Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts.

The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501304747240823111337
2024-10-08
2025-04-19
Loading full text...

Full text loading...

References

  1. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  2. LiX. PuW. ZhengQ. AiM. ChenS. PengY. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.Mol. Cancer20222119910.1186/s12943‑021‑01434‑335410300
    [Google Scholar]
  3. WangC. ZhangY. YangS. ChenW. XingD. PROTACs for BRDs proteins in cancer therapy: A review.J. Enzyme Inhib. Med. Chem.20223711694170310.1080/14756366.2022.208116435702740
    [Google Scholar]
  4. ZhangK. GaoL. WangJ. ChuX. ZhangZ. ZhangY. FangF. TaoY. LiX. TianY. LiZ. SangX. MaL. LuL. ChenY. YuJ. ZhuoR. WuS. PanJ. HuS. A novel BRD family PROTAC inhibitor dBET1 exerts great anti-cancer effects by targeting c-MYC in acute myeloid leukemia cells.Pathol. Oncol. Res.202228161044710.3389/pore.2022.161044735832114
    [Google Scholar]
  5. LiuY. LiuH. YeM. JiangM. ChenX. SongG. JiH. WangZ. ZhuX. Methylation of BRD4 by PRMT1 regulates BRD4 phosphorylation and promotes ovarian cancer invasion.Cell Death Dis.202314962410.1038/s41419‑023‑06149‑537737256
    [Google Scholar]
  6. PanZ. ZhaoY. WangX. XieX. LiuM. ZhangK. WangL. BaiD. FosterL.J. ShuR. HeG. Targeting bromodomain-containing proteins: Research advances of drug discovery.Molecular Biomedicine2023411310.1186/s43556‑023‑00127‑137142850
    [Google Scholar]
  7. HaynesS.R. MozerB.A. Bhatia-DeyN. DawidI.B. The Drosophila fsh locus, a maternal effect homeotic gene, encodes apparent membrane proteins.Dev. Biol.1989134124625710.1016/0012‑1606(89)90094‑82567251
    [Google Scholar]
  8. DiganM.E. HaynesS.R. MozerB.A. DawidI.B. ForquignonF. GansM. Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila.Dev. Biol.1986114116116910.1016/0012‑1606(86)90392‑13007240
    [Google Scholar]
  9. BeckS. HansonI. KellyA. PappinD.J.C. TrowsdaleJ. A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC.DNA Seq.19922420321010.3109/104251792090208041352711
    [Google Scholar]
  10. ChuaP. RoederG.S. Bdf1, a yeast chromosomal protein required for sporulation.Mol. Cell. Biol.19951573685369610.1128/MCB.15.7.36857791775
    [Google Scholar]
  11. HaynesS.R. DollardC. WinstonF. BeckS. TrowsdaleJ. DawidI.B. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins.Nucleic Acids Res.19922010260310.1093/nar/20.10.26031350857
    [Google Scholar]
  12. ShiinaT. AndoA. SutoY. KasaiF. ShigenariA. TakishimaN. KikkawaE. IwataK. KuwanoY. KitamuraY. MatsuzawaY. SanoK. NogamiM. KawataH. LiS. FukuzumiY. YamazakiM. TashiroH. TamiyaG. KohdaA. OkumuraK. IkemuraT. SoedaE. MizukiN. KimuraM. BahramS. InokoH. Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22.Genome Res.200111578980210.1101/gr.17580111337475
    [Google Scholar]
  13. Abi-RachedL. GillesA. ShiinaT. PontarottiP. InokoH. Evidence of en bloc duplication in vertebrate genomes.Nat. Genet.200231110010510.1038/ng85511967531
    [Google Scholar]
  14. OhnoS. WolfU. AtkinN.B. KissingerM. PattatucciA.M. KaufmanT.C. KennisonJ.A. Evolution from fish to mammals by gene duplication.Hereditas196859116918710.1111/j.1601‑5223.1968.tb02169.x5662632
    [Google Scholar]
  15. TamkunJ.W. DeuringR. ScottM.P. KissingerM. PattatucciA.M. KaufmanT.C. KennisonJ.A. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2.Cell199268356157210.1016/0092‑8674(92)90191‑E1346755
    [Google Scholar]
  16. MorganM.A.J. ShilatifardA. Epigenetic moonlighting: Catalytic-independent functions of histone modifiers in regulating transcription.Sci. Adv.2023916eadg659310.1126/sciadv.adg659337083523
    [Google Scholar]
  17. BannisterA.J. KouzaridesT. The CBP co-activator is a histone acetyltransferase.Nature1996384661064164310.1038/384641a08967953
    [Google Scholar]
  18. RaoA. NiZ. SureshD. MohantyC. WangA.R. LeeD.L. NickelK.P. VaramballyS.R. LambertP.F. KendziorskiC. IyerG. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response.bioRxiv202310.1101/2023.10.02.560587
    [Google Scholar]
  19. StrahlB.D. AllisC.D. The language of covalent histone modifications.Nature20004036765414510.1038/4741210638745
    [Google Scholar]
  20. ConstantinT.A. GreenlandK.K. Varela-CarverA. BevanC.L. Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer.Oncogene202241243303331510.1038/s41388‑022‑02347‑135568739
    [Google Scholar]
  21. LiuB. LiuX. HanL. ChenX. WuX. WuJ. YanD. WangY. LiuS. ShanL. ZhangY. ShangY. BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer.Proc. Natl. Acad. Sci. USA20221196e210913311910.1073/pnas.210913311935105803
    [Google Scholar]
  22. GuanX. CheryalaN. KarimR.M. ChanA. BerndtN. QiJ. GeorgG.I. SchönbrunnE. Bivalent BET bromodomain inhibitors confer increased potency and selectivity for BRDT via protein conformational plasticity.J. Med. Chem.20226515104411045810.1021/acs.jmedchem.2c0045335867655
    [Google Scholar]
  23. DavalosV. EstellerM. Cancer epigenetics in clinical practice.CA Cancer J. Clin.202373437642410.3322/caac.2176536512337
    [Google Scholar]
  24. FrenchC.A. ChengM.L. HannaG.J. DuBoisS.G. ChauN.G. HannC.L. StorckS. SalgiaR. TruccoM. TsengJ. StathisA. PiekarzR. LauerU.M. MassardC. BennettK. CokerS. Tontsch-GruntU. SosM.L. LiaoS. WuC.J. PolyakK. Piha-PaulS.A. ShapiroG.I. Report of the first international symposium on NUT carcinoma.Clin. Cancer Res.202228122493250510.1158/1078‑0432.CCR‑22‑059135417004
    [Google Scholar]
  25. HuJ. PanD. LiG. ChenK. HuX. Regulation of programmed cell death by Brd4.Cell Death Dis.20221312105910.1038/s41419‑022‑05505‑136539410
    [Google Scholar]
  26. JaafariA. Potential epigenetic modifiers targeting the alteration of methylation in colorectal cancer.Gene Expr.202423213915210.14218/GE.2023.00039S
    [Google Scholar]
  27. TaoL. MohammadM.A. MilazzoG. Moreno-SmithM. PatelT.D. ZormanB. BadachhapeA. HernandezB.E. WolfA.B. ZengZ. FosterJ.H. AloisiS. SumazinP. ZuY. HicksJ. GhaghadaK.B. PutluriN. PeriniG. CoarfaC. BarbieriE. MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma.Nat. Commun.2022131372810.1038/s41467‑022‑31331‑235764645
    [Google Scholar]
  28. MühlingJ. Vessel adherent growth and molecular markers in neuroblastoma.Dissertation to obtain a doctorate in medicine at the Faculty of Medicine Ludwig Maximilian University of Munich.2021
    [Google Scholar]
  29. KawanoA. HazardF.K. ChiuB. NaranjoA. LaBarreB. LondonW.B. HogartyM.D. CohnS.L. MarisJ.M. ParkJ.R. Gastier-FosterJ.M. IkegakiN. ShimadaH. Stage 4S Neuroblastoma.Am. J. Surg. Pathol.20214581075108110.1097/PAS.000000000000164733739795
    [Google Scholar]
  30. HalderT.G. SoldiR. SharmaS. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics.Curr. Opin. Oncol.202133552653110.1097/CCO.000000000000076334280171
    [Google Scholar]
  31. TaniguchiY. MatsuzakaY. FujimotoH. MiyadoK. KohdaA. OkumuraK. KimuraM. InokoH. Nucleotide sequence of the ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells.Genomics199851111412310.1006/geno.1998.52629693039
    [Google Scholar]
  32. PetrovaM. MargasyukS. VorobevaM. SkvortsovD. DontsovaO.A. PervouchineD.D. BRD2 and BRD3 genes independently evolved RNA structures to control unproductive splicing.NAR Genom. Bioinform.202461lqad11310.1093/nargab/lqad11338226395
    [Google Scholar]
  33. WuT. HouH. DeyA. BachuM. ChenX. WisniewskiJ. KudohF. ChenC. ChauhanS. XiaoH. PanR. OzatoK. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage.iScience202427710979710.1016/j.isci.2024.10979738993671
    [Google Scholar]
  34. PapadimitropoulouA. MakriM. ZoidisG. MYC the oncogene from hell: Novel opportunities for cancer therapy.Eur. J. Med. Chem.202426711619410.1016/j.ejmech.2024.11619438340508
    [Google Scholar]
  35. AhmadiS.E. RahimiS. ZarandiB. ChegeniR. SafaM. MYC: A multipurpose oncogene with prognostic and therapeutic implications in blood malignancies.J. Hematol. Oncol.202114149
    [Google Scholar]
  36. Kougnassoukou-TcharaPE LashgariA LambertJP The bromodomain acyl-lysine readers in human health and disease.Chromatin Readers in Health and Disease.Cambridge, MassachusettsAcademic Press202410.1016/B978‑0‑12‑823376‑4.00004‑5
    [Google Scholar]
  37. RosenthalZ.C. FassD.M. PayneN.C. SheA. PatnaikD. HennigK.M. TeslaR. WerthmannG.C. GuhlC. ReisS.A. WangX. ChenY. PlaczekM. WilliamsN.S. HookerJ. HerzJ. MazitschekR. HaggartyS.J. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia.Sci. Rep.2024141906410.1038/s41598‑024‑59110‑738643236
    [Google Scholar]
  38. ZhengX. DiktonaiteK. QiuH. Epigenetic reader bromodomain- containing protein 4 in aging-related vascular pathologies and diseases: Molecular basis, functional relevance, and clinical potential.Biomolecules2023137113510.3390/biom1307113537509171
    [Google Scholar]
  39. ChenQ. YangB. LiuX. ZhangX.D. ZhangL. LiuT. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents.Theranostics202212114935494810.7150/thno.7322335836809
    [Google Scholar]
  40. BoysonS.P. GaoC. QuinnK. BoydJ. PaculovaH. FrietzeS. GlassK.C. Functional roles of bromodomain proteins in cancer.Cancers (Basel)20211314360610.3390/cancers1314360634298819
    [Google Scholar]
  41. YamaguchiK. NakagawaS. SakuA. IsobeY. YamaguchiR. SheridanP. TakaneK. IkenoueT. ZhuC. MiuraM. OkawaraY. NagatoishiS. Kozuka-HataH. OyamaM. AikouS. AhikoY. ShidaD. TsumotoK. MiyanoS. ImotoS. FurukawaY. Bromodomain protein BRD8 regulates cell cycle progression in colorectal cancer cells through a TIP60-independent regulation of the pre-RC complex.iScience202326410656310.1016/j.isci.2023.10656337123243
    [Google Scholar]
  42. XiaoL. ParoliaA. QiaoY. BawaP. EyunniS. MannanR. CarsonS.E. ChangY. WangX. ZhangY. VoJ.N. KregelS. SimkoS.A. DelektaA.D. JaberM. ZhengH. ApelI.J. McMurryL. SuF. WangR. Zelenka-WangS. SasmalS. KhareL. MukherjeeS. AbbineniC. AithalK. BhaktaM.S. GhuryeJ. CaoX. NavoneN.M. NesvizhskiiA.I. MehraR. VaishampayanU. BlanchetteM. WangY. SamajdarS. RamachandraM. ChinnaiyanA.M. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer.Nature2022601789343443910.1038/s41586‑021‑04246‑z34937944
    [Google Scholar]
  43. SunL. ZhangH. GaoP. Metabolic reprogramming and epigenetic modifications on the path to cancer.Protein Cell2022131287791910.1007/s13238‑021‑00846‑734050894
    [Google Scholar]
  44. NinD.S. DengL.W. Biology of cancer-testis antigens and their therapeutic implications in cancer.Cells202312692610.3390/cells1206092636980267
    [Google Scholar]
  45. PatnaikE. MaduC. LuY. Epigenetic modulators as therapeutic agents in Cancer.Int. J. Mol. Sci.202324191496410.3390/ijms24191496437834411
    [Google Scholar]
  46. ZhaoB. QiaoG. LiJ. WangY. LiX. ZhangH. ZhangL. TRIM36 suppresses cell growth and promotes apoptosis in human esophageal squamous cell carcinoma cells by inhibiting Wnt/β-catenin signaling pathway.Hum. Cell20223551487149810.1007/s13577‑022‑00737‑x35768649
    [Google Scholar]
  47. WangZ.Q. ZhangZ.C. WuY.Y. PiY.N. LouS.H. LiuT.B. LouG. YangC. Bromodomain and extraterminal (BET) proteins: Biological functions, diseases, and targeted therapy.Signal Transduct. Target. Ther.20238142010.1038/s41392‑023‑01647‑637926722
    [Google Scholar]
  48. AntalC.E. OhT.G. AignerS. LuoE.C. YeeB.A. CamposT. TiriacH. RothamelK.L. ChengZ. JiaoH. WangA. HahN. LenkiewiczE. LumibaoJ.C. TruittM.L. EstepaG. BanayoE. BashiS. EsparzaE. MunozR.M. DiedrichJ.K. SodirN.M. MuellerJ.R. FraserC.R. BorazanciE. PropperD. Von HoffD.D. LiddleC. YuR.T. AtkinsA.R. HanH. LowyA.M. BarrettM.T. EngleD.D. EvanG.I. YeoG.W. DownesM. EvansR.M. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer.Nat. Commun.2023141519510.1038/s41467‑023‑40798‑637673892
    [Google Scholar]
  49. TeuscherK.B. MillsJ.J. TianJ. HanC. MeyersK.M. SaiJ. SouthT.M. CrowM.M. Van MeverenM. SensintaffarJ.L. ZhaoB. AmporndanaiK. MooreW.J. StottG.M. TanseyW.P. LeeT. FesikS.W. Structure-based discovery of potent, orally bioavailable benzoxazepinone-based WD repeat domain 5 inhibitors.J. Med. Chem.20236624167831680610.1021/acs.jmedchem.3c0152938085679
    [Google Scholar]
  50. PatriarcaA. GaidanoG. Investigational drugs for the treatment of diffuse large B-cell lymphoma.Expert Opin. Investig. Drugs2021301253810.1080/13543784.2021.185514033295827
    [Google Scholar]
  51. SharmaT. The role of bromodomain-containing proteins in development and disease.Curr. Mol. Biol. Rep.20239291910.1007/s40610‑023‑00152‑7
    [Google Scholar]
  52. Llinàs-AriasP. Íñiguez-MuñozS. McCannK. VoorwerkL. OrozcoJ.I.J. Ensenyat-MendezM. SeséB. DiNomeM.L. MarzeseD.M. Epigenetic regulation of immunotherapy response in triple-negative breast cancer.Cancers (Basel)20211316413910.3390/cancers1316413934439290
    [Google Scholar]
  53. FisherM.L. BalinthS. HwangboY. WuC. BallonC. WilkinsonJ.E. GoldbergG.L. MillsA.A. BRD4 regulates transcription factor ΔNp63α to drive a cancer stem cell phenotype in squamous cell carcinomas.Cancer Res.202181246246625810.1158/0008‑5472.CAN‑21‑070734697072
    [Google Scholar]
  54. AndrikopoulouA. LiontosM. KoutsoukosK. DimopoulosM.A. ZagouriF. Clinical perspectives of BET inhibition in ovarian cancer.Cell Oncol. (Dordr.)202144223724910.1007/s13402‑020‑00578‑633469840
    [Google Scholar]
  55. CheungK.L. KimC. ZhouM.M. The functions of BET proteins in gene transcription of biology and diseases.Front. Mol. Biosci.2021872877710.3389/fmolb.2021.72877734540900
    [Google Scholar]
  56. ShuS. WuH.J. GeJ.Y. ZeidR. HarrisI.S. JovanovićB. MurphyK. WangB. QiuX. EndressJ.E. ReyesJ. LimK. Font-TelloA. SyamalaS. XiaoT. Reddy ChilamakuriC.S. PapachristouE.K. D’SantosC. AnandJ. HinoharaK. LiW. McDonaldT.O. LuomaA. ModisteR.J. NguyenQ.D. MichelB. CejasP. KadochC. JaffeJ.D. WucherpfennigK.W. QiJ. LiuX.S. LongH. BrownM. CarrollJ.S. BruggeJ.S. BradnerJ. MichorF. PolyakK. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer.Mol. Cell202078610961113.e810.1016/j.molcel.2020.04.02732416067
    [Google Scholar]
  57. JinN. GeorgeT.L. OttersonG.A. VerschraegenC. WenH. CarboneD. HermanJ. BertinoE.M. HeK. Advances in epigenetic therapeutics with focus on solid tumors.Clin. Epigenetics20211318310.1186/s13148‑021‑01069‑733879235
    [Google Scholar]
  58. TangP. ZhangJ. LiuJ. ChiangC.M. OuyangL. Targeting bromodomain and extraterminal proteins for drug discovery: From current progress to technological development.J. Med. Chem.20216452419243510.1021/acs.jmedchem.0c0148733616410
    [Google Scholar]
  59. WernerssonS. BobbyR. FlavellL. MilbradtA.G. HoldgateG.A. EmbreyK.J. AkkeM. Bromodomain interactions with acetylated histone 4 peptides in the BRD4 tandem domain: Effects on domain dynamics and internal flexibility.Biochemistry202261212303231810.1021/acs.biochem.2c0022636215732
    [Google Scholar]
  60. MartellaN. PensabeneD. VaroneM. ColardoM. PetraroiaM. SergioW. La RosaP. MorenoS. SegattoM. Bromodomain and extra-terminal proteins in brain physiology and pathology: BET-ing on epigenetic regulation.Biomedicines202311375010.3390/biomedicines1103075036979729
    [Google Scholar]
  61. ChenH.S. De LeoA. WangZ. KerekovicA. HillsR. LiebermanP.M. BET-inhibitors disrupt Rad21-dependent conformational control of KSHV latency.PLoS Pathog.2017131e100610010.1371/journal.ppat.100610028107481
    [Google Scholar]
  62. CampbellM. ChantarasrivongC. YanagihashiY. InagakiT. DavisR.R. NakanoK. KumarA. TepperC.G. IzumiyaY. KSHV topologically associating domains in latent and reactivated viral chromatin.J. Virol.20229614e00565-2210.1128/jvi.00565‑2235867573
    [Google Scholar]
  63. HuG. DongX. GongS. SongY. HutchinsA.P. YaoH. Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions.Nucleic Acids Res.202048179606962010.1093/nar/gkaa70532885250
    [Google Scholar]
  64. CostantinoL. HsiehT.H.S. LamotheR. DarzacqX. KoshlandD. Cohesin residency determines chromatin loop patterns.eLife20209e5988910.7554/eLife.5988933170773
    [Google Scholar]
  65. HuangK. LiY. ShimA.R. VirkR.K.A. AgrawalV. EsheinA. NapR.J. AlmassalhaL.M. BackmanV. SzleiferI. Physical and data structure of 3D genome.Sci. Adv.202062eaay405510.1126/sciadv.aay405531950084
    [Google Scholar]
  66. EspositoA. AbrahamA. ConteM. VercelloneF. PriscoA. BiancoS. ChiarielloA.M. The physics of DNA folding: Polymer models and phase-separation.Polymers (Basel)2022149191810.3390/polym1409191835567087
    [Google Scholar]
  67. WuS. BafnaV. ChangH.Y. MischelP.S. Extrachromosomal DNA: An emerging hallmark in human cancer.Annu. Rev. Pathol.202217136738610.1146/annurev‑pathmechdis‑051821‑11422334752712
    [Google Scholar]
  68. LiG. PuP. PanM. WengX. QiuS. LiY. AbbasS.J. ZouL. LiuK. WangZ. ShaoZ. JiangL. WuW. LiuY. ShaoR. LiuF. LiuY. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer.Front. Med.202418110912710.1007/s11684‑023‑1008‑837721643
    [Google Scholar]
  69. KadotaS. OuJ. ShiY. LeeJ.T. SunJ. YildirimE. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding.Nat. Commun.2020111260610.1038/s41467‑020‑16394‑332451376
    [Google Scholar]
  70. KuboN. ChenP.B. HuR. YeZ. SasakiH. RenB. H3K4me1 facilitates promoter-enhancer interactions and gene activation during embryonic stem cell differentiation.Mol. Cell202484917421752.e510.1016/j.molcel.2024.02.03038513661
    [Google Scholar]
  71. WangL. ZhangL. LiS. CaoL. LiK. ZhaoW. A novel acetylation-immune subtyping for the identification of a BET inhibitor-sensitive subgroup in Melanoma.Pharmaceuticals (Basel)2023167103710.3390/ph1607103737513949
    [Google Scholar]
  72. EnríquezP. KrajewskiK. StrahlB.D. RothbartS.B. DowenR.H. RoseR.B. Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain interaction with acetylated histone H3K14.J. Biol. Chem.2021297410114510.1016/j.jbc.2021.10114534473995
    [Google Scholar]
  73. KikuchiM. MoritaS. GotoM. WakamoriM. KatsuraK. HanadaK. ShirouzuM. UmeharaT. Elucidation of binding preferences of YEATS domains to site-specific acetylated nucleosome core particles.J. Biol. Chem.2022298810216410.1016/j.jbc.2022.10216435732209
    [Google Scholar]
  74. ValsakumarD. VoigtP. Nucleosomal asymmetry: A novel mechanism to regulate nucleosome function.Biochem. Soc. Trans.20245231219123210.1042/BST2023087738778762
    [Google Scholar]
  75. WangN. WuR. TangD. KangR. The BET family in immunity and disease.Signal Transduct. Target. Ther.2021612310.1038/s41392‑020‑00384‑433462181
    [Google Scholar]
  76. WangC. XuQ. ZhangX. DayD.S. AbrahamB.J. LunK. ChenL. HuangJ. JiX. BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation.Cell. Mol. Life Sci.202279633810.1007/s00018‑022‑04349‑435665862
    [Google Scholar]
  77. JonesM.H. NumataM. ShimaneM. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh.Genomics199745352953410.1006/geno.1997.50009367677
    [Google Scholar]
  78. TaniguchiY. SuzukiH. OhtsukaM. KikuchiN. KimuraM. InokoH. Isolation and characterization of three genes paralogous to mouse Ring3.Nucleic Acids Symp. Ser.20011124724810.1093/nass/1.1.247
    [Google Scholar]
  79. WisniewskiA. GeorgG.I. BET proteins: Investigating BRDT as a potential target for male contraception.Bioorg. Med. Chem. Lett.202030612695810.1016/j.bmcl.2020.12695832019712
    [Google Scholar]
  80. KayyarB. KatarukaS. Suresh AkhadeV. RaoM.R.S. Molecular functions of Mrhl lncRNA in mouse spermatogenesis.Reproduction20231663R39R5010.1530/REP‑23‑006537345883
    [Google Scholar]
  81. AliH.A. LiY. BilalA.H.M. QinT. YuanZ. ZhaoW. A comprehensive review of BET protein biochemistry, physiology, and pathological roles.Front. Pharmacol.20221381889110.3389/fphar.2022.81889135401196
    [Google Scholar]
  82. TaniguchiY. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins.Int. J. Mol. Sci.20161711184910.3390/ijms1711184927827996
    [Google Scholar]
  83. WangX. KutschatA.P. YamadaM. ProkakisE. BöttcherP. TanakaK. DokiY. HamdanF.H. JohnsenS.A. Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas.Cell Death Differ.20212872207222010.1038/s41418‑021‑00751‑w33658703
    [Google Scholar]
  84. DharS. ThotaA. RaoM.R.S. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis.J. Biol. Chem.201228796387640510.1074/jbc.M111.28816722215678
    [Google Scholar]
  85. Ahmad ParrayZ. HamzaA. BhardwajP. SamadA. Imtaiyaz HassanM. ParveenS. IslamA. Interaction studies of recombinant laccase with co-solutes: Using various spectroscopic, calorimetric, and in silico approaches.J. Mol. Liq.202338812276910.1016/j.molliq.2023.122769
    [Google Scholar]
  86. PatelK. SolomonP.D. WalsheJ.L. FordD.J. Wilkinson-WhiteL. PayneR.J. LowJ.K.K. MackayJ.P. BET-family bromodomains can recognize diacetylated sequences from transcription factors using a conserved mechanism.Biochemistry202160964866210.1021/acs.biochem.0c0081633620209
    [Google Scholar]
  87. LloydJ.T. McLaughlinK. LubulaM.Y. GayJ.C. DestA. GaoC. PhillipsM. TonelliM. CornilescuG. MarundeM.R. EvansC.M. BoysonS.P. CarlsonS. KeoghM.C. MarkleyJ.L. FrietzeS. GlassK.C. Structural insights into the recognition of mono-and diacetylated histones by the ATAD2B bromodomain.J. Med. Chem.20206321127991281310.1021/acs.jmedchem.0c0117833084328
    [Google Scholar]
  88. BibiR JehanS RazakS HammadehME AmorH Sperm chromatin abnormalities and dna damage predict assisted reproductive outcome.Preprint202210.21203/rs.3.rs‑1231874/v1
    [Google Scholar]
  89. MoritzL. HammoudS.S. The art of packaging the sperm genome: Molecular and structural basis of the histone-to-protamine exchange.Front. Endocrinol. (Lausanne)20221389550210.3389/fendo.2022.89550235813619
    [Google Scholar]
  90. GilgenastT.G. Development and application of computational tools for unraveling the structure of the 3D Genome.Doctoral dissertation, University of Pennsylvania2021
    [Google Scholar]
  91. ZhaoL. WangY. JaganathanA. SunY. MaN. LiN. HanX. SunX. YiH. FuS. HanF. LiX. XiaoK. WalshM.J. ZengL. ZhouM.M. CheungK.L. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation.EMBO J.2023426e11147310.15252/embj.202211147336719036
    [Google Scholar]
  92. Drumond-BockA.L. BieniaszM. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis.Mol. Cancer202120114510.1186/s12943‑021‑01424‑534758842
    [Google Scholar]
  93. GaálZ. Targeted epigenetic interventions in cancer with an emphasis on pediatric malignancies.Biomolecules20221316110.3390/biom1301006136671446
    [Google Scholar]
  94. WangY. LiuY. WangL. YangC. NieZ. YuanJ. Mechanism of BRD4 inhibitor-mediated c-MYC expression and regulation of AR expression to inhibit prostate cancer.J. Biomed. Nanotechnol.20242071099110510.1166/jbn.2024.3874
    [Google Scholar]
  95. QuailD.F. JoyceJ.A. The microenvironmental landscape of brain tumors.Cancer Cell201731332634110.1016/j.ccell.2017.02.00928292436
    [Google Scholar]
  96. NationD.A. SweeneyM.D. MontagneA. SagareA.P. D’OrazioL.M. PachicanoM. SepehrbandF. NelsonA.R. BuennagelD.P. HarringtonM.G. BenzingerT.L.S. FaganA.M. RingmanJ.M. SchneiderL.S. MorrisJ.C. ChuiH.C. LawM. TogaA.W. ZlokovicB.V. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction.Nat. Med.201925227027610.1038/s41591‑018‑0297‑y30643288
    [Google Scholar]
  97. LiuL. YangC. Candelario-JalilE. Role of BET proteins in inflammation and CNS diseases.Front. Mol. Biosci.2021874844910.3389/fmolb.2021.74844934604312
    [Google Scholar]
  98. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑033082563
    [Google Scholar]
  99. YangG.J. SongY.Q. WangW. HanQ.B. MaD.L. LeungC.H. An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells.Bioorg. Chem.202111410515810.1016/j.bioorg.2021.10515834378541
    [Google Scholar]
  100. LiangY. TianJ. WuT. BRD4 in physiology and pathology: “BET” on its partners.BioEssays20214312210018010.1002/bies.20210018034697817
    [Google Scholar]
  101. FilippakopoulosP. QiJ. PicaudS. ShenY. SmithW.B. FedorovO. MorseE.M. KeatesT. HickmanT.T. FelletarI. PhilpottM. MunroS. McKeownM.R. WangY. ChristieA.L. WestN. CameronM.J. SchwartzB. HeightmanT.D. La ThangueN. FrenchC.A. WiestO. KungA.L. KnappS. BradnerJ.E. Selective inhibition of BET bromodomains.Nature201046873271067107310.1038/nature0950420871596
    [Google Scholar]
  102. KimC.W. ChoiK.C. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies.Life Sci.202127711960710.1016/j.lfs.2021.11960733992675
    [Google Scholar]
  103. KulikowskiE. RakaiB.D. WongN.C.W. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases.Med. Res. Rev.202141122324510.1002/med.2173032926459
    [Google Scholar]
  104. ErringtonTM DenisA PerfitoN IornsE NosekBA Challenges for assessing replicability in preclinical cancer biology.elife2021710e67995
    [Google Scholar]
  105. IyerH. WahulA.B. P KA. SawantB.S. KumarA. A BRD’s (BiRD’s) eye view of BET and BRPF bromodomains in neurological diseases.Rev. Neurosci.202132440342610.1515/revneuro‑2020‑006733661583
    [Google Scholar]
  106. SekirnikA.R. ReynoldsJ.K. SeeL. BluckJ.P. ScorahA.R. TallantC. LeeB. LeszczynskaK.B. GrimleyR.L. StorerR.I. MalattiaM. CrespilloS. CariaS. DuclosS. HammondE.M. KnappS. MorrisG.M. DuarteF. BigginP.C. ConwayS.J. Identification of histone peptide binding specificity and small-molecule ligands for the TRIM33α and TRIM33β bromodomains.ACS Chem. Biol.202217102753276810.1021/acschembio.2c0026636098557
    [Google Scholar]
  107. PeiH. GuoW. PengY. XiongH. ChenY. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective.Med. Res. Rev.20224241607166010.1002/med.2188635312190
    [Google Scholar]
  108. JonesK.L. BeaumontD.M. BernardS.G. BitR.A. CampbellS.P. ChungC. CutlerL. DemontE.H. DennisK. GordonL. GrayJ.R. HaaseM.V. LewisA.J. McClearyS. MitchellD.J. MooreS.M. ParrN. RobbO.J. SmithersN. SodenP.E. SucklingC.J. TaylorS. WalkerA.L. WatsonR.J. PrinjhaR.K. Discovery of a novel bromodomain and extra terminal domain (BET) protein inhibitor, I-BET282E, suitable for clinical progression.J. Med. Chem.20216416122001222710.1021/acs.jmedchem.1c0085534387088
    [Google Scholar]
  109. GarganoD. SegattoM. Di BartolomeoS. Regulation of cell plasticity by bromodomain and extraterminal domain (BET) proteins: A new perspective in glioblastoma therapy.Int. J. Mol. Sci.2023246566510.3390/ijms2406566536982740
    [Google Scholar]
  110. ChenN.C. BorthakurG. PemmarajuN. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms.Leuk. Lymphoma202162352853710.1080/10428194.2020.184239933161793
    [Google Scholar]
  111. SinghD. KhanM.A. SiddiqueH.R. Role of epigenetic drugs in sensitizing cancers to anticancer therapies: Emerging trends and clinical advancements.Epigenomics202315851753710.2217/epi‑2023‑014237313832
    [Google Scholar]
  112. GuH. MaoX. DuM. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update.Crit. Rev. Food Sci. Nutr.202262133437345210.1080/10408398.2020.186587133393366
    [Google Scholar]
  113. GuptaR. JitB.P. KumarS. MittanS. TanwerP. RayM.D. MathurS. PerumalV. KumarL. RathG.K. SharmaA. Leveraging epigenetics to enhance the efficacy of cancer-testis antigen: A potential candidate for immunotherapy.Epigenomics2022141486588610.2217/epi‑2021‑047935872653
    [Google Scholar]
  114. BlitheDL LeeMS Nicht-hormonelle Ansätze zur männlichen Empfängnisverhütung.AndrologieBerlin, HeidelbergSpringer2022
    [Google Scholar]
  115. WanP. ChenZ. ZhongW. JiangH. HuangZ. PengD. HeQ. ChenN. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma.Oncol. Rep.20204462475248610.3892/or.2020.779633125143
    [Google Scholar]
  116. FujinagaK. HuangF. PeterlinB.M. P-TEFb: The master regulator of transcription elongation.Mol. Cell202383339340310.1016/j.molcel.2022.12.00636599353
    [Google Scholar]
  117. ZhangS. ChenY. TianC. HeY. TianZ. WanY. LiuT. Dual-target inhibitors based on BRD4: Novel therapeutic approaches for cancer.Curr. Med. Chem.20212891775179510.2174/092986732766620061017445332520674
    [Google Scholar]
  118. LeeM.S. AnS. SongJ.Y. SungM. JungK. ChangE.S. ChoiJ. OhD.Y. JeonY.K. YangH. LakshmiC. ParkS. HanJ. LeeS.H. ChoiY.L. Cancer-specific sequences in the diagnosis and treatment of NUT carcinoma.Cancer Res. Treat.202355245246710.4143/crt.2022.91036265509
    [Google Scholar]
  119. LeeJ.K. LouzadaS. AnY. KimS.Y. KimS. YoukJ. ParkS. KooS.H. KeamB. JeonY.K. KuJ.L. YangF. KimT.M. JuY.S. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma.Ann. Oncol.201728489089710.1093/annonc/mdw68628203693
    [Google Scholar]
  120. HernándezM.H. UçarN. DeeneyJ.T. JQ1 Epigenetic Modulation of Pancreatic β-Cells (INS-1) Normalizes Glucose Sensitivity under Hyperglycemia: Therapeutic Preventive Implications for Type II Diabetes Mellitus.bioRxiv202310.1101/2023.08.15.553320
    [Google Scholar]
  121. ChenM. ZhaoS. LiangZ. WangW. ZhouP. JiangL. NUT carcinoma of the parotid gland: Report of two cases, one with a rare ZNF532-NUTM1 fusion.Virchows Arch.2022480488789710.1007/s00428‑021‑03253‑935064291
    [Google Scholar]
  122. ClaytonN. PelleiD. LinZ. Histone acetylation, BET proteins, and periodontal inflammation.Mol. Oral Microbiol.202339418018937801007
    [Google Scholar]
  123. CiaccioR. De RosaP. AloisiS. ViggianoM. CimadomL. ZadranS.K. PeriniG. MilazzoG. Targeting oncogenic transcriptional networks in neuroblastoma: From N-Myc to epigenetic drugs.Int. J. Mol. Sci.202122231288310.3390/ijms22231288334884690
    [Google Scholar]
  124. ShahbaziJ. LiuP.Y. AtmadibrataB. BradnerJ.E. MarshallG.M. LockR.B. LiuT. The bromodomain inhibitor JQ1 and the histone deacetylase inhibitor panobinostat synergistically reduce N-Myc expression and induce anticancer effects.Clin. Cancer Res.201622102534254410.1158/1078‑0432.CCR‑15‑166626733615
    [Google Scholar]
  125. QianH. ZhuM. TanX. ZhangY. LiuX. YangL. Super-enhancers and the super-enhancer reader BRD4: Tumorigenic factors and therapeutic targets.Cell Death Discov.20239147010.1038/s41420‑023‑01775‑638135679
    [Google Scholar]
  126. AaltonenK. RadkeK. AdamskaA. SegerA. MañasA. BexellD. Patient-derived models: Advanced tools for precision medicine in neuroblastoma.Front. Oncol.202312108527010.3389/fonc.2022.108527036776363
    [Google Scholar]
  127. GokaniS. BhattL.K. Bromodomains: A novel target for the anticancer therapy.Eur. J. Pharmacol.202191117452310.1016/j.ejphar.2021.17452334563497
    [Google Scholar]
  128. SinghE. Inhibitors of bromodomain-4 and cyclooxygenase-2: A review on the advantageous effect of dual-target approach in cancer treatment.Int. J. Chem. Res.202371210
    [Google Scholar]
  129. NegiV. YangJ. SpeyerG. PulgarinA. HandenA. ZhaoJ. TaiY.Y. TangY. CulleyM.K. YuQ. ForsytheP. GorelovaA. WatsonA.M. Al AarajY. SatohT. Sharifi-SanjaniM. RajaratnamA. SembratJ. ProvencherS. YinX. VargasS.O. RojasM. BonnetS. TorrinoS. WagnerB.K. SchreiberS.L. DaiM. BerteroT. Al GhoulehI. KimS. ChanS.Y. Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension.Sci. Adv.2021743eabh379410.1126/sciadv.abh379434669463
    [Google Scholar]
  130. GreenA.I. BurslemG.M. Focused libraries for epigenetic drug discovery: The importance of isosteres.J. Med. Chem.202164117231724010.1021/acs.jmedchem.1c0059234042449
    [Google Scholar]
  131. HuangS.H. CaoR. LinQ.W. WuS.Q. GaoL.L. SunQ. ZhuQ.H. ZouY. XuY.G. WangS.P. Design, synthesis and mechanism studies of novel dual PARP1/BRD4 inhibitors against pancreatic cancer.Eur. J. Med. Chem.202223011411610.1016/j.ejmech.2022.11411635091172
    [Google Scholar]
  132. ShorstovaT. FoulkesW.D. WitcherM. Achieving clinical success with BET inhibitors as anti-cancer agents.Br. J. Cancer202112491478149010.1038/s41416‑021‑01321‑033723398
    [Google Scholar]
  133. AltendorferE. MochalovaY. MayerA. BRD4: A general regulator of transcription elongation.Transcription2022131-3708110.1080/21541264.2022.210830236047906
    [Google Scholar]
  134. SharpP.A. ChakrabortyA.K. HenningerJ.E. YoungR.A. RNA in formation and regulation of transcriptional condensates.RNA2022281525710.1261/rna.078997.12134772787
    [Google Scholar]
  135. ZhouZ. LiJ. OusmaneD. PengL. YuanX. WangJ. Metabolic reprogramming directed by super-enhancers in tumors: An emerging landscape.Mol. Ther.202432357257910.1016/j.ymthe.2024.02.00338327048
    [Google Scholar]
  136. SinghVV AlauddinS Review on: BRD4 inhibitors for anticancer research.Human Gene2023373201196
    [Google Scholar]
  137. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  138. DhanasekaranR. DeutzmannA. Mahauad-FernandezW.D. HansenA.S. GouwA.M. FelsherD.W. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion.Nat. Rev. Clin. Oncol.2022191233610.1038/s41571‑021‑00549‑234508258
    [Google Scholar]
  139. ShvedunovaM. AkhtarA. Modulation of cellular processes by histone and non-histone protein acetylation.Nat. Rev. Mol. Cell Biol.202223532934910.1038/s41580‑021‑00441‑y35042977
    [Google Scholar]
  140. LlombartV. MansourM.R. Therapeutic targeting of “undruggable” MYC.EBioMedicine20227510375610.1016/j.ebiom.2021.10375634942444
    [Google Scholar]
  141. SahafnejadZ. RamaziS. AllahverdiA. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review.Genes (Basel)202314487310.3390/genes1404087337107631
    [Google Scholar]
  142. EagenK.P. FrenchC.A. Supercharging BRD4 with NUT in carcinoma.Oncogene20214081396140810.1038/s41388‑020‑01625‑033452461
    [Google Scholar]
  143. ZafarA. WangW. LiuG. WangX. XianW. McKeonF. FosterJ. ZhouJ. ZhangR. Molecular targeting therapies for neuroblastoma: Progress and challenges.Med. Res. Rev.2021412961102110.1002/med.2175033155698
    [Google Scholar]
  144. FardSS KouchakiS SalimianZ SotoudehM MousaviSA AlimoghaddamK GhaffariSH Overexpression of bromodomain and extraterminal domain is associated with progression, metastasis and unfavorable outcomes: Highlighting prognostic and therapeutic value of the bet protein family in gastric cancer.Anti-Cancer Agents Med. Chem. 2023237794806
    [Google Scholar]
  145. JinW. TanH. WuJ. HeG. LiuB. Dual-target inhibitors of bromodomain-containing protein 4 (BRD4) in cancer therapy: Current situation and future directions.Drug Discov. Today202227124625610.1016/j.drudis.2021.08.00734438075
    [Google Scholar]
  146. WyceA. DegenhardtY. BaiY. LeB. KorenchukS. CrouthamelM-C. McHughC.F. VessellaR. CreasyC.L. TumminoP.J. BarbashO. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer.Oncotarget20134122419242910.18632/oncotarget.157224293458
    [Google Scholar]
  147. WangR. WangY.A. XuY.G. ShiL. Privileged scaffolds targeting bromodomain-containing Protein 4.Curr. Top. Med. Chem.202222760062710.2174/156802662266622020914394935139799
    [Google Scholar]
  148. TrojerP. Targeting BET bromodomains in cancer.Annu. Rev. Cancer Biol.20226131333610.1146/annurev‑cancerbio‑070120‑103531
    [Google Scholar]
  149. ToK.K.W. XingE. LarueR.C. LiP.K. BET bromodomain inhibitors: Novel design strategies and therapeutic applications.Molecules2023287304310.3390/molecules2807304337049806
    [Google Scholar]
  150. DuanW. YuM. ChenJ. BRD4: New hope in the battle against glioblastoma.Pharmacol. Res.202319110676710.1016/j.phrs.2023.10676737061146
    [Google Scholar]
  151. ServideiT. MecoD. MartiniM. BattagliaA. GranittoA. BuzzonettiA. BabiniG. MassimiL. TamburriniG. ScambiaG. RuggieroA. RiccardiR. The BET inhibitor OTX015 exhibits in vitro and in vivo antitumor activity in pediatric ependymoma stem cell models.Int. J. Mol. Sci.2021224187710.3390/ijms2204187733668642
    [Google Scholar]
  152. AlbrechtBK GehlingVS HewittMC VaswaniRG CôtéA LeblancY NasveschukCG BellonS BergeronL CampbellR CantoneN Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) family as a candidate for human clinical trials.J Med Chem.201659413309
    [Google Scholar]
  153. HuangX. LiuY. WangY. BaileyC. ZhengP. LiuY. Dual targeting oncoproteins MYC and HIF1α regresses tumor growth of lung cancer and lymphoma.Cancers (Basel)202113469410.3390/cancers1304069433572152
    [Google Scholar]
  154. ZengY LiangXH XiaY HeWY JQ1 inhibits proliferation and induces apoptosis of leukemia cells through BCL-2 regulated pathway.Preprint2021
    [Google Scholar]
  155. SarnikJ. PopławskiT. TokarzP. BET proteins as attractive targets for cancer therapeutics.Int. J. Mol. Sci.202122201110210.3390/ijms22201110234681760
    [Google Scholar]
  156. CrewsC.M. GeorgG. WangS. Inducing protein degradation as a therapeutic strategy.J. Med. Chem.201659115129513010.1021/acs.jmedchem.6b0073527199030
    [Google Scholar]
  157. LiD. YuD. LiY. YangR. A bibliometric analysis of PROTAC from 2001 to 2021.Eur. J. Med. Chem.202224411483810.1016/j.ejmech.2022.11483836274273
    [Google Scholar]
  158. PiyaS. LorenziP. McQueenT. DavisE. QianY. AndreeffM. BorthakurG. ARV-825, a BRD4 inhibitor, leads to sustained degradation of BRD4 with broad activity against acute myeloid leukemia and overcomes stroma mediated resistance by modulating chemokine receptor, cell adhesion and metabolic targets.Clin. Lymphoma Myeloma Leuk.201616S36S3710.1016/j.clml.2016.07.051
    [Google Scholar]
  159. LiR. LiuM. YangZ. LiJ. GaoY. TanR. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: Present and future.Molecules20222724882810.3390/molecules2724882836557960
    [Google Scholar]
  160. BarghoutSH Targeted protein degradation: An emerging therapeutic strategy in cancer.Anticancer Agents Med Chem.2021212214230
    [Google Scholar]
  161. JiY. ChenW. WangX. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases.J. Pharmacol. Exp. Ther.2024389327728810.1124/jpet.123.00203638565308
    [Google Scholar]
  162. ZhouX. DongR. ZhangJ.Y. ZhengX. SunL.P. PROTAC: A promising technology for cancer treatment.Eur. J. Med. Chem.202020311253910.1016/j.ejmech.2020.11253932698111
    [Google Scholar]
  163. AroraP. SinghM. SinghV. BhatiaS. AroraS. PROTACs in treatment of cancer: A review.Mini Rev. Med. Chem.202121162347236010.2174/138955752166621022615074033634757
    [Google Scholar]
  164. RemillardD. BuckleyD.L. PaulkJ. BrienG.L. SonnettM. SeoH.S. DastjerdiS. WührM. Dhe-PaganonS. ArmstrongS.A. BradnerJ.E. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands.Angew. Chem. Int. Ed.201756215738574310.1002/anie.20161128128418626
    [Google Scholar]
  165. CiprianoA. SbardellaG. CiulliA. Targeting epigenetic reader domains by chemical biology.Curr. Opin. Chem. Biol.202057829410.1016/j.cbpa.2020.05.00632739717
    [Google Scholar]
  166. XieS. ZhuJ. LiJ. ZhanF. YaoH. XuJ. XuS. Small-molecule hydrophobic tagging: A promising strategy of druglike technology for targeted protein degradation.J. Med. Chem.20236616109171093310.1021/acs.jmedchem.3c0073637535706
    [Google Scholar]
  167. LiuY. QianX. RanC. LiL. FuT. SuD. XieS. TanW. Aptamer-based targeted protein degradation.ACS Nano20231776150616410.1021/acsnano.2c1037936942868
    [Google Scholar]
  168. Giordano AttianeseG.M.P. AshS. IrvingM. Coengineering specificity, safety, and function into T cells for cancer immunotherapy.Immunol. Rev.2023320116619810.1111/imr.1325237548063
    [Google Scholar]
  169. GajjelaB.K. ZhouM.M. Bromodomain inhibitors and therapeutic applications.Curr. Opin. Chem. Biol.20237510232310.1016/j.cbpa.2023.10232337207401
    [Google Scholar]
  170. LiuM. ZhangK. LiQ. PangH. PanZ. HuangX. WangL. WuF. HeG. Recent advances on small-molecule bromodomain-containing histone acetyltransferase inhibitors.J. Med. Chem.20236631678169910.1021/acs.jmedchem.2c0163836695774
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501304747240823111337
Loading
/content/journals/cdt/10.2174/0113894501304747240823111337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test