Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1389-4501
  • E-ISSN:

Abstract

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501320096240627071400
2024-07-19
2024-10-09
Loading full text...

Full text loading...

References

  1. FishP.V. SteadmanD. BayleE.D. WhitingP. New approaches for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.201929212513310.1016/j.bmcl.2018.11.03430501965
    [Google Scholar]
  2. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  3. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  4. HuangL.K. ChaoS.P. HuC.J. Clinical trials of new drugs for Alzheimer disease.J. Biomed. Sci.20202711810.1186/s12929‑019‑0609‑731906949
    [Google Scholar]
  5. ImbimboB.P. LombardJ. PomaraN. Pathophysiology of Alzheimer’s disease.Neuroimaging Clin. N. Am.2005154727753, ix10.1016/j.nic.2005.09.00916443487
    [Google Scholar]
  6. VaghulK. The child care conundrum: The costs and consequences of unmet early child care needs among parents working at academic institutions across the United States.Massachusetts Institute of Technology2019
    [Google Scholar]
  7. EbiK.L. VanosJ. BaldwinJ.W. BellJ.E. HondulaD.M. ErrettN.A. HayesK. ReidC.E. SahaS. SpectorJ. BerryP. Extreme weather and climate change: population health and health system implications.Annu. Rev. Public Health202142129331510.1146/annurev‑publhealth‑012420‑10502633406378
    [Google Scholar]
  8. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  9. BloomG.S. Amyloid-β and Tau.JAMA Neurol.201471450550810.1001/jamaneurol.2013.584724493463
    [Google Scholar]
  10. BenilovaI. KarranE. De StrooperB. The toxic Aβ oligomer and Alzheimer’s disease: An emperor in need of clothes.Nat. Neurosci.201215334935710.1038/nn.302822286176
    [Google Scholar]
  11. KhanU.A. LiuL. ProvenzanoF.A. BermanD.E. ProfaciC.P. SloanR. MayeuxR. DuffK.E. SmallS.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease.Nat. Neurosci.201417230431110.1038/nn.360624362760
    [Google Scholar]
  12. SongC. ShiJ. ZhangP. ZhangY. XuJ. ZhaoL. ZhangR. WangH. ChenH. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑335300725
    [Google Scholar]
  13. SwansonC.J. ZhangY. DhaddaS. WangJ. KaplowJ. LaiR.Y.K. LannfeltL. BradleyH. RabeM. KoyamaA. ReydermanL. BerryD.A. BerryS. GordonR. KramerL.D. CummingsJ.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑833865446
    [Google Scholar]
  14. TuckerS. MöllerC. TegerstedtK. LordA. LaudonH. SjödahlJ. SöderbergL. SpensE. SahlinC. WaaraE.R. SatlinA. GellerforsP. OsswaldG. LannfeltL. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice.J. Alzheimers Dis.201443257558810.3233/JAD‑14074125096615
    [Google Scholar]
  15. ReitzC. RogaevaE. BeechamG.W. Late-onset vs nonmendelian early-onset Alzheimer disease.Neurol. Genet.202065e51210.1212/NXG.000000000000051233225065
    [Google Scholar]
  16. TcwJ. GoateA.M. Genetics of β-amyloid precursor protein in Alzheimer’s disease.Cold Spring Harb. Perspect. Med.201776a02453910.1101/cshperspect.a02453928003277
    [Google Scholar]
  17. XiaoX. LiuH. LiuX. ZhangW. ZhangS. JiaoB. APP, PSEN1, and PSEN2 variants in Alzheimer’s disease: Systematic Re-evaluation according to ACMG guidelines.Front. Aging Neurosci.20211369580810.3389/fnagi.2021.69580834220489
    [Google Scholar]
  18. BellenguezC. Grenier-BoleyB. LambertJ.C. Genetics of Alzheimer’s disease: where we are, and where we are going.Curr. Opin. Neurobiol.202061404810.1016/j.conb.2019.11.02431863938
    [Google Scholar]
  19. PhillipsM.C. Apolipoprotein E isoforms and lipoprotein metabolism.IUBMB Life201466961662310.1002/iub.131425328986
    [Google Scholar]
  20. KarchC.M. GoateA.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis.Biol. Psychiatry2015771435110.1016/j.biopsych.2014.05.00624951455
    [Google Scholar]
  21. MartinsM.M. BrancoP.S. FerreiraL.M. Enhancing the therapeutic effect in alzheimer’s disease drugs: The role of polypharmacology and cholinesterase inhibitors.ChemistrySelect2023810e20230046110.1002/slct.202300461
    [Google Scholar]
  22. van DyckC.H. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise.Biol. Psychiatry201883431131910.1016/j.biopsych.2017.08.01028967385
    [Google Scholar]
  23. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  24. FrozzaR.L. LourencoM.V. De FeliceF.G. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects.Front. Neurosci.2018123710.3389/fnins.2018.0003729467605
    [Google Scholar]
  25. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  26. ZhaoJ. LiuX. XiaW. ZhangY. WangC. Targeting amyloidogenic processing of APP in Alzheimer’s disease.Front. Mol. Neurosci.20201313710.3389/fnmol.2020.0013732848600
    [Google Scholar]
  27. AsheK.H. AguzziA. Prions, prionoids and pathogenic proteins in Alzheimer disease.Prion201371555910.4161/pri.2306123208281
    [Google Scholar]
  28. DaviesP. MaloneyA.J. Selective loss of central cholinergic neurons in Alzheimer’s disease.Lancet19763088000140310.1016/S0140‑6736(76)91936‑X63862
    [Google Scholar]
  29. ZhangP. XuS. ZhuZ. XuJ. Multi-target design strategies for the improved treatment of Alzheimer’s disease.Eur. J. Med. Chem.201917622824710.1016/j.ejmech.2019.05.02031103902
    [Google Scholar]
  30. MorrisonA.S. LyketsosC. The pathophysiology of Alzheimer’s disease and directions in treatment.Adv Stud Nurs.200538256270
    [Google Scholar]
  31. LiuP.P. XieY. MengX.Y. KangJ.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease.Signal Transduct. Target. Ther.2019412910.1038/s41392‑019‑0063‑831637009
    [Google Scholar]
  32. GiacobiniE. GoldG. Alzheimer disease therapy—moving from amyloid-β to tau.Nat. Rev. Neurol.201391267768610.1038/nrneurol.2013.22324217510
    [Google Scholar]
  33. ReardonS. FDA approves Alzheimer’s drug lecanemab amid safety concernsNature Publishing Group2023
    [Google Scholar]
  34. GautamD. NaikU.P. NaikM.U. YadavS.K. ChaurasiaR.N. DashD. Glutamate receptor dysregulation and platelet glutamate dynamics in alzheimer’s and parkinson’s diseases: insights into current medications.Biomolecules20231311160910.3390/biom1311160938002291
    [Google Scholar]
  35. HuangY. ShenW. SuJ. ChengB. LiD. LiuG. ZhouW.X. ZhangY.X. Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-β-induced neurotoxicity.J. Alzheimers Dis.201757388589710.3233/JAD‑16118628269783
    [Google Scholar]
  36. UddinM.S. LimL.W. Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications.Ageing Res. Rev.20227810162210.1016/j.arr.2022.10162235427810
    [Google Scholar]
  37. DotyK.R. Guillot-SestierM.V. TownT. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?Brain Res.2015161715517310.1016/j.brainres.2014.09.00825218556
    [Google Scholar]
  38. JurgaA.M. PalecznaM. KadluczkaJ. KuterK.Z. Beyond the GFAP-astrocyte protein markers in the brain.Biomolecules2021119136110.3390/biom1109136134572572
    [Google Scholar]
  39. BellaverB. PovalaG. FerreiraP.C.L. Ferrari-SouzaJ.P. LeffaD.T. LussierF.Z. BenedetA.L. AshtonN.J. Triana-BaltzerG. KolbH.C. TissotC. TherriaultJ. ServaesS. StevensonJ. RahmouniN. LopezO.L. TudorascuD.L. VillemagneV.L. IkonomovicM.D. GauthierS. ZimmerE.R. ZetterbergH. BlennowK. AizensteinH.J. KlunkW.E. SnitzB.E. MakiP. ThurstonR.C. CohenA.D. GanguliM. KarikariT.K. Rosa-NetoP. PascoalT.A. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease.Nat. Med.20232971775178110.1038/s41591‑023‑02380‑x37248300
    [Google Scholar]
  40. HaneyM.S. PálovicsR. MunsonC.N. LongC. JohanssonP.K. YipO. DongW. RawatE. WestE. SchlachetzkiJ.C.M. TsaiA. GuldnerI.H. LamichhaneB.S. SmithA. SchaumN. CalcuttawalaK. ShinA. WangY.H. WangC. KoutsodendrisN. SerranoG.E. BeachT.G. ReimanE.M. GlassC.K. Abu-RemailehM. EnejderA. HuangY. Wyss-CorayT. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia.Nature2024628800615416110.1038/s41586‑024‑07185‑738480892
    [Google Scholar]
  41. SunN VictorMB ParkYP XiongX ScannailAN LearyN Human microglial state dynamics in Alzheimer’s disease progression.Cell2023186204386440310.1016/j.cell.2023.08.037
    [Google Scholar]
  42. FoxN.C. CrumW.R. ScahillR.I. StevensJ.M. JanssenJ.C. RossorM.N. Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images.Lancet2001358927720120510.1016/S0140‑6736(01)05408‑311476837
    [Google Scholar]
  43. FörstlH. ZerfaßR. Geiger-KabischC. SattelH. BesthornC. HentschelF. Brain atrophy in normal ageing and Alzheimer’s disease. Volumetric discrimination and clinical correlations.Br. J. Psychiatry1995167673974610.1192/bjp.167.6.7398829740
    [Google Scholar]
  44. PikeC.J. Sex and the development of Alzheimer’s disease.J. Neurosci. Res.2017951-267168010.1002/jnr.2382727870425
    [Google Scholar]
  45. van de RestO. BerendsenA.A.M. Haveman-NiesA. de GrootL.C.P.G.M. Dietary patterns, cognitive decline, and dementia: A systematic review.Adv. Nutr.20156215416810.3945/an.114.00761725770254
    [Google Scholar]
  46. PopeS.K. ShueV.M. BeckC. Will a healthy lifestyle help prevent Alzheimer’s disease?Annu. Rev. Public Health200324111113210.1146/annurev.publhealth.24.100901.14101512415146
    [Google Scholar]
  47. BaranowskiB.J. MarkoD.M. FenechR.K. YangA.J.T. MacPhersonR.E.K. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk.Appl. Physiol. Nutr. Metab.202045101055106510.1139/apnm‑2019‑091032717151
    [Google Scholar]
  48. JohnA. AliK. MarshH. ReddyP.H. Can healthy lifestyle reduce disease progression of Alzheimer’s during a global pandemic of COVID-19?Ageing Res. Rev.20217010140610.1016/j.arr.2021.10140634242809
    [Google Scholar]
  49. LuceyB.P. BatemanR.J. Amyloid-β diurnal pattern: Possible role of sleep in Alzheimer’s disease pathogenesis.Neurobiol. Aging2014352S29S3410.1016/j.neurobiolaging.2014.03.03524910393
    [Google Scholar]
  50. BorchardtV. KorhonenV. HelakariH. NedergaardM. MyllyläT. KiviniemiV. Inverse correlation of fluctuations of cerebral blood and water concentrations in humans.Eur. Phys. J. Plus2021136549710.1140/epjp/s13360‑021‑01480‑2
    [Google Scholar]
  51. ChatziC. ZhangY. HendricksW.D. ChenY. SchnellE. GoodmanR.H. WestbrookG.L. Exercise-induced enhancement of synaptic function triggered by the inverse BAR protein, Mtss1L.eLife20198e4592010.7554/eLife.4592031232686
    [Google Scholar]
  52. LinT.W. TsaiS.F. KuoY.M. Physical exercise enhances neuroplasticity and delays Alzheimer’s disease.Brain Plast.2018419511010.3233/BPL‑18007330564549
    [Google Scholar]
  53. SmithD.H. ChenX-H. NonakaM. TrojanowskiJ.Q. LeeV.M-Y. SaatmanK.E. LeoniM.J. XuB-N. WolfJ.A. MeaneyD.F. Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig.J. Neuropathol. Exp. Neurol.199958998299210.1097/00005072‑199909000‑0000810499440
    [Google Scholar]
  54. Van Den HeuvelC. FinnieJ.W. BlumbergsP.C. ManavisJ. JonesN.R. ReillyP.L. PereiraR.A. Upregulation of neuronal amyloid precursor protein (APP) and APP mRNA following magnesium sulphate (MgSO4) therapy in traumatic brain injury.J. Neurotrauma200017111041105310.1089/neu.2000.17.104111101207
    [Google Scholar]
  55. EdwardsG.A.III GamezN. EscobedoG.Jr CalderonO. Moreno-GonzalezI. Modifiable risk factors for Alzheimer’s disease.Front. Aging Neurosci.20191114610.3389/fnagi.2019.0014631293412
    [Google Scholar]
  56. ChatterjeeS. MudherA. Alzheimer’s disease and type 2 diabetes: A critical assessment of the shared pathological traits.Front. Neurosci.20181238310.3389/fnins.2018.0038329950970
    [Google Scholar]
  57. A ArmstrongR. Risk factors for Alzheimer’s disease.Folia Neuropathol.20195728710510.5114/fn.2019.8592931556570
    [Google Scholar]
  58. MendezM.F. Early-onset Alzheimer disease.Neurol. Clin.201735226328110.1016/j.ncl.2017.01.00528410659
    [Google Scholar]
  59. BallardC GauthierS CorbettA BrayneC AarslandD JonesE. Alzheimer's disease.the Lancet.2011377977010191031
    [Google Scholar]
  60. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.11726312828
    [Google Scholar]
  61. QingH. LiN-M. LiuK-F. QiuY-J. ZhangH-H. NakanishiH. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer’s disease pathogenesis.Neural Regen. Res.201914465866510.4103/1673‑5374.24746930632506
    [Google Scholar]
  62. SilvaM.V.F. LouresC.M.G. AlvesL.C.V. de SouzaL.C. BorgesK.B.G. CarvalhoM.G. Alzheimer’s disease: risk factors and potentially protective measures.J. Biomed. Sci.20192613310.1186/s12929‑019‑0524‑y
    [Google Scholar]
  63. CahillL. Why sex matters for neuroscience.Nat. Rev. Neurosci.20067647748410.1038/nrn190916688123
    [Google Scholar]
  64. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  65. WolkD.A. DickersonB.C. Clinical features and diagnosis of Alzheimer disease.2016Available from: https://medilib.ir/uptodate/show/5071
  66. ViolaK.L. KleinW.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis.Acta Neuropathol.2015129218320610.1007/s00401‑015‑1386‑325604547
    [Google Scholar]
  67. PalmqvistS. MattssonN. HanssonO. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography.Brain201613941226123610.1093/brain/aww01526936941
    [Google Scholar]
  68. JohnsonK.A. FoxN.C. SperlingR.A. KlunkW.E. Brain imaging in Alzheimer disease.Cold Spring Harb. Perspect. Med.201224a00621310.1101/cshperspect.a00621322474610
    [Google Scholar]
  69. CockrellJR FolsteinMF Mini-mental state examination.Principles and Practice of Geriatric PsychiatryWiley Online Library200214014110.1002/0470846410.ch27(ii)
    [Google Scholar]
  70. RichardsD. SabbaghM.N. Florbetaben for PET imaging of beta-amyloid plaques in the brain.Neurol. Ther.201432798810.1007/s40120‑014‑0022‑926000224
    [Google Scholar]
  71. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑535643092
    [Google Scholar]
  72. PalmqvistS. JanelidzeS. QuirozY.T. ZetterbergH. LoperaF. StomrudE. SuY. ChenY. SerranoG.E. LeuzyA. Mattsson-CarlgrenN. StrandbergO. SmithR. VillegasA. Sepulveda-FallaD. ChaiX. ProctorN.K. BeachT.G. BlennowK. DageJ.L. ReimanE.M. HanssonO. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders.JAMA2020324877278110.1001/jama.2020.1213432722745
    [Google Scholar]
  73. ThijssenE.H. La JoieR. WolfA. StromA. WangP. IaccarinoL. BourakovaV. CobigoY. HeuerH. SpinaS. VandeVredeL. ChaiX. ProctorN.K. AireyD.C. ShcherbininS. Duggan EvansC. SimsJ.R. ZetterbergH. BlennowK. KarydasA.M. TeunissenC.E. KramerJ.H. GrinbergL.T. SeeleyW.W. RosenH. BoeveB.F. MillerB.L. RabinoviciG.D. DageJ.L. RojasJ.C. BoxerA.L. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration.Nat. Med.202026338739710.1038/s41591‑020‑0762‑232123386
    [Google Scholar]
  74. VisserP.J. ReusL.M. GobomJ. JansenI. DicksE. van der LeeS.J. TsolakiM. VerheyF.R.J. PoppJ. Martinez-LageP. VandenbergheR. LleóA. MolinuevoJ.L. EngelborghsS. Freund-LeviY. FroelichL. SleegersK. DobricicV. LovestoneS. StrefferJ. VosS.J.B. BosI. SmitA.B. BlennowK. ScheltensP. TeunissenC.E. BertramL. ZetterbergH. TijmsB.M. SmitA.B. BlennowK. ScheltensP. TeunissenC.E. BertramL. ZetterbergH. TijmsB.M. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease.Mol. Neurodegener.20221712710.1186/s13024‑022‑00521‑335346299
    [Google Scholar]
  75. RiceL. BisdasS. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease : A systematic review.Eur. J. Radiol.201794162410.1016/j.ejrad.2017.07.01428941755
    [Google Scholar]
  76. PákáskiM. KálmánJ. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease.Neurochem. Int.200853510311110.1016/j.neuint.2008.06.00518602955
    [Google Scholar]
  77. MashD.C. FlynnD.D. PotterL.T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation.Science198522847031115111710.1126/science.39922493992249
    [Google Scholar]
  78. TeaktongT. GrahamA.J. CourtJ.A. PerryR.H. JarosE. JohnsonM. HallR. PerryE.K. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology.J. Neurol. Sci.20042251-2394910.1016/j.jns.2004.06.01515465084
    [Google Scholar]
  79. AndrieuS. ColeyN. LovestoneS. AisenP.S. VellasB. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions.Lancet Neurol.201514992694410.1016/S1474‑4422(15)00153‑226213339
    [Google Scholar]
  80. DanyszW. ParsonsC.G. MÖbiusH.J.Ö. StÖfflerA. QuackG.Ü. Neuroprotective and symptomatological action of memantine relevant for alzheimer’s disease a unified glutamatergic hypothesis on the mechanism of action.Neurotox. Res.200022-3859710.1007/BF0303378716787834
    [Google Scholar]
  81. HydeC. PetersJ. BondM. RogersG. HoyleM. AndersonR. JeffreysM. DavisS. ThokalaP. MoxhamT. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model.Age Ageing2013421142010.1093/ageing/afs16523179169
    [Google Scholar]
  82. Se ThoeE. FauziA. TangY.Q. ChamyuangS. ChiaA.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease.Life Sci.202127611912910.1016/j.lfs.2021.11912933515559
    [Google Scholar]
  83. KarranE. De StrooperB. The amyloid cascade hypothesis: Are we poised for success or failure?J. Neurochem.2016139S2Suppl. 223725210.1111/jnc.1363227255958
    [Google Scholar]
  84. Loera-ValenciaR. PirasA. IsmailM.A.M. ManchandaS. EyjolfsdottirH. SaidoT.C. JohanssonJ. EriksdotterM. WinbladB. NilssonP. Targeting Alzheimer’s disease with gene and cell therapies.J. Intern. Med.2018284123610.1111/joim.1275929582495
    [Google Scholar]
  85. WorkerA. DimaD. CombesA. CrumW.R. StrefferJ. EinsteinS. MehtaM.A. BarkerG.J. WilliamsS.C.R. O’dalyO. Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer’s disease populations.Hum. Brain Mapp.20183941743175410.1002/hbm.2394829341323
    [Google Scholar]
  86. CarraraS.C. UlitzkaM. GrzeschikJ. KornmannH. HockB. KolmarH. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies.Int. J. Pharm.202159412016410.1016/j.ijpharm.2020.12016433309833
    [Google Scholar]
  87. NelsonP.N. ReynoldsG.M. WaldronE.E. WardE. GiannopoulosK. MurrayP.G. Demystified Monoclonal antibodies.Mol. Pathol.200053311111710.1136/mp.53.3.11110897328
    [Google Scholar]
  88. LiuJ.K.H. The history of monoclonal antibody development : Progress, remaining challenges and future innovations.Ann. Med. Surg.20143411311610.1016/j.amsu.2014.09.00125568796
    [Google Scholar]
  89. ShepardH.M. PhillipsG.L. ThanosC.D. FeldmannM. Developments in therapy with monoclonal antibodies and related proteins.Clin. Med.201717322023210.7861/clinmedicine.17‑3‑22028572223
    [Google Scholar]
  90. BussN.A.P.S. HendersonS.J. McFarlaneM. ShentonJ.M. de HaanL. Monoclonal antibody therapeutics: History and future.Curr. Opin. Pharmacol.201212561562210.1016/j.coph.2012.08.00122920732
    [Google Scholar]
  91. García MerinoA. Monoclonal antibodies. Basic features.Neurologia201126530130621193249
    [Google Scholar]
  92. BayerV. An Overview of Monoclonal Antibodies.Semin Oncol Nurs.2019355150927
    [Google Scholar]
  93. KaplonH. MuralidharanM. SchneiderZ. ReichertJ.M. Antibodies to watch in 2020.MAbs20201211703531
    [Google Scholar]
  94. KaplonH. ReichertJ.M. Antibodies to watch in 2021.MAbs2021131186047610.1080/19420862.2020.1860476
    [Google Scholar]
  95. TakedaM. Development of monoclonal antibody therapeutics for alzheimer’s disease.Taiwan. J. Psych.202236414815610.4103/TPSY.TPSY_31_22
    [Google Scholar]
  96. CaoY-P. WangJ-C. ZhuK. ZhangH-Y. WangG-Q. LiuH-Y. Early active immunization with Aβ 3–10 -KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice.Neural Regen. Res.202015351952710.4103/1673‑5374.26606131571664
    [Google Scholar]
  97. SchenkD BarbourR DunnW GordonG GrajedaH GuidoT Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse.nature19994006740173177
    [Google Scholar]
  98. MonsonegoA. WeinerH.L. Immunotherapeutic approaches to Alzheimer’s disease.Science2003302564683483810.1126/science.108846914593170
    [Google Scholar]
  99. CitronM. Alzheimer’s disease: Strategies for disease modification.Nat. Rev. Drug Discov.20109538739810.1038/nrd289620431570
    [Google Scholar]
  100. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  101. DoodyR.S. ThomasR.G. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. RamanR. SunX. AisenP.S. SiemersE. Liu-SeifertH. MohsR. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa131288924450890
    [Google Scholar]
  102. CummingsJ.L. CohenS. van DyckC.H. BrodyM. CurtisC. ChoW. WardM. FriesenhahnM. RabeC. BrunsteinF. QuartinoA. HonigbergL.A. FujiR.N. ClaytonD. MortensenD. HoC. PaulR. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease.Neurology20189021e1889e189710.1212/WNL.000000000000555029695589
    [Google Scholar]
  103. OstrowitzkiS. LasserR.A. DorflingerE. ScheltensP. BarkhofF. NikolchevaT. AshfordE. RetoutS. HofmannC. DelmarP. KleinG. AndjelkovicM. DuboisB. BoadaM. BlennowK. SantarelliL. FontouraP. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease.Alzheimers Res. Ther.2017919510.1186/s13195‑017‑0318‑y29221491
    [Google Scholar]
  104. CummingsJ. ZhouY. LeeG. ZhongK. FonsecaJ. ChengF. Alzheimer’s disease drug development pipeline: 2023.Alzheimers Dement.202392e1238510.1002/trc2.1238537251912
    [Google Scholar]
  105. BuccellatoF.R. D’AncaM. TartagliaG.M. Del FabbroM. ScarpiniE. GalimbertiD. Treatment of Alzheimer’s disease: Beyond symptomatic therapies.Int. J. Mol. Sci.202324181390010.3390/ijms24181390037762203
    [Google Scholar]
  106. McDadeE. CummingsJ.L. DhaddaS. SwansonC.J. ReydermanL. KanekiyoM. KoyamaA. IrizarryM. KramerL.D. BatemanR.J. Lecanemab in patients with early Alzheimer’s disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study.Alzheimers Res. Ther.202214119110.1186/s13195‑022‑01124‑236544184
    [Google Scholar]
  107. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  108. AlbertM.S. DeKoskyS.T. DicksonD. DuboisB. FeldmanH.H. FoxN.C. GamstA. HoltzmanD.M. JagustW.J. PetersenR.C. SnyderP.J. CarrilloM.C. ThiesB. PhelpsC.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Focus Am. Psychiatr. Publ.20131119610610.1176/appi.focus.11.1.96
    [Google Scholar]
  109. FolsteinM.F. FolsteinS.E. McHughP.R. “Mini-mental state”.J. Psychiatr. Res.197512318919810.1016/0022‑3956(75)90026‑61202204
    [Google Scholar]
  110. DuboisB. HampelH. FeldmanH.H. ScheltensP. AisenP. AndrieuS. BakardjianH. BenaliH. BertramL. BlennowK. BroichK. CavedoE. CrutchS. DartiguesJ.F. DuyckaertsC. EpelbaumS. FrisoniG.B. GauthierS. GenthonR. GouwA.A. HabertM.O. HoltzmanD.M. KivipeltoM. ListaS. MolinuevoJ.L. O’BryantS.E. RabinoviciG.D. RoweC. SallowayS. SchneiderL.S. SperlingR. TeichmannM. CarrilloM.C. CummingsJ. JackC.R.Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria.Alzheimers Dement.201612329232310.1016/j.jalz.2016.02.00227012484
    [Google Scholar]
  111. CummingsJ. ApostolovaL. RabinoviciG.D. AtriA. AisenP. GreenbergS. HendrixS. SelkoeD. WeinerM. PetersenR.C. SallowayS. Lecanemab: Appropriate use recommendations.J. Prev. Alzheimers Dis.202310336237737357276
    [Google Scholar]
  112. BardF. CannonC. BarbourR. BurkeR.L. GamesD. GrajedaH. GuidoT. HuK. HuangJ. Johnson-WoodK. KhanK. KholodenkoD. LeeM. LieberburgI. MotterR. NguyenM. SorianoF. VasquezN. WeissK. WelchB. SeubertP. SchenkD. YednockT. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.Nat. Med.20006891691910.1038/7868210932230
    [Google Scholar]
  113. BlackR.S. SperlingR.A. SafirsteinB. MotterR.N. PallayA. NicholsA. GrundmanM. A single ascending dose study of bapineuzumab in patients with Alzheimer disease.Alzheimer Dis. Assoc. Disord.201024219820310.1097/WAD.0b013e3181c53b0020505438
    [Google Scholar]
  114. BarakosJ. PurcellD. SuhyJ. ChalkiasS. BurkettP. Marsica GrassiC. Castrillo-VigueraC. RubinoI. VijverbergE. Detection and management of amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid beta therapy.J. Prev. Alzheimers Dis.20229221122035542992
    [Google Scholar]
  115. SallowayS. SperlingR. FoxN.C. BlennowK. KlunkW. RaskindM. SabbaghM. HonigL.S. PorsteinssonA.P. FerrisS. ReichertM. KetterN. NejadnikB. GuenzlerV. MiloslavskyM. WangD. LuY. LullJ. TudorI.C. LiuE. GrundmanM. YuenE. BlackR. BrashearH.R. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370432233310.1056/NEJMoa130483924450891
    [Google Scholar]
  116. RinneJ.O. BrooksD.J. RossorM.N. FoxN.C. BullockR. KlunkW.E. MathisC.A. BlennowK. BarakosJ. OkelloA.A. de LIanoS.R.M. LiuE. KollerM. GreggK.M. SchenkD. BlackR. GrundmanM. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study.Lancet Neurol.20109436337210.1016/S1474‑4422(10)70043‑020189881
    [Google Scholar]
  117. ShiM. ChuF. ZhuF. ZhuJ. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab.Front. Aging Neurosci.20221487051710.3389/fnagi.2022.87051735493943
    [Google Scholar]
  118. SallowayS. ChalkiasS. BarkhofF. BurkettP. BarakosJ. PurcellD. SuhyJ. ForrestalF. TianY. UmansK. WangG. SinghalP. Budd HaeberleinS. SmirnakisK. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease.JAMA Neurol.2022791132110.1001/jamaneurol.2021.416134807243
    [Google Scholar]
  119. BeshirSA AadithsooryaA ParveenA GohSSL HussainN MenonVB Aducanumab therapy to treat Alzheimer’s disease: A narrative review.Int J Alzheimers Dis20222022934351410.1155/2022/9343514
    [Google Scholar]
  120. HerlineK. Passive Immunization to Improve Cognition and Reduce Pathological Species in a Mouse Model of Alzheimer’s Disease.New York University2018
    [Google Scholar]
  121. NovakovicD. FeligioniM. ScaccianoceS. CarusoA. PiccininS. SchepisiC. ErricoF. MercuriN.B. NicolettiF. NisticòR. Profile of gantenerumab and its potential in the treatment of Alzheimer’s disease.Drug Des. Devel. Ther.201371359136424255592
    [Google Scholar]
  122. KleinG. DelmarP. VoyleN. RehalS. HofmannC. Abi-SaabD. AndjelkovicM. RisticS. WangG. BatemanR. KerchnerG.A. BaudlerM. FontouraP. DoodyR. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis.Alzheimers Res. Ther.201911110110.1186/s13195‑019‑0559‑z31831056
    [Google Scholar]
  123. Tian Hui KwanA. ArfaieS. TherriaultJ. Rosa-NetoP. GauthierS. Lessons learnt from the second generation of anti-amyloid monoclonal antibodies clinical trials.Dement. Geriatr. Cogn. Disord.202049433434810.1159/00051150633321511
    [Google Scholar]
  124. MukherjeeA. BiswasS. RoyI. Immunotherapy: An emerging treatment option for neurodegenerative diseases.Drug Discov. Today202429510397410.1016/j.drudis.2024.10397438555032
    [Google Scholar]
  125. MablyA.J. LiuW. Mc DonaldJ.M. DodartJ.C. BardF. LemereC.A. O’NuallainB. WalshD.M. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice.Neurobiol. Dis.20158237238410.1016/j.nbd.2015.07.00826215784
    [Google Scholar]
  126. MoratóX. PytelV. JofresaS. RuizA. BoadaM. Symptomatic and disease-modifying therapy pipeline for Alzheimer’s disease: Towards a personalized polypharmacology patient-centered approach.Int. J. Mol. Sci.20222316930510.3390/ijms2316930536012569
    [Google Scholar]
  127. PanzaF. SolfrizziV. ImbimboB.P. GianniniM. SantamatoA. SeripaD. LogroscinoG. Efficacy and safety studies of gantenerumab in patients with Alzheimer’s disease.Expert Rev. Neurother.201414997398610.1586/14737175.2014.94552225081412
    [Google Scholar]
  128. LandenJ.W. ZhaoQ. CohenS. BorrieM. WoodwardM. BillingC.B.Jr BalesK. AlveyC. McCushF. YangJ. KupiecJ.W. BednarM.M. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to- moderate Alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study.Clin. Neuropharmacol.2013361142310.1097/WNF.0b013e31827db49b23334070
    [Google Scholar]
  129. SheytanovaL.M. Development of a human cell model of amyloid β seeding and aggregation to investigate Alzheimer’s disease pathology: UCL.University College London2018
    [Google Scholar]
  130. van OostveenW.M. de LangeE.C.M. Imaging techniques in Alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring.Int. J. Mol. Sci.2021224211010.3390/ijms2204211033672696
    [Google Scholar]
  131. MukhopadhyayS. BanerjeeD. A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease.J. Alzheimers Dis.20218341537155210.3233/JAD‑21506534366359
    [Google Scholar]
  132. Muñoz-JiménezM. ZaarktiA. García-ArnésJ.A. García-CasaresN. Antidiabetic drugs in Alzheimer’s disease and mild cognitive impairment: A systematic review.Dement. Geriatr. Cogn. Disord.202049542343410.1159/00051067733080602
    [Google Scholar]
  133. DominguesR. PereiraC. CruzM.T. SilvaA. Therapies for Alzheimer’s disease: A metabolic perspective.Mol. Genet. Metab.2021132316217210.1016/j.ymgme.2021.01.01133549409
    [Google Scholar]
  134. KabirM.T. UddinM.S. MamunA.A. JeandetP. AleyaL. MansouriR.A. AshrafG.M. MathewB. Bin-JumahM.N. Abdel-DaimM.M. Combination drug therapy for the management of Alzheimer’s disease.Int. J. Mol. Sci.2020219327210.3390/ijms2109327232380758
    [Google Scholar]
  135. HuatT.J. Camats-PernaJ. NewcombeE.A. ValmasN. KitazawaM. MedeirosR. Metal toxicity links to Alzheimer’s disease and neuroinflammation.J. Mol. Biol.201943191843186810.1016/j.jmb.2019.01.01830664867
    [Google Scholar]
  136. FauxN.G. RitchieC.W. GunnA. RembachA. TsatsanisA. BedoJ. HarrisonJ. LannfeltL. BlennowK. ZetterbergH. IngelssonM. MastersC.L. TanziR.E. CummingsJ.L. HerdC.M. BushA.I. PBT2 rapidly improves cognition in Alzheimer’s Disease: Additional phase II analyses.J. Alzheimers Dis.201020250951610.3233/JAD‑2010‑139020164561
    [Google Scholar]
  137. AkterK. LanzaE.A. MartinS.A. MyronyukN. RuaM. RaffaR.B. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment?Br. J. Clin. Pharmacol.201171336537610.1111/j.1365‑2125.2010.03830.x21284695
    [Google Scholar]
  138. ZhongK.L. ChenF. HongH. KeX. LvY.G. TangS.S. ZhuY.B. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer’s Disease.Metab. Brain Dis.20183341009101810.1007/s11011‑018‑0227‑129626315
    [Google Scholar]
  139. PlastinoM. FavaA. PirritanoD. CotroneiP. SaccoN. SperlìT. SpanòA. GalloD. MungariP. ConsoliD. BoscoD. Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and Diabetes Mellitus type-2.J. Neurol. Sci.20102881-211211610.1016/j.jns.2009.09.02219836029
    [Google Scholar]
  140. HossainMS UddinMS KabirMT AkhterS GoswamiS MamunAA in vivo screening for analgesic and anti-inflammatory activities of Syngonium podophyllum L.: A remarkable herbal medicine.Ann. Res. Rev. Biol.2017163ARRB.35692
    [Google Scholar]
  141. MooreA.H. BigbeeM.J. BoyntonG.E. WakehamC.M. RosenheimH.M. StaralC.J. MorrisseyJ.L. HundA.K. Non-steroidal anti-inflammatory drugs in Alzheimer’s disease and Parkinson’s disease: reconsidering the role of neuroinflammation.Pharmaceuticals2010361812184110.3390/ph306181227713331
    [Google Scholar]
  142. GannonM. WangQ. Complex noradrenergic dysfunction in Alzheimer’s disease: Low norepinephrine input is not always to blame.Brain Res.20191702121610.1016/j.brainres.2018.01.00129307592
    [Google Scholar]
  143. MohsR.C. ShiovitzT.M. TariotP.N. PorsteinssonA.P. BakerK.D. FeldmanP.D. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with Alzheimer disease: 6-month, randomized, double-blind, placebo-controlled, parallel-trial study.Am. J. Geriatr. Psychiatry200917975275910.1097/JGP.0b013e3181aad58519700948
    [Google Scholar]
  144. ÁlvarezA. CacabelosR. SanpedroC. García-FantiniM. AleixandreM. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease.Neurobiol. Aging200728453353610.1016/j.neurobiolaging.2006.02.01216569464
    [Google Scholar]
  145. MufsonE. CountsS. FahnestockM. GinsbergS. Cholinotrophic molecular substrates of mild cognitive impairment in the elderly.Curr. Alzheimer Res.20074434035010.2174/15672050778178885517908035
    [Google Scholar]
  146. MartelJ-C. AssiéM-B. BardinL. DepoortèreR. CussacD. Newman-TancrediA. 5-HT 1A receptors are involved in the effects of xaliproden on G-protein activation, neurotransmitter release and nociception.Br. J. Pharmacol.2009158123224210.1111/j.1476‑5381.2009.00249.x19508400
    [Google Scholar]
  147. ElmawlaA Abd ElhameedD IbrahimSME RadwanEHM ElzehiriDA El FadawyHAM Effect of cognitive stimulation therapy versus reminiscence therapy on cognitive and psychological outcomes in older adults with mild cognitive impairment: A quasi-experimental study.NILES j. Geria. Geront.20247245647610.21608/niles.2024.353919
    [Google Scholar]
  148. ScarmeasN. AnastasiouC.A. YannakouliaM. Nutrition and prevention of cognitive impairment.Lancet Neurol.201817111006101510.1016/S1474‑4422(18)30338‑730244829
    [Google Scholar]
  149. SwartzK. CollinsL.G. Caregiver Care.Am. Fam. Physician2019991169970631150177
    [Google Scholar]
  150. ZhangQ. LiuC. JingX. ChiH. LiX. YueJ. PanW. YangG. Editorial: Neural mechanism and effect of acupuncture for central nervous system diseases.Front. Neurosci.202417133761210.3389/fnins.2023.133761238260027
    [Google Scholar]
  151. XuJ. GouS. HuangX. ZhangJ. ZhouX. GongX. XiongJ. ChiH. YangG. Uncovering the impact of aggrephagy in the development of alzheimer’s disease: Insights into diagnostic and therapeutic approaches from machine learning analysis.Curr. Alzheimer Res.202320961863510.2174/011567205028089423121406302338141185
    [Google Scholar]
  152. ZhaoS. YeB. ChiH. ChengC. LiuJ. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer’s disease using single-cell sequencing.Heliyon202397e1745410.1016/j.heliyon.2023.e1745437449151
    [Google Scholar]
  153. SatlinA. FukushimaT. Composition and method for treating alzheimer’s disease.E.S. Patent 2285772T32019
  154. RobertsM.I. StaddonJ.M. De SilvaH.A.R. SpidelJ. AoyagiH. AkasofuS. Anti-tau antibodies and uses thereof.W.O.Patent 2021205359A12020
  155. YoshidaN. High concentration anti-abeta protofibril antibody formulations and methods of use thereof.E.P. Patent 4252777A22023
  156. DemattosR.B. LuJ. TangY. Anti-N3pGlu amyloid beta peptide antibodies and uses thereof.W.O.Patent 2022192636A12020Available from: https://patents.google.com/patent/WO2022192636A1/en?oq=WO2022192636A1Anti-amyloid+beta+antibodies+and+uses+thereof
  157. Biomarkers for alzheimer's disease treatment.W.O.Patent 2023283650A12022Available from: https://patents.google.com/patent/WO2023283650A1/en?oq=WO2023283650A1Biomarkers+for+Alzheimer%E2%80%99s+disease+treatment
  158. Methods of treating neurological diseases.W.O.Patent 2023284710A12022Available from: https://patents.google.com/patent/WO2023284710A1/en?oq=WO2023284710A1Methods+of+treating+neurological+diseases
  159. Anti-amyloid beta antibodies and uses thereof.W.O.Patent 2022192636A12022Available from: https://patents.google.com/patent/WO2022192636A1/en?oq=WO2022192636A1Anti-amyloid+beta+antibodies+and+uses+thereof
/content/journals/cdt/10.2174/0113894501320096240627071400
Loading
/content/journals/cdt/10.2174/0113894501320096240627071400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test