Skip to content
2000
image of Precision Targeting of BET Proteins - Navigating Disease Pathways, Inhibitor Insights, and Shaping Therapeutic Frontiers: A Comprehensive Review

Abstract

The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts.

The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501304747240823111337
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  2. Li X. Pu W. Zheng Q. Ai M. Chen S. Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022 21 1 99 10.1186/s12943‑021‑01434‑3 35410300
    [Google Scholar]
  3. Wang C. Zhang Y. Yang S. Chen W. Xing D. PROTACs for BRDs proteins in cancer therapy: A review. J. Enzyme Inhib. Med. Chem. 2022 37 1 1694 1703 10.1080/14756366.2022.2081164 35702740
    [Google Scholar]
  4. Zhang K. Gao L. Wang J. Chu X. Zhang Z. Zhang Y. Fang F. Tao Y. Li X. Tian Y. Li Z. Sang X. Ma L. Lu L. Chen Y. Yu J. Zhuo R. Wu S. Pan J. Hu S. A novel BRD family PROTAC inhibitor dBET1 exerts great anti-cancer effects by targeting c-MYC in acute myeloid leukemia cells. Pathol. Oncol. Res. 2022 28 1610447 10.3389/pore.2022.1610447 35832114
    [Google Scholar]
  5. Liu Y. Liu H. Ye M. Jiang M. Chen X. Song G. Ji H. Wang Z. Zhu X. Methylation of BRD4 by PRMT1 regulates BRD4 phosphorylation and promotes ovarian cancer invasion. Cell Death Dis. 2023 14 9 624 10.1038/s41419‑023‑06149‑5 37737256
    [Google Scholar]
  6. Pan Z. Zhao Y. Wang X. Xie X. Liu M. Zhang K. Wang L. Bai D. Foster L.J. Shu R. He G. Targeting bromodomain-containing proteins: Research advances of drug discovery. Molecular Biomedicine 2023 4 1 13 10.1186/s43556‑023‑00127‑1 37142850
    [Google Scholar]
  7. Haynes S.R. Mozer B.A. Bhatia-Dey N. Dawid I.B. The Drosophila fsh locus, a maternal effect homeotic gene, encodes apparent membrane proteins. Dev. Biol. 1989 134 1 246 257 10.1016/0012‑1606(89)90094‑8 2567251
    [Google Scholar]
  8. Digan M.E. Haynes S.R. Mozer B.A. Dawid I.B. Forquignon F. Gans M. Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila. Dev. Biol. 1986 114 1 161 169 10.1016/0012‑1606(86)90392‑1 3007240
    [Google Scholar]
  9. Beck S. Hanson I. Kelly A. Pappin D.J.C. Trowsdale J. A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC. DNA Seq. 1992 2 4 203 210 10.3109/10425179209020804 1352711
    [Google Scholar]
  10. Chua P. Roeder G.S. Bdf1, a yeast chromosomal protein required for sporulation. Mol. Cell. Biol. 1995 15 7 3685 3696 10.1128/MCB.15.7.3685 7791775
    [Google Scholar]
  11. Haynes S.R. Dollard C. Winston F. Beck S. Trowsdale J. Dawid I.B. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992 20 10 2603 10.1093/nar/20.10.2603 1350857
    [Google Scholar]
  12. Shiina T. Ando A. Suto Y. Kasai F. Shigenari A. Takishima N. Kikkawa E. Iwata K. Kuwano Y. Kitamura Y. Matsuzawa Y. Sano K. Nogami M. Kawata H. Li S. Fukuzumi Y. Yamazaki M. Tashiro H. Tamiya G. Kohda A. Okumura K. Ikemura T. Soeda E. Mizuki N. Kimura M. Bahram S. Inoko H. Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22. Genome Res. 2001 11 5 789 802 10.1101/gr.175801 11337475
    [Google Scholar]
  13. Abi-Rached L. Gilles A. Shiina T. Pontarotti P. Inoko H. Evidence of en bloc duplication in vertebrate genomes. Nat. Genet. 2002 31 1 100 105 10.1038/ng855 11967531
    [Google Scholar]
  14. Ohno S. Wolf U. Atkin N.B. Kissinger M. Pattatucci A.M. Kaufman T.C. Kennison J.A. Evolution from fish to mammals by gene duplication. Hereditas 1968 59 1 169 187 10.1111/j.1601‑5223.1968.tb02169.x 5662632
    [Google Scholar]
  15. Tamkun J.W. Deuring R. Scott M.P. Kissinger M. Pattatucci A.M. Kaufman T.C. Kennison J.A. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell 1992 68 3 561 572 10.1016/0092‑8674(92)90191‑E 1346755
    [Google Scholar]
  16. Morgan M.A.J. Shilatifard A. Epigenetic moonlighting: Catalytic-independent functions of histone modifiers in regulating transcription. Sci. Adv. 2023 9 16 eadg6593 10.1126/sciadv.adg6593 37083523
    [Google Scholar]
  17. Bannister A.J. Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996 384 6610 641 643 10.1038/384641a0 8967953
    [Google Scholar]
  18. Rao A. Ni Z. Suresh D. Mohanty C. Wang A.R. Lee D.L. Nickel K.P. Varambally S.R. Lambert P.F. Kendziorski C. Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. bioRxiv 2023 10.1101/2023.10.02.560587
    [Google Scholar]
  19. Strahl B.D. Allis C.D. The language of covalent histone modifications. Nature 2000 403 6765 41 45 10.1038/47412 10638745
    [Google Scholar]
  20. Constantin T.A. Greenland K.K. Varela-Carver A. Bevan C.L. Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene 2022 41 24 3303 3315 10.1038/s41388‑022‑02347‑1 35568739
    [Google Scholar]
  21. Liu B. Liu X. Han L. Chen X. Wu X. Wu J. Yan D. Wang Y. Liu S. Shan L. Zhang Y. Shang Y. BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc. Natl. Acad. Sci. USA 2022 119 6 e2109133119 10.1073/pnas.2109133119 35105803
    [Google Scholar]
  22. Guan X. Cheryala N. Karim R.M. Chan A. Berndt N. Qi J. Georg G.I. Schönbrunn E. Bivalent BET bromodomain inhibitors confer increased potency and selectivity for BRDT via protein conformational plasticity. J. Med. Chem. 2022 65 15 10441 10458 10.1021/acs.jmedchem.2c00453 35867655
    [Google Scholar]
  23. Davalos V. Esteller M. Cancer epigenetics in clinical practice. CA Cancer J. Clin. 2023 73 4 376 424 10.3322/caac.21765 36512337
    [Google Scholar]
  24. French C.A. Cheng M.L. Hanna G.J. DuBois S.G. Chau N.G. Hann C.L. Storck S. Salgia R. Trucco M. Tseng J. Stathis A. Piekarz R. Lauer U.M. Massard C. Bennett K. Coker S. Tontsch-Grunt U. Sos M.L. Liao S. Wu C.J. Polyak K. Piha-Paul S.A. Shapiro G.I. Report of the first international symposium on NUT carcinoma. Clin. Cancer Res. 2022 28 12 2493 2505 10.1158/1078‑0432.CCR‑22‑0591 35417004
    [Google Scholar]
  25. Hu J. Pan D. Li G. Chen K. Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis. 2022 13 12 1059 10.1038/s41419‑022‑05505‑1 36539410
    [Google Scholar]
  26. Jaafari A. Potential epigenetic modifiers targeting the alteration of methylation in colorectal cancer. Gene Expr. 2024 23 2 139 152 10.14218/GE.2023.00039S
    [Google Scholar]
  27. Tao L. Mohammad M.A. Milazzo G. Moreno-Smith M. Patel T.D. Zorman B. Badachhape A. Hernandez B.E. Wolf A.B. Zeng Z. Foster J.H. Aloisi S. Sumazin P. Zu Y. Hicks J. Ghaghada K.B. Putluri N. Perini G. Coarfa C. Barbieri E. MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nat. Commun. 2022 13 1 3728 10.1038/s41467‑022‑31331‑2 35764645
    [Google Scholar]
  28. Mühling J. Vessel adherent growth and molecular markers in neuroblastoma. Dissertation to obtain a doctorate in medicine at the Faculty of Medicine Ludwig Maximilian University of Munich. 2021
    [Google Scholar]
  29. Kawano A. Hazard F.K. Chiu B. Naranjo A. LaBarre B. London W.B. Hogarty M.D. Cohn S.L. Maris J.M. Park J.R. Gastier-Foster J.M. Ikegaki N. Shimada H. Stage 4S Neuroblastoma. Am. J. Surg. Pathol. 2021 45 8 1075 1081 10.1097/PAS.0000000000001647 33739795
    [Google Scholar]
  30. Halder T.G. Soldi R. Sharma S. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics. Curr. Opin. Oncol. 2021 33 5 526 531 10.1097/CCO.0000000000000763 34280171
    [Google Scholar]
  31. Taniguchi Y. Matsuzaka Y. Fujimoto H. Miyado K. Kohda A. Okumura K. Kimura M. Inoko H. Nucleotide sequence of the ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells. Genomics 1998 51 1 114 123 10.1006/geno.1998.5262 9693039
    [Google Scholar]
  32. Petrova M. Margasyuk S. Vorobeva M. Skvortsov D. Dontsova O.A. Pervouchine D.D. BRD2 and BRD3 genes independently evolved RNA structures to control unproductive splicing. NAR Genom. Bioinform. 2024 6 1 lqad113 10.1093/nargab/lqad113 38226395
    [Google Scholar]
  33. Wu T. Hou H. Dey A. Bachu M. Chen X. Wisniewski J. Kudoh F. Chen C. Chauhan S. Xiao H. Pan R. Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024 27 7 109797 10.1016/j.isci.2024.109797 38993671
    [Google Scholar]
  34. Papadimitropoulou A. Makri M. Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur. J. Med. Chem. 2024 267 116194 10.1016/j.ejmech.2024.116194 38340508
    [Google Scholar]
  35. Ahmadi S.E. Rahimi S. Zarandi B. Chegeni R. Safa M. MYC: A multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J. Hematol. Oncol. 2021 14 1 49
    [Google Scholar]
  36. Kougnassoukou-Tchara PE Lashgari A Lambert JP The bromodomain acyl-lysine readers in human health and disease. Chromatin Readers in Health and Disease. Cambridge, Massachusetts Academic Press 2024 10.1016/B978‑0‑12‑823376‑4.00004‑5
    [Google Scholar]
  37. Rosenthal Z.C. Fass D.M. Payne N.C. She A. Patnaik D. Hennig K.M. Tesla R. Werthmann G.C. Guhl C. Reis S.A. Wang X. Chen Y. Placzek M. Williams N.S. Hooker J. Herz J. Mazitschek R. Haggarty S.J. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci. Rep. 2024 14 1 9064 10.1038/s41598‑024‑59110‑7 38643236
    [Google Scholar]
  38. Zheng X. Diktonaite K. Qiu H. Epigenetic reader bromodomain-containing protein 4 in aging-related vascular pathologies and diseases: Molecular basis, functional relevance, and clinical potential. Biomolecules 2023 13 7 1135 10.3390/biom13071135 37509171
    [Google Scholar]
  39. Chen Q. Yang B. Liu X. Zhang X.D. Zhang L. Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics 2022 12 11 4935 4948 10.7150/thno.73223 35836809
    [Google Scholar]
  40. Boyson S.P. Gao C. Quinn K. Boyd J. Paculova H. Frietze S. Glass K.C. Functional roles of bromodomain proteins in cancer. Cancers (Basel) 2021 13 14 3606 10.3390/cancers13143606 34298819
    [Google Scholar]
  41. Yamaguchi K. Nakagawa S. Saku A. Isobe Y. Yamaguchi R. Sheridan P. Takane K. Ikenoue T. Zhu C. Miura M. Okawara Y. Nagatoishi S. Kozuka-Hata H. Oyama M. Aikou S. Ahiko Y. Shida D. Tsumoto K. Miyano S. Imoto S. Furukawa Y. Bromodomain protein BRD8 regulates cell cycle progression in colorectal cancer cells through a TIP60-independent regulation of the pre-RC complex. iScience 2023 26 4 106563 10.1016/j.isci.2023.106563 37123243
    [Google Scholar]
  42. Xiao L. Parolia A. Qiao Y. Bawa P. Eyunni S. Mannan R. Carson S.E. Chang Y. Wang X. Zhang Y. Vo J.N. Kregel S. Simko S.A. Delekta A.D. Jaber M. Zheng H. Apel I.J. McMurry L. Su F. Wang R. Zelenka-Wang S. Sasmal S. Khare L. Mukherjee S. Abbineni C. Aithal K. Bhakta M.S. Ghurye J. Cao X. Navone N.M. Nesvizhskii A.I. Mehra R. Vaishampayan U. Blanchette M. Wang Y. Samajdar S. Ramachandra M. Chinnaiyan A.M. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 2022 601 7893 434 439 10.1038/s41586‑021‑04246‑z 34937944
    [Google Scholar]
  43. Sun L. Zhang H. Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2022 13 12 877 919 10.1007/s13238‑021‑00846‑7 34050894
    [Google Scholar]
  44. Nin D.S. Deng L.W. Biology of cancer-testis antigens and their therapeutic implications in cancer. Cells 2023 12 6 926 10.3390/cells12060926 36980267
    [Google Scholar]
  45. Patnaik E. Madu C. Lu Y. Epigenetic modulators as therapeutic agents in Cancer. Int. J. Mol. Sci. 2023 24 19 14964 10.3390/ijms241914964 37834411
    [Google Scholar]
  46. Zhao B. Qiao G. Li J. Wang Y. Li X. Zhang H. Zhang L. TRIM36 suppresses cell growth and promotes apoptosis in human esophageal squamous cell carcinoma cells by inhibiting Wnt/β-catenin signaling pathway. Hum. Cell 2022 35 5 1487 1498 10.1007/s13577‑022‑00737‑x 35768649
    [Google Scholar]
  47. Wang Z.Q. Zhang Z.C. Wu Y.Y. Pi Y.N. Lou S.H. Liu T.B. Lou G. Yang C. Bromodomain and extraterminal (BET) proteins: Biological functions, diseases, and targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 420 10.1038/s41392‑023‑01647‑6 37926722
    [Google Scholar]
  48. Antal C.E. Oh T.G. Aigner S. Luo E.C. Yee B.A. Campos T. Tiriac H. Rothamel K.L. Cheng Z. Jiao H. Wang A. Hah N. Lenkiewicz E. Lumibao J.C. Truitt M.L. Estepa G. Banayo E. Bashi S. Esparza E. Munoz R.M. Diedrich J.K. Sodir N.M. Mueller J.R. Fraser C.R. Borazanci E. Propper D. Von Hoff D.D. Liddle C. Yu R.T. Atkins A.R. Han H. Lowy A.M. Barrett M.T. Engle D.D. Evan G.I. Yeo G.W. Downes M. Evans R.M. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat. Commun. 2023 14 1 5195 10.1038/s41467‑023‑40798‑6 37673892
    [Google Scholar]
  49. Teuscher K.B. Mills J.J. Tian J. Han C. Meyers K.M. Sai J. South T.M. Crow M.M. Van Meveren M. Sensintaffar J.L. Zhao B. Amporndanai K. Moore W.J. Stott G.M. Tansey W.P. Lee T. Fesik S.W. Structure-based discovery of potent, orally bioavailable benzoxazepinone-based WD repeat domain 5 inhibitors. J. Med. Chem. 2023 66 24 16783 16806 10.1021/acs.jmedchem.3c01529 38085679
    [Google Scholar]
  50. Patriarca A. Gaidano G. Investigational drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin. Investig. Drugs 2021 30 1 25 38 10.1080/13543784.2021.1855140 33295827
    [Google Scholar]
  51. Sharma T. The role of bromodomain-containing proteins in development and disease. Curr. Mol. Biol. Rep. 2023 9 2 9 19 10.1007/s40610‑023‑00152‑7
    [Google Scholar]
  52. Llinàs-Arias P. Íñiguez-Muñoz S. McCann K. Voorwerk L. Orozco J.I.J. Ensenyat-Mendez M. Sesé B. DiNome M.L. Marzese D.M. Epigenetic regulation of immunotherapy response in triple-negative breast cancer. Cancers (Basel) 2021 13 16 4139 10.3390/cancers13164139 34439290
    [Google Scholar]
  53. Fisher M.L. Balinth S. Hwangbo Y. Wu C. Ballon C. Wilkinson J.E. Goldberg G.L. Mills A.A. BRD4 regulates transcription factor ΔNp63α to drive a cancer stem cell phenotype in squamous cell carcinomas. Cancer Res. 2021 81 24 6246 6258 10.1158/0008‑5472.CAN‑21‑0707 34697072
    [Google Scholar]
  54. Andrikopoulou A. Liontos M. Koutsoukos K. Dimopoulos M.A. Zagouri F. Clinical perspectives of BET inhibition in ovarian cancer. Cell Oncol. (Dordr.) 2021 44 2 237 249 10.1007/s13402‑020‑00578‑6 33469840
    [Google Scholar]
  55. Cheung K.L. Kim C. Zhou M.M. The functions of BET proteins in gene transcription of biology and diseases. Front. Mol. Biosci. 2021 8 728777 10.3389/fmolb.2021.728777 34540900
    [Google Scholar]
  56. Shu S. Wu H.J. Ge J.Y. Zeid R. Harris I.S. Jovanović B. Murphy K. Wang B. Qiu X. Endress J.E. Reyes J. Lim K. Font-Tello A. Syamala S. Xiao T. Reddy Chilamakuri C.S. Papachristou E.K. D’Santos C. Anand J. Hinohara K. Li W. McDonald T.O. Luoma A. Modiste R.J. Nguyen Q.D. Michel B. Cejas P. Kadoch C. Jaffe J.D. Wucherpfennig K.W. Qi J. Liu X.S. Long H. Brown M. Carroll J.S. Brugge J.S. Bradner J. Michor F. Polyak K. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer. Mol. Cell 2020 78 6 1096 1113.e8 10.1016/j.molcel.2020.04.027 32416067
    [Google Scholar]
  57. Jin N. George T.L. Otterson G.A. Verschraegen C. Wen H. Carbone D. Herman J. Bertino E.M. He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin. Epigenetics 2021 13 1 83 10.1186/s13148‑021‑01069‑7 33879235
    [Google Scholar]
  58. Tang P. Zhang J. Liu J. Chiang C.M. Ouyang L. Targeting bromodomain and extraterminal proteins for drug discovery: From current progress to technological development. J. Med. Chem. 2021 64 5 2419 2435 10.1021/acs.jmedchem.0c01487 33616410
    [Google Scholar]
  59. Wernersson S. Bobby R. Flavell L. Milbradt A.G. Holdgate G.A. Embrey K.J. Akke M. Bromodomain interactions with acetylated histone 4 peptides in the BRD4 tandem domain: Effects on domain dynamics and internal flexibility. Biochemistry 2022 61 21 2303 2318 10.1021/acs.biochem.2c00226 36215732
    [Google Scholar]
  60. Martella N. Pensabene D. Varone M. Colardo M. Petraroia M. Sergio W. La Rosa P. Moreno S. Segatto M. Bromodomain and extra-terminal proteins in brain physiology and pathology: BET-ing on epigenetic regulation. Biomedicines 2023 11 3 750 10.3390/biomedicines11030750 36979729
    [Google Scholar]
  61. Chen H.S. De Leo A. Wang Z. Kerekovic A. Hills R. Lieberman P.M. BET-inhibitors disrupt Rad21-dependent conformational control of KSHV latency. PLoS Pathog. 2017 13 1 e1006100 10.1371/journal.ppat.1006100 28107481
    [Google Scholar]
  62. Campbell M. Chantarasrivong C. Yanagihashi Y. Inagaki T. Davis R.R. Nakano K. Kumar A. Tepper C.G. Izumiya Y. KSHV topologically associating domains in latent and reactivated viral chromatin. J. Virol. 2022 96 14 e00565-22 10.1128/jvi.00565‑22 35867573
    [Google Scholar]
  63. Hu G. Dong X. Gong S. Song Y. Hutchins A.P. Yao H. Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions. Nucleic Acids Res. 2020 48 17 9606 9620 10.1093/nar/gkaa705 32885250
    [Google Scholar]
  64. Costantino L. Hsieh T.H.S. Lamothe R. Darzacq X. Koshland D. Cohesin residency determines chromatin loop patterns. eLife 2020 9 e59889 10.7554/eLife.59889 33170773
    [Google Scholar]
  65. Huang K. Li Y. Shim A.R. Virk R.K.A. Agrawal V. Eshein A. Nap R.J. Almassalha L.M. Backman V. Szleifer I. Physical and data structure of 3D genome. Sci. Adv. 2020 6 2 eaay4055 10.1126/sciadv.aay4055 31950084
    [Google Scholar]
  66. Esposito A. Abraham A. Conte M. Vercellone F. Prisco A. Bianco S. Chiariello A.M. The physics of DNA folding: Polymer models and phase-separation. Polymers (Basel) 2022 14 9 1918 10.3390/polym14091918 35567087
    [Google Scholar]
  67. Wu S. Bafna V. Chang H.Y. Mischel P.S. Extrachromosomal DNA: An emerging hallmark in human cancer. Annu. Rev. Pathol. 2022 17 1 367 386 10.1146/annurev‑pathmechdis‑051821‑114223 34752712
    [Google Scholar]
  68. Li G. Pu P. Pan M. Weng X. Qiu S. Li Y. Abbas S.J. Zou L. Liu K. Wang Z. Shao Z. Jiang L. Wu W. Liu Y. Shao R. Liu F. Liu Y. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front. Med. 2024 18 1 109 127 10.1007/s11684‑023‑1008‑8 37721643
    [Google Scholar]
  69. Kadota S. Ou J. Shi Y. Lee J.T. Sun J. Yildirim E. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat. Commun. 2020 11 1 2606 10.1038/s41467‑020‑16394‑3 32451376
    [Google Scholar]
  70. Kubo N. Chen P.B. Hu R. Ye Z. Sasaki H. Ren B. H3K4me1 facilitates promoter-enhancer interactions and gene activation during embryonic stem cell differentiation. Mol. Cell 2024 84 9 1742 1752.e5 10.1016/j.molcel.2024.02.030 38513661
    [Google Scholar]
  71. Wang L. Zhang L. Li S. Cao L. Li K. Zhao W. A novel acetylation-immune subtyping for the identification of a BET inhibitor-sensitive subgroup in Melanoma. Pharmaceuticals (Basel) 2023 16 7 1037 10.3390/ph16071037 37513949
    [Google Scholar]
  72. Enríquez P. Krajewski K. Strahl B.D. Rothbart S.B. Dowen R.H. Rose R.B. Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain interaction with acetylated histone H3K14. J. Biol. Chem. 2021 297 4 101145 10.1016/j.jbc.2021.101145 34473995
    [Google Scholar]
  73. Kikuchi M. Morita S. Goto M. Wakamori M. Katsura K. Hanada K. Shirouzu M. Umehara T. Elucidation of binding preferences of YEATS domains to site-specific acetylated nucleosome core particles. J. Biol. Chem. 2022 298 8 102164 10.1016/j.jbc.2022.102164 35732209
    [Google Scholar]
  74. Valsakumar D. Voigt P. Nucleosomal asymmetry: A novel mechanism to regulate nucleosome function. Biochem. Soc. Trans. 2024 52 3 1219 1232 10.1042/BST20230877 38778762
    [Google Scholar]
  75. Wang N. Wu R. Tang D. Kang R. The BET family in immunity and disease. Signal Transduct. Target. Ther. 2021 6 1 23 10.1038/s41392‑020‑00384‑4 33462181
    [Google Scholar]
  76. Wang C. Xu Q. Zhang X. Day D.S. Abraham B.J. Lun K. Chen L. Huang J. Ji X. BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation. Cell. Mol. Life Sci. 2022 79 6 338 10.1007/s00018‑022‑04349‑4 35665862
    [Google Scholar]
  77. Jones M.H. Numata M. Shimane M. Identification and characterization of BRDT: A testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics 1997 45 3 529 534 10.1006/geno.1997.5000 9367677
    [Google Scholar]
  78. Taniguchi Y. Suzuki H. Ohtsuka M. Kikuchi N. Kimura M. Inoko H. Isolation and characterization of three genes paralogous to mouse Ring3. Nucleic Acids Symp. Ser. 2001 1 1 247 248 10.1093/nass/1.1.247
    [Google Scholar]
  79. Wisniewski A. Georg G.I. BET proteins: Investigating BRDT as a potential target for male contraception. Bioorg. Med. Chem. Lett. 2020 30 6 126958 10.1016/j.bmcl.2020.126958 32019712
    [Google Scholar]
  80. Kayyar B. Kataruka S. Suresh Akhade V. Rao M.R.S. Molecular functions of Mrhl lncRNA in mouse spermatogenesis. Reproduction 2023 166 3 R39 R50 10.1530/REP‑23‑0065 37345883
    [Google Scholar]
  81. Ali H.A. Li Y. Bilal A.H.M. Qin T. Yuan Z. Zhao W. A comprehensive review of BET protein biochemistry, physiology, and pathological roles. Front. Pharmacol. 2022 13 818891 10.3389/fphar.2022.818891 35401196
    [Google Scholar]
  82. Taniguchi Y. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins. Int. J. Mol. Sci. 2016 17 11 1849 10.3390/ijms17111849 27827996
    [Google Scholar]
  83. Wang X. Kutschat A.P. Yamada M. Prokakis E. Böttcher P. Tanaka K. Doki Y. Hamdan F.H. Johnsen S.A. Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas. Cell Death Differ. 2021 28 7 2207 2220 10.1038/s41418‑021‑00751‑w 33658703
    [Google Scholar]
  84. Dhar S. Thota A. Rao M.R.S. Insights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis. J. Biol. Chem. 2012 287 9 6387 6405 10.1074/jbc.M111.288167 22215678
    [Google Scholar]
  85. Ahmad Parray Z. Hamza A. Bhardwaj P. Samad A. Imtaiyaz Hassan M. Parveen S. Islam A. Interaction studies of recombinant laccase with co-solutes: Using various spectroscopic, calorimetric, and in silico approaches. J. Mol. Liq. 2023 388 122769 10.1016/j.molliq.2023.122769
    [Google Scholar]
  86. Patel K. Solomon P.D. Walshe J.L. Ford D.J. Wilkinson-White L. Payne R.J. Low J.K.K. Mackay J.P. BET-family bromodomains can recognize diacetylated sequences from transcription factors using a conserved mechanism. Biochemistry 2021 60 9 648 662 10.1021/acs.biochem.0c00816 33620209
    [Google Scholar]
  87. Lloyd J.T. McLaughlin K. Lubula M.Y. Gay J.C. Dest A. Gao C. Phillips M. Tonelli M. Cornilescu G. Marunde M.R. Evans C.M. Boyson S.P. Carlson S. Keogh M.C. Markley J.L. Frietze S. Glass K.C. Structural insights into the recognition of mono-and diacetylated histones by the ATAD2B bromodomain. J. Med. Chem. 2020 63 21 12799 12813 10.1021/acs.jmedchem.0c01178 33084328
    [Google Scholar]
  88. Bibi R Jehan S Razak S Hammadeh ME Amor H Sperm chromatin abnormalities and dna damage predict assisted reproductive outcome. Preprint 2022 10.21203/rs.3.rs‑1231874/v1
    [Google Scholar]
  89. Moritz L. Hammoud S.S. The art of packaging the sperm genome: Molecular and structural basis of the histone-to-protamine exchange. Front. Endocrinol. (Lausanne) 2022 13 895502 10.3389/fendo.2022.895502 35813619
    [Google Scholar]
  90. Gilgenast T.G. Development and application of computational tools for unraveling the structure of the 3D Genome. Doctoral dissertation, University of Pennsylvania 2021
    [Google Scholar]
  91. Zhao L. Wang Y. Jaganathan A. Sun Y. Ma N. Li N. Han X. Sun X. Yi H. Fu S. Han F. Li X. Xiao K. Walsh M.J. Zeng L. Zhou M.M. Cheung K.L. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation. EMBO J. 2023 42 6 e111473 10.15252/embj.2022111473 36719036
    [Google Scholar]
  92. Drumond-Bock A.L. Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol. Cancer 2021 20 1 145 10.1186/s12943‑021‑01424‑5 34758842
    [Google Scholar]
  93. Gaál Z. Targeted epigenetic interventions in cancer with an emphasis on pediatric malignancies. Biomolecules 2022 13 1 61 10.3390/biom13010061 36671446
    [Google Scholar]
  94. Wang Y. Liu Y. Wang L. Yang C. Nie Z. Yuan J. Mechanism of BRD4 inhibitor-mediated c-MYC expression and regulation of AR expression to inhibit prostate cancer. J. Biomed. Nanotechnol. 2024 20 7 1099 1105 10.1166/jbn.2024.3874
    [Google Scholar]
  95. Quail D.F. Joyce J.A. The microenvironmental landscape of brain tumors. Cancer Cell 2017 31 3 326 341 10.1016/j.ccell.2017.02.009 28292436
    [Google Scholar]
  96. Nation D.A. Sweeney M.D. Montagne A. Sagare A.P. D’Orazio L.M. Pachicano M. Sepehrband F. Nelson A.R. Buennagel D.P. Harrington M.G. Benzinger T.L.S. Fagan A.M. Ringman J.M. Schneider L.S. Morris J.C. Chui H.C. Law M. Toga A.W. Zlokovic B.V. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019 25 2 270 276 10.1038/s41591‑018‑0297‑y 30643288
    [Google Scholar]
  97. Liu L. Yang C. Candelario-Jalil E. Role of BET proteins in inflammation and CNS diseases. Front. Mol. Biosci. 2021 8 748449 10.3389/fmolb.2021.748449 34604312
    [Google Scholar]
  98. Goodall G.J. Wickramasinghe V.O. RNA in cancer. Nat. Rev. Cancer 2021 21 1 22 36 10.1038/s41568‑020‑00306‑0 33082563
    [Google Scholar]
  99. Yang G.J. Song Y.Q. Wang W. Han Q.B. Ma D.L. Leung C.H. An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg. Chem. 2021 114 105158 10.1016/j.bioorg.2021.105158 34378541
    [Google Scholar]
  100. Liang Y. Tian J. Wu T. BRD4 in physiology and pathology: “BET” on its partners. BioEssays 2021 43 12 2100180 10.1002/bies.202100180 34697817
    [Google Scholar]
  101. Filippakopoulos P. Qi J. Picaud S. Shen Y. Smith W.B. Fedorov O. Morse E.M. Keates T. Hickman T.T. Felletar I. Philpott M. Munro S. McKeown M.R. Wang Y. Christie A.L. West N. Cameron M.J. Schwartz B. Heightman T.D. La Thangue N. French C.A. Wiest O. Kung A.L. Knapp S. Bradner J.E. Selective inhibition of BET bromodomains. Nature 2010 468 7327 1067 1073 10.1038/nature09504 20871596
    [Google Scholar]
  102. Kim C.W. Choi K.C. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci. 2021 277 119607 10.1016/j.lfs.2021.119607 33992675
    [Google Scholar]
  103. Kulikowski E. Rakai B.D. Wong N.C.W. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med. Res. Rev. 2021 41 1 223 245 10.1002/med.21730 32926459
    [Google Scholar]
  104. Errington TM Denis A Perfito N Iorns E Nosek BA Challenges for assessing replicability in preclinical cancer biology. elife 2021 7 10 e67995
    [Google Scholar]
  105. Iyer H. Wahul A.B. P K A. Sawant B.S. Kumar A. A BRD’s (BiRD’s) eye view of BET and BRPF bromodomains in neurological diseases. Rev. Neurosci. 2021 32 4 403 426 10.1515/revneuro‑2020‑0067 33661583
    [Google Scholar]
  106. Sekirnik A.R. Reynolds J.K. See L. Bluck J.P. Scorah A.R. Tallant C. Lee B. Leszczynska K.B. Grimley R.L. Storer R.I. Malattia M. Crespillo S. Caria S. Duclos S. Hammond E.M. Knapp S. Morris G.M. Duarte F. Biggin P.C. Conway S.J. Identification of histone peptide binding specificity and small-molecule ligands for the TRIM33α and TRIM33β bromodomains. ACS Chem. Biol. 2022 17 10 2753 2768 10.1021/acschembio.2c00266 36098557
    [Google Scholar]
  107. Pei H. Guo W. Peng Y. Xiong H. Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med. Res. Rev. 2022 42 4 1607 1660 10.1002/med.21886 35312190
    [Google Scholar]
  108. Jones K.L. Beaumont D.M. Bernard S.G. Bit R.A. Campbell S.P. Chung C. Cutler L. Demont E.H. Dennis K. Gordon L. Gray J.R. Haase M.V. Lewis A.J. McCleary S. Mitchell D.J. Moore S.M. Parr N. Robb O.J. Smithers N. Soden P.E. Suckling C.J. Taylor S. Walker A.L. Watson R.J. Prinjha R.K. Discovery of a novel bromodomain and extra terminal domain (BET) protein inhibitor, I-BET282E, suitable for clinical progression. J. Med. Chem. 2021 64 16 12200 12227 10.1021/acs.jmedchem.1c00855 34387088
    [Google Scholar]
  109. Gargano D. Segatto M. Di Bartolomeo S. Regulation of cell plasticity by bromodomain and extraterminal domain (BET) proteins: A new perspective in glioblastoma therapy. Int. J. Mol. Sci. 2023 24 6 5665 10.3390/ijms24065665 36982740
    [Google Scholar]
  110. Chen N.C. Borthakur G. Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk. Lymphoma 2021 62 3 528 537 10.1080/10428194.2020.1842399 33161793
    [Google Scholar]
  111. Singh D. Khan M.A. Siddique H.R. Role of epigenetic drugs in sensitizing cancers to anticancer therapies: Emerging trends and clinical advancements. Epigenomics 2023 15 8 517 537 10.2217/epi‑2023‑0142 37313832
    [Google Scholar]
  112. Gu H. Mao X. Du M. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update. Crit. Rev. Food Sci. Nutr. 2022 62 13 3437 3452 10.1080/10408398.2020.1865871 33393366
    [Google Scholar]
  113. Gupta R. Jit B.P. Kumar S. Mittan S. Tanwer P. Ray M.D. Mathur S. Perumal V. Kumar L. Rath G.K. Sharma A. Leveraging epigenetics to enhance the efficacy of cancer-testis antigen: A potential candidate for immunotherapy. Epigenomics 2022 14 14 865 886 10.2217/epi‑2021‑0479 35872653
    [Google Scholar]
  114. Blithe DL Lee MS Nicht-hormonelle Ansätze zur männlichen Empfängnisverhütung. Andrologie Berlin, Heidelberg Springer 2022
    [Google Scholar]
  115. Wan P. Chen Z. Zhong W. Jiang H. Huang Z. Peng D. He Q. Chen N. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol. Rep. 2020 44 6 2475 2486 10.3892/or.2020.7796 33125143
    [Google Scholar]
  116. Fujinaga K. Huang F. Peterlin B.M. P-TEFb: The master regulator of transcription elongation. Mol. Cell 2023 83 3 393 403 10.1016/j.molcel.2022.12.006 36599353
    [Google Scholar]
  117. Zhang S. Chen Y. Tian C. He Y. Tian Z. Wan Y. Liu T. Dual-target inhibitors based on BRD4: Novel therapeutic approaches for cancer. Curr. Med. Chem. 2021 28 9 1775 1795 10.2174/0929867327666200610174453 32520674
    [Google Scholar]
  118. Lee M.S. An S. Song J.Y. Sung M. Jung K. Chang E.S. Choi J. Oh D.Y. Jeon Y.K. Yang H. Lakshmi C. Park S. Han J. Lee S.H. Choi Y.L. Cancer-specific sequences in the diagnosis and treatment of NUT carcinoma. Cancer Res. Treat. 2023 55 2 452 467 10.4143/crt.2022.910 36265509
    [Google Scholar]
  119. Lee J.K. Louzada S. An Y. Kim S.Y. Kim S. Youk J. Park S. Koo S.H. Keam B. Jeon Y.K. Ku J.L. Yang F. Kim T.M. Ju Y.S. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma. Ann. Oncol. 2017 28 4 890 897 10.1093/annonc/mdw686 28203693
    [Google Scholar]
  120. Hernández M.H. Uçar N. Deeney J.T. JQ1 Epigenetic Modulation of Pancreatic β-Cells (INS-1) Normalizes Glucose Sensitivity under Hyperglycemia: Therapeutic Preventive Implications for Type II Diabetes Mellitus. bioRxiv 2023 10.1101/2023.08.15.553320
    [Google Scholar]
  121. Chen M. Zhao S. Liang Z. Wang W. Zhou P. Jiang L. NUT carcinoma of the parotid gland: Report of two cases, one with a rare ZNF532-NUTM1 fusion. Virchows Arch. 2022 480 4 887 897 10.1007/s00428‑021‑03253‑9 35064291
    [Google Scholar]
  122. Clayton N. Pellei D. Lin Z. Histone acetylation, BET proteins, and periodontal inflammation. Mol. Oral Microbiol. 2023 39 4 180 189 37801007
    [Google Scholar]
  123. Ciaccio R. De Rosa P. Aloisi S. Viggiano M. Cimadom L. Zadran S.K. Perini G. Milazzo G. Targeting oncogenic transcriptional networks in neuroblastoma: From N-Myc to epigenetic drugs. Int. J. Mol. Sci. 2021 22 23 12883 10.3390/ijms222312883 34884690
    [Google Scholar]
  124. Shahbazi J. Liu P.Y. Atmadibrata B. Bradner J.E. Marshall G.M. Lock R.B. Liu T. The bromodomain inhibitor JQ1 and the histone deacetylase inhibitor panobinostat synergistically reduce N-Myc expression and induce anticancer effects. Clin. Cancer Res. 2016 22 10 2534 2544 10.1158/1078‑0432.CCR‑15‑1666 26733615
    [Google Scholar]
  125. Qian H. Zhu M. Tan X. Zhang Y. Liu X. Yang L. Super-enhancers and the super-enhancer reader BRD4: Tumorigenic factors and therapeutic targets. Cell Death Discov. 2023 9 1 470 10.1038/s41420‑023‑01775‑6 38135679
    [Google Scholar]
  126. Aaltonen K. Radke K. Adamska A. Seger A. Mañas A. Bexell D. Patient-derived models: Advanced tools for precision medicine in neuroblastoma. Front. Oncol. 2023 12 1085270 10.3389/fonc.2022.1085270 36776363
    [Google Scholar]
  127. Gokani S. Bhatt L.K. Bromodomains: A novel target for the anticancer therapy. Eur. J. Pharmacol. 2021 911 174523 10.1016/j.ejphar.2021.174523 34563497
    [Google Scholar]
  128. Singh E. Inhibitors of bromodomain-4 and cyclooxygenase-2: A review on the advantageous effect of dual-target approach in cancer treatment. Int. J. Chem. Res. 2023 7 1 210
    [Google Scholar]
  129. Negi V. Yang J. Speyer G. Pulgarin A. Handen A. Zhao J. Tai Y.Y. Tang Y. Culley M.K. Yu Q. Forsythe P. Gorelova A. Watson A.M. Al Aaraj Y. Satoh T. Sharifi-Sanjani M. Rajaratnam A. Sembrat J. Provencher S. Yin X. Vargas S.O. Rojas M. Bonnet S. Torrino S. Wagner B.K. Schreiber S.L. Dai M. Bertero T. Al Ghouleh I. Kim S. Chan S.Y. Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Sci. Adv. 2021 7 43 eabh3794 10.1126/sciadv.abh3794 34669463
    [Google Scholar]
  130. Green A.I. Burslem G.M. Focused libraries for epigenetic drug discovery: The importance of isosteres. J. Med. Chem. 2021 64 11 7231 7240 10.1021/acs.jmedchem.1c00592 34042449
    [Google Scholar]
  131. Huang S.H. Cao R. Lin Q.W. Wu S.Q. Gao L.L. Sun Q. Zhu Q.H. Zou Y. Xu Y.G. Wang S.P. Design, synthesis and mechanism studies of novel dual PARP1/BRD4 inhibitors against pancreatic cancer. Eur. J. Med. Chem. 2022 230 114116 10.1016/j.ejmech.2022.114116 35091172
    [Google Scholar]
  132. Shorstova T. Foulkes W.D. Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 2021 124 9 1478 1490 10.1038/s41416‑021‑01321‑0 33723398
    [Google Scholar]
  133. Altendorfer E. Mochalova Y. Mayer A. BRD4: A general regulator of transcription elongation. Transcription 2022 13 1-3 70 81 10.1080/21541264.2022.2108302 36047906
    [Google Scholar]
  134. Sharp P.A. Chakraborty A.K. Henninger J.E. Young R.A. RNA in formation and regulation of transcriptional condensates. RNA 2022 28 1 52 57 10.1261/rna.078997.121 34772787
    [Google Scholar]
  135. Zhou Z. Li J. Ousmane D. Peng L. Yuan X. Wang J. Metabolic reprogramming directed by super-enhancers in tumors: An emerging landscape. Mol. Ther. 2024 32 3 572 579 10.1016/j.ymthe.2024.02.003 38327048
    [Google Scholar]
  136. Singh VV Alauddin S Review on: BRD4 inhibitors for anticancer research. Human Gene 2023 37 3 201196
    [Google Scholar]
  137. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 10.1177/20503121211034366 34408877
    [Google Scholar]
  138. Dhanasekaran R. Deutzmann A. Mahauad-Fernandez W.D. Hansen A.S. Gouw A.M. Felsher D.W. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 2022 19 1 23 36 10.1038/s41571‑021‑00549‑2 34508258
    [Google Scholar]
  139. Shvedunova M. Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 2022 23 5 329 349 10.1038/s41580‑021‑00441‑y 35042977
    [Google Scholar]
  140. Llombart V. Mansour M.R. Therapeutic targeting of “undruggable” MYC. EBioMedicine 2022 75 103756 10.1016/j.ebiom.2021.103756 34942444
    [Google Scholar]
  141. Sahafnejad Z. Ramazi S. Allahverdi A. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review. Genes (Basel) 2023 14 4 873 10.3390/genes14040873 37107631
    [Google Scholar]
  142. Eagen K.P. French C.A. Supercharging BRD4 with NUT in carcinoma. Oncogene 2021 40 8 1396 1408 10.1038/s41388‑020‑01625‑0 33452461
    [Google Scholar]
  143. Zafar A. Wang W. Liu G. Wang X. Xian W. McKeon F. Foster J. Zhou J. Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med. Res. Rev. 2021 41 2 961 1021 10.1002/med.21750 33155698
    [Google Scholar]
  144. Fard SS Kouchaki S Salimian Z Sotoudeh M Mousavi SA Alimoghaddam K Ghaffari SH Overexpression of bromodomain and extraterminal domain is associated with progression, metastasis and unfavorable outcomes: Highlighting prognostic and therapeutic value of the bet protein family in gastric cancer. Anti-Cancer Agents Med. Chem. 2023 23 7 794 806
    [Google Scholar]
  145. Jin W. Tan H. Wu J. He G. Liu B. Dual-target inhibitors of bromodomain-containing protein 4 (BRD4) in cancer therapy: Current situation and future directions. Drug Discov. Today 2022 27 1 246 256 10.1016/j.drudis.2021.08.007 34438075
    [Google Scholar]
  146. Wyce A. Degenhardt Y. Bai Y. Le B. Korenchuk S. Crouthamel M-C. McHugh C.F. Vessella R. Creasy C.L. Tummino P.J. Barbash O. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 2013 4 12 2419 2429 10.18632/oncotarget.1572 24293458
    [Google Scholar]
  147. Wang R. Wang Y.A. Xu Y.G. Shi L. Privileged scaffolds targeting bromodomain-containing Protein 4. Curr. Top. Med. Chem. 2022 22 7 600 627 10.2174/1568026622666220209143949 35139799
    [Google Scholar]
  148. Trojer P. Targeting BET bromodomains in cancer. Annu. Rev. Cancer Biol. 2022 6 1 313 336 10.1146/annurev‑cancerbio‑070120‑103531
    [Google Scholar]
  149. To K.K.W. Xing E. Larue R.C. Li P.K. BET bromodomain inhibitors: Novel design strategies and therapeutic applications. Molecules 2023 28 7 3043 10.3390/molecules28073043 37049806
    [Google Scholar]
  150. Duan W. Yu M. Chen J. BRD4: New hope in the battle against glioblastoma. Pharmacol. Res. 2023 191 106767 10.1016/j.phrs.2023.106767 37061146
    [Google Scholar]
  151. Servidei T. Meco D. Martini M. Battaglia A. Granitto A. Buzzonetti A. Babini G. Massimi L. Tamburrini G. Scambia G. Ruggiero A. Riccardi R. The BET inhibitor OTX015 exhibits in vitro and in vivo antitumor activity in pediatric ependymoma stem cell models. Int. J. Mol. Sci. 2021 22 4 1877 10.3390/ijms22041877 33668642
    [Google Scholar]
  152. Albrecht BK Gehling VS Hewitt MC Vaswani RG Côté A Leblanc Y Nasveschuk CG Bellon S Bergeron L Campbell R Cantone N Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) family as a candidate for human clinical trials. J Med Chem. 2016 59 4 1330 9
    [Google Scholar]
  153. Huang X. Liu Y. Wang Y. Bailey C. Zheng P. Liu Y. Dual targeting oncoproteins MYC and HIF1α regresses tumor growth of lung cancer and lymphoma. Cancers (Basel) 2021 13 4 694 10.3390/cancers13040694 33572152
    [Google Scholar]
  154. Zeng Y Liang XH Xia Y He WY JQ1 inhibits proliferation and induces apoptosis of leukemia cells through BCL-2 regulated pathway. Preprint 2021
    [Google Scholar]
  155. Sarnik J. Popławski T. Tokarz P. BET proteins as attractive targets for cancer therapeutics. Int. J. Mol. Sci. 2021 22 20 11102 10.3390/ijms222011102 34681760
    [Google Scholar]
  156. Crews C.M. Georg G. Wang S. Inducing protein degradation as a therapeutic strategy. J. Med. Chem. 2016 59 11 5129 5130 10.1021/acs.jmedchem.6b00735 27199030
    [Google Scholar]
  157. Li D. Yu D. Li Y. Yang R. A bibliometric analysis of PROTAC from 2001 to 2021. Eur. J. Med. Chem. 2022 244 114838 10.1016/j.ejmech.2022.114838 36274273
    [Google Scholar]
  158. Piya S. Lorenzi P. McQueen T. Davis E. Qian Y. Andreeff M. Borthakur G. ARV-825, a BRD4 inhibitor, leads to sustained degradation of BRD4 with broad activity against acute myeloid leukemia and overcomes stroma mediated resistance by modulating chemokine receptor, cell adhesion and metabolic targets. Clin. Lymphoma Myeloma Leuk. 2016 16 S36 S37 10.1016/j.clml.2016.07.051
    [Google Scholar]
  159. Li R. Liu M. Yang Z. Li J. Gao Y. Tan R. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: Present and future. Molecules 2022 27 24 8828 10.3390/molecules27248828 36557960
    [Google Scholar]
  160. Barghout SH Targeted protein degradation: An emerging therapeutic strategy in cancer. Anticancer Agents Med Chem. 2021 21 2 214 230
    [Google Scholar]
  161. Ji Y. Chen W. Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J. Pharmacol. Exp. Ther. 2024 389 3 277 288 10.1124/jpet.123.002036 38565308
    [Google Scholar]
  162. Zhou X. Dong R. Zhang J.Y. Zheng X. Sun L.P. PROTAC: A promising technology for cancer treatment. Eur. J. Med. Chem. 2020 203 112539 10.1016/j.ejmech.2020.112539 32698111
    [Google Scholar]
  163. Arora P. Singh M. Singh V. Bhatia S. Arora S. PROTACs in treatment of cancer: A review. Mini Rev. Med. Chem. 2021 21 16 2347 2360 10.2174/1389557521666210226150740 33634757
    [Google Scholar]
  164. Remillard D. Buckley D.L. Paulk J. Brien G.L. Sonnett M. Seo H.S. Dastjerdi S. Wühr M. Dhe-Paganon S. Armstrong S.A. Bradner J.E. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 2017 56 21 5738 5743 10.1002/anie.201611281 28418626
    [Google Scholar]
  165. Cipriano A. Sbardella G. Ciulli A. Targeting epigenetic reader domains by chemical biology. Curr. Opin. Chem. Biol. 2020 57 82 94 10.1016/j.cbpa.2020.05.006 32739717
    [Google Scholar]
  166. Xie S. Zhu J. Li J. Zhan F. Yao H. Xu J. Xu S. Small-molecule hydrophobic tagging: A promising strategy of druglike technology for targeted protein degradation. J. Med. Chem. 2023 66 16 10917 10933 10.1021/acs.jmedchem.3c00736 37535706
    [Google Scholar]
  167. Liu Y. Qian X. Ran C. Li L. Fu T. Su D. Xie S. Tan W. Aptamer-based targeted protein degradation. ACS Nano 2023 17 7 6150 6164 10.1021/acsnano.2c10379 36942868
    [Google Scholar]
  168. Giordano Attianese G.M.P. Ash S. Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol. Rev. 2023 320 1 166 198 10.1111/imr.13252 37548063
    [Google Scholar]
  169. Gajjela B.K. Zhou M.M. Bromodomain inhibitors and therapeutic applications. Curr. Opin. Chem. Biol. 2023 75 102323 10.1016/j.cbpa.2023.102323 37207401
    [Google Scholar]
  170. Liu M. Zhang K. Li Q. Pang H. Pan Z. Huang X. Wang L. Wu F. He G. Recent advances on small-molecule bromodomain-containing histone acetyltransferase inhibitors. J. Med. Chem. 2023 66 3 1678 1699 10.1021/acs.jmedchem.2c01638 36695774
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501304747240823111337
Loading
/content/journals/cdt/10.2174/0113894501304747240823111337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test