM CandiaOA Steroid-induced ocular hypertension in normal cattle.Archives of ophthalmology20041221014921497
    [Google Scholar]
  82. GeromettaR. PodosS.M. DaniasJ. CandiaO.A. Steroid-induced ocular hypertension in normal sheep.Invest. Ophthalmol. Vis. Sci.200950266967310.1167/iovs.08‑241018824726
    [Google Scholar]
  83. TripathiR.C. Ultrastructure of the exit pathway of the aqueous in lower mammals.Exp. Eye Res.197112331131410.1016/0014‑4835(71)90155‑25130275
    [Google Scholar]
  84. MaoW. Tovar-VidalesT. YorioT. WordingerR.J. ClarkA.F. Perfusion-cultured bovine anterior segments as an ex-vivo model for studying glucocorticoid-induced ocular hypertension and glaucoma.Invest. Ophthalmol. Vis. Sci.201152118068807510.1167/iovs.11‑813321911581
    [Google Scholar]
  85. Van BuskirkE.M. The canine eye: the vessels of aqueous drainage.Invest. Ophthalmol. Vis. Sci.1979183223230422328
    [Google Scholar]
  86. SnyderK.C. OikawaK. WilliamsJ. KilandJ.A. GehrkeS. TeixeiraL.B.C. HuangA.S. McLellanG.J. Imaging Distal Aqueous Outflow Pathways in a Spontaneous Model of Congenital Glaucoma.Transl. Vis. Sci. Technol.2019852210.1167/tvst.8.5.2231616579
    [Google Scholar]
  87. NarfströmK. DeckmanK.H. Menotti-RaymondM. Cats: a gold mine for ophthalmology.Annu. Rev. Anim. Biosci.20131115717710.1146/annurev‑animal‑031412‑10362925387015
    [Google Scholar]
  88. ZhanG.L. MirandaO.C. BitoL.Z. Steroid glaucoma: Corticosteroid-induced ocular hypertension in cats.Exp. Eye Res.199254221121810.1016/S0014‑4835(05)80210‑61559550
    [Google Scholar]
  89. BhattacherjeeP PatersonCA SpellmanJM GraffG YanniJM Pharmacological validation of a feline model of steroid-induced ocular hypertension.Archives of ophthalmology19991173361364
    [Google Scholar]
  90. KahaneN. Bdolah-AbramT. RaskanskyH. OfriR. The effects of 1% prednisolone acetate on pupil diameter and intraocular pressure in healthy dogs treated with 0.005% latanoprost.Vet. Ophthalmol.201619647347910.1111/vop.1232926621425
    [Google Scholar]
  91. HerringI.P. HerringE.S. WardD.L. Effect of orally administered hydrocortisone on intraocular pressure in nonglaucomatous dogs.Vet. Ophthalmol.20047638138410.1111/j.1463‑5224.2004.04036.x15511278
    [Google Scholar]
  92. MolledaJM TardónRH GallardoJM Martín-SuárezEM The ocular effects of intravitreal triamcinolone acetonide in dogs.Veterinary journalLondon, England20081763326332
    [Google Scholar]
  93. GelattK.N. MackayE.O. The ocular hypertensive effects of topical 0.1% dexamethasone in beagles with inherited glaucoma.J. Ocul. Pharmacol. Ther.1998141576610.1089/jop.1998.14.579493783
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501333936240801053620
Loading
/content/journals/cdt/10.2174/0113894501333936240801053620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test