Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Age-related Macular Degeneration (AMD) is a severe eye illness that is going to lead in the race for incurable blindness globally among the elderly population. AMD is the third common reason responsible for affecting the quality of life globally. The macula and the retinal layers are adversely affected during AMD and are responsible for the loss of vision eventually. Numerous genetic variables, lipid metabolism, ageing and oxidative damage are the causative factors in the genesis of AMD. Lack of antioxidants, smoking and excessive alcohol intake contribute to increasing the risk of AMD. Management of dry AMD involves the use of nutritional supplements like zinc and antioxidants, along with conventional treatment, however, the use of nutritional supplements can only give minor benefits on the progression of dry AMD. Later stages of AMD need to be managed by cell-based interventions where the damaged or lost cells are replaced with fresh donor cells. A plethora of treatment methods are used in the management of AMD, such as nutrition, antibody-based treatments, stem cell management and nanotherapeutics. The available expensive treatments come with a number of adverse effects and future developments require the involvement of risk factor modification approaches, personalized therapy, targeting the disease specific pathways, exploring better anti-vascular endothelial growth factor (VEGF) inhibitors and many other regenerative approaches, that will broaden techniques to diagnose, control and treat AMD. This review provides an overview of the progression of AMD and the causative factors, with considerable emphasises on the current and potential prospects.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775250144230920053548
2023-09-28
2025-06-17
Loading full text...

Full text loading...

References

  1. ThomasC.J. MirzaR.G. GillM.K. FrcsC. Age-Related Macular Degeneration.Med. Clin. North Am.2021105347349110.1016/j.mcna.2021.01.003
    [Google Scholar]
  2. RimT.H. KawasakiR. ThamY. Prevalence and Pattern of Geographic Atrophy in Asia: The Asian Eye Epidemiology Consortium.Ophthalmology2020127101371138110.1016/j.ophtha.2020.04.019
    [Google Scholar]
  3. NittalaM.G. UjiA. VelagaS.B. Effect of Human Central Nervous System Stem Cell Subretinal Transplantation on Progression of Geographic Atrophy Secondary to Nonneovascular Age-Related Macular Degeneration.Ophthalmol. Retina202151324010.1016/j.oret.2020.06.012
    [Google Scholar]
  4. Kumar DubeyS. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift.Int. J. Pharm.202160012049910.1016/j.ijpharm.2021.120499
    [Google Scholar]
  5. ColijnJ.M. BuitendijkG.H.S. ProkofyevaE. Prevalence of Age-Related Macular Degeneration in Europe.Ophthalmology2017124121753176310.1016/j.ophtha.2017.05.035
    [Google Scholar]
  6. MorizurL. HerardotE. MonvilleC. Ben M’BarekK. Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration.Mol. Cell. Neurosci.2020107January10352310.1016/j.mcn.2020.103523
    [Google Scholar]
  7. SalimiaghdamN. Riazi-EsfahaniM. FukuharaP.S. SchneiderK. KenneyM.C. Age-related Macular Degeneration (AMD): A Review on its Epidemiology and Risk Factors.Open Ophthalmol. J.2019131909910.2174/1874364101913010090
    [Google Scholar]
  8. KimC.G. ParkS. KimY. Age‐related macular degeneration among the elderly: The 5th National Health and Nutrition Examination Survey, 2010 through 2012.Jpn. J. Nurs. Sci.202017111110.1111/jjns.12257
    [Google Scholar]
  9. HealthE. Nutrition and Eye Health.Nutrients2019119212314
    [Google Scholar]
  10. KaarnirantaK. Progress in Retinal and Eye Research Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration.Prog. Retin. Eye Res.20207910085810.1016/j.preteyeres.2020.100858
    [Google Scholar]
  11. MousaviM. ArmstrongR.A. Genetic risk factors and age-related macular degeneration (AMD).J. Optom.20136417618410.1016/j.optom.2013.07.002
    [Google Scholar]
  12. RicciF. BandelloF. NavarraP. StaurenghiG. StumppM. ZarbinM. Neovascular age-related macular degeneration: Therapeutic management and new-upcoming approaches.Int. J. Mol. Sci.20202121824210.3390/ijms21218242
    [Google Scholar]
  13. NazariH. ZhangL. ZhuD. Stem cell based therapies for age-related macular degeneration: The promises and the challenges.Prog. Retin. Eye Res.201548June13910.1016/j.preteyeres.2015.06.004
    [Google Scholar]
  14. da CruzL. FynesK. GeorgiadisO. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration.Nat. Biotechnol.201836432833710.1038/nbt.4114
    [Google Scholar]
  15. SharmaP. MittalS. Expert Opinion on Drug Delivery Nanotechnology : Revolutionizing the delivery of drugs to treat age-related macular degeneration.Expert Opin. Drug Deliv.20211881131114910.1080/17425247.2021.1888925
    [Google Scholar]
  16. Ferro DesideriL. TraversoC.E. NicolòM. FerroL. TraversoC.E. NicolòM. Brolucizumab: A novel anti-VEGF humanized single-chain antibody fragment for treating w-AMD.Expert Opin. Biol. Ther.202121555356110.1080/14712598.2021.1915278
    [Google Scholar]
  17. DengY. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy.Genes Dis.2021 (Feb):10.1016/j.gendis.2021.02.009
    [Google Scholar]
  18. TakagiS. MandaiM. GochoK. Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration.Ophthalmol. Retina201931085085910.1016/j.oret.2019.04.021
    [Google Scholar]
  19. VitilloL. TovellV.E. CoffeyP. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.Curr. Eye Res.202045336137110.1080/02713683.2019.1691237
    [Google Scholar]
  20. KamataK. OtsukaY. ImamuraK. Generation of a human induced pluripotent stem cell line, BRCi004-A, derived from a patient with age-related macular degeneration.Stem Cell Res. (Amst.)202045February10178710.1016/j.scr.2020.101787
    [Google Scholar]
  21. DegenerationA.M. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Stargardt Disease.2020Available From: https://ichgcp.net/clinical-trials-registry/publications/91290-stem-cell-ophthalmology-treatment-study-scots-bone-marrowderived-stem-cells-in-the-treatment-of-4
    [Google Scholar]
  22. BhuttoI. LuttyG. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex.Mol. Aspects Med.201233429531710.1016/j.mam.2012.04.005
    [Google Scholar]
  23. SchultzN.M. BhardwajS. BarclayC. GasparL. SchwartzJ. Global Burden of Dry Age-Related Macular Degeneration: A Targeted Literature Review.Clin. Ther.202143101792181810.1016/j.clinthera.2021.08.011
    [Google Scholar]
  24. ArmentoA. HonischS. PanagiotakopoulouV. Loss of Complement Factor H impairs antioxidant capacity and energy metabolism of human RPE cells.Sci. Rep.20201011032010.1038/s41598‑020‑67292‑z
    [Google Scholar]
  25. PenningtonK.L. DeAngelisM.M. Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors.Eye Vis. (Lond.)2016313410.1186/s40662‑016‑0063‑5
    [Google Scholar]
  26. MettuP.S. AllinghamM.J. CousinsS.W. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities.Prog. Retin. Eye Res.20218210090610.1016/j.preteyeres.2020.100906
    [Google Scholar]
  27. Luaces-rodríguezA. Intravitreal anti-VEGF drug delivery systems for age-related macular degeneration.Int. J. Pharm.202057311876710.1016/j.ijpharm.2019.118767
    [Google Scholar]
  28. OlsonJ.H. ErieJ.C. BakriS.J. Nutritional supplementation and age-related macular degeneration.Semin. Ophthalmol.201126313113610.3109/08820538.2011.577131
    [Google Scholar]
  29. ChewE.Y. ClemonsT.E. AgrónE. Long-term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression.JAMA Ophthalmol.2022140769210.1001/jamaophthalmol.2022.1640
    [Google Scholar]
  30. SinH.Y.P. LiuD.T.L. LamD.S.C. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration.Acta Ophthalmol.2013911611
    [Google Scholar]
  31. ZampattiS. RicciF. CusumanoA. MarsellaL.T. NovelliG. GiardinaE. Review of nutrient actions on age-related macular degeneration.Nutr. Res.20143429510510.1016/j.nutres.2013.10.011
    [Google Scholar]
  32. AokiA. InoueM. NguyenE. Dietary n-3 Fatty Acid, α-Tocopherol, Zinc, vitamin D, vitamin C and β-carotene are Associated with Age-Related Macular Degeneration in Japan.Sci. Rep.2016612072310.1038/srep20723
    [Google Scholar]
  33. ListerT. Nutritional, Alternative, and Complementary Therapies for Age-related Macular Degeneration.Integr. Med. (Encinitas)20191863036
    [Google Scholar]
  34. KhooH.E. NgH.S. YapW. JiH. GohH. YimH.S. Nutrients for Prevention of Macular Degeneration and Eye-Related Diseases.Antioxidants (Basel)20198448510.3390/antiox8040085
    [Google Scholar]
  35. Olmedilla-AlonsoB. Effect of long-term xanthophyll and anthocyanin supplementation on Lutein and Zeaxanthin Serum Concentrations and macular pigment optical density in postmenopausal women.Nutrients2018108495910.3390/nu10080959
    [Google Scholar]
  36. HammondB.R. FletcherL.M. RoosF. WittwerJ. SchalchW. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast.Invest. Ophthalmol. Vis. Sci.201455128583858910.1167/iovs.14‑15573
    [Google Scholar]
  37. WeikelK.A. ChiuC.J. TaylorA. Nutritional modulation of age-related macular degeneration.Mol. Aspects Med.201233431837510.1016/j.mam.2012.03.005
    [Google Scholar]
  38. ChristenW.G. GlynnR.J. ChewE.Y. BuringJ.E. Vitamin E and Age-Related Macular Degeneration in a Randomized Trial of Women.Ophthalmology201011761163116810.1016/j.ophtha.2009.10.043
    [Google Scholar]
  39. BlasiakJ. PawlowskaE. ChojnackiJ. SzczepanskaJ. ChojnackiC. KaarnirantaK. Zinc and Autophagy in age-related macular degeneration.Int. J. Mol. Sci.20202114499410.3390/ijms21144994
    [Google Scholar]
  40. ArslanS. KadayifçilarS. SamurG. The Potential Role of Dietary Antioxidant Capacity in Preventing Age-Related Macular Degeneration.J. Am. Coll. Nutr.201938542443210.1080/07315724.2018.1538830
    [Google Scholar]
  41. WeckerT. Anti-VEGF injection frequency correlates with visual acuity outcomes in pro re nata neovascular AMD treatment.Sci. Rep.201991330110.1038/s41598‑019‑38934‑8
    [Google Scholar]
  42. PożarowskaD. PożarowskiP. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy.Cent. Eur. J. Immunol.20163331131610.5114/ceji.2016.63132
    [Google Scholar]
  43. CheungG.C.M. LaiT.Y.Y. GomiF. RuamviboonsukP. KohA. LeeW.K. Anti-VEGF therapy for neovascular AMD and polypoidal choroidal vasculopathy.Asia Pac. J. Ophthalmol. (Phila.)20176652753410.22608/APO.2017260
    [Google Scholar]
  44. ClearkinL. RamasamyB. WasonJ. TiewS. Anti-VEGF intervention in neovascular AMD: Benefits and risks restated as natural frequencies.BMJ Open Ophthalmol.201941e00025710.1136/bmjophth‑2018‑000257
    [Google Scholar]
  45. EandiC.M. AlovisiC. De SanctisU. GrignoloF.M. Treatment for neovascular age related macular degeneration: The state of the art.Eur. J. Pharmacol.2016787788310.1016/j.ejphar.2016.03.002
    [Google Scholar]
  46. Schmidt-ErfurthU. ChongV. LoewensteinA. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA).Br. J. Ophthalmol.20149891144116710.1136/bjophthalmol‑2014‑305702
    [Google Scholar]
  47. LadE.M. HammillB.G. QuallsL.G. WangF. CousinsS.W. CurtisL.H. Anti-VEGF Treatment Patterns for Neovascular Age-Related Macular Degeneration Among Medicare Beneficiaries.Am. J. Ophthalmol.20141583537543.e210.1016/j.ajo.2014.05.014
    [Google Scholar]
  48. JaffeG.J. KaiserP.K. ThompsonD. Differential Response to Anti-VEGF Regimens in Age-Related Macular Degeneration Patients with Early Persistent Retinal Fluid.Ophthalmology201612391856186410.1016/j.ophtha.2016.05.016
    [Google Scholar]
  49. SaddaS.R. GuymerR. MonésJ.M. TufailA. JaffeG.J. Anti–Vascular Endothelial Growth Factor Use and Atrophy in Neovascular Age-Related Macular Degeneration.Ophthalmology2020127564865910.1016/j.ophtha.2019.11.010
    [Google Scholar]
  50. Andrés-GuerreroV. Perucho-GonzálezL. García-FeijooJ. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma.Adv. Ther.201734237839510.1007/s12325‑016‑0461‑z
    [Google Scholar]
  51. ManzanoR.P.A. PeymanG.A. KhanP. KivilcimM. Testing intravitreal toxicity of Bevacizumab (Avastin).Retina200626325726110.1097/00006982‑200603000‑00001
    [Google Scholar]
  52. Center for Drug evaluation and research, Review and Evaluation of Toxicology Data of Bevacizumab.Avastin2004Available From: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/STN-125085_Avastin_Toxr.pdf
    [Google Scholar]
  53. Centers for Disease Control and PreventionNIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings: Proposed Additions to the NIOSH Hazardous Drug List 2018 Peer Review Comments The NIOSH.2018Available From: https://www.federalregister.gov/documents/2018/02/14/2018-02957/niosh-list-of-antineoplastic-and-other-hazardous-drugs-in-healthcare-settings-proposed-additions-to
    [Google Scholar]
  54. XuW. WangH. WangF. Testing toxicity of multiple intravitreal injections of bevacizumab in rabbit eyes.Can. J. Ophthalmol.201045438639210.3129/i10‑024
    [Google Scholar]
  55. Center for Drug evaluation and researchPharmacology/Toxicology Review and Evaluation on Lucentis, ranibizumab - BLA application number 125156.2005Available From: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125156Orig1s106.pdf
    [Google Scholar]
  56. EMEAScientific discussion of lucentis2007
    [Google Scholar]
  57. Center for drug evaluation and research, Center for Drug Evaluation and Pharmacology Review: Zaltrap.2012Available From: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/125418Orig1s000PharmR.pdf
  58. Bayer IncProduct Monograph Eylea2020
    [Google Scholar]
  59. Committee for Medicinal Products for Human Use (EMA) Eylea (Aflibercept) EPAR Assessment Report2012
  60. Committee for Medicinal Products for Human Use (EMA)Assessment report: Eylea.2013Available From: https://www.ema.europa.eu/en/documents/assessmentreport/eylea-epar-public-assessment-report_en.pdf
    [Google Scholar]
  61. EMEAPegaptanib.2006Available From: https://en.wikipedia.org/wiki/Pegaptanib
    [Google Scholar]
  62. CDER, “Pharmacology Reviews 2004
    [Google Scholar]
  63. Pfizer, Product monograph: Macugen.2013Available From: https://pdf.hres.ca/dpd_pm/00022292.PDF
  64. SunX. LuX. Profile of conbercept in the treatment of neovascular age-related macular degeneration.Drug Des. Devel. Ther.201592311232010.2147/DDDT.S67536
    [Google Scholar]
  65. CDER Summary Review of Brolicizumab.2019Available From: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761125Orig1s000SumR.pdf
    [Google Scholar]
  66. CDER, Non-Clinical Review(s) of Brolicizumab. 2019.
  67. Committee for Medicinal Products for Human Use (EMA), Assessment Report Beovu - Brolucizumab.2019
  68. Novartis Pharmaceuticals Canada Inc, Product Monograph Including Patient Medication Information BEOVU2020Available Fromhttps://www.ask.novartispharma.ca/download.htm?res=beovu_scrip_e.pdf&resTitleId=1648
    [Google Scholar]
  69. HussainR.M. ShaukatB.A. CiullaL.M. BerrocalA.M. SridharJ. Vascular Endothelial Growth Factor Antagonists: Promising Players in the Treatment of Neovascular Age-Related Macular Degeneration.Drug Des. Devel. Ther.2021152653266510.2147/DDDT.S295223
    [Google Scholar]
  70. DugelP.U. BoyerD.S. AntoszykA.N. Phase 1 Study of OPT-302 Inhibition of Vascular Endothelial Growth Factors C and D for Neovascular Age-Related Macular Degeneration.Ophthalmol. Retina20204325026310.1016/j.oret.2019.10.008
    [Google Scholar]
  71. ScariaA. LeHalpereA. PurvisA. 249. Preliminary Results of a Phase 1, Open-Label, Safety and Tolerability Study of a Single Intravitreal Injection of AAV2-sFLT01 in Patients with Neovascular Age-Related Macular Degeneration.Mol. Ther.201624S9810.1016/S1525‑0016(16)33058‑1
    [Google Scholar]
  72. MitchellP. LiewG. GopinathB. WongT.Y. Age-related macular degeneration.Lancet2018392101531147115910.1016/S0140‑6736(18)31550‑2
    [Google Scholar]
  73. WongC.W. WongT.T. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema.Br. J. Ophthalmol.2019103101356136010.1136/bjophthalmol‑2018‑313462
    [Google Scholar]
  74. KhannaS. KomatiR. EichenbaumD.A. HariprasadI. CiullaT.A. HariprasadS.M. Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: A comparative review.BMJ Open Ophthalmol.201941e00039810.1136/bmjophth‑2019‑000398
    [Google Scholar]
  75. OhjiM. TakahashiK. OkadaA.A. Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend Regimens in Exudative Age-Related Macular Degeneration: 52- and 96-Week Findings from ALTAIR.Adv. Ther.20203731173118710.1007/s12325‑020‑01236‑x
    [Google Scholar]
  76. SimmonsK.T. Complement Receptor 1 (CR1/CD35)-expressing retinal pigment epithelial cells as a potential therapy for age-related macular degeneration.Mol. Immunol.2020118919810.1016/j.molimm.2019.11.007
    [Google Scholar]
  77. CarrA.J.F. SmartM.J.K. RamsdenC.M. PownerM.B. da CruzL. CoffeyP.J. Development of human embryonic stem cell therapies for age-related macular degeneration.Trends Neurosci.201336738539510.1016/j.tins.2013.03.006
    [Google Scholar]
  78. SarkarA. DyawanapellyS. Nanodiagnostics and Nanotherapeutics for age-related macular degeneration Nanodiagnostics and Nanotherapeutics for age-related macular degeneration.J. Control. Release2020(October):10.1016/j.jconrel.2020.10.054
    [Google Scholar]
  79. KaurI.P. KakkarS. Nanotherapy for posterior eye diseases.J. Control. Release201419310011210.1016/j.jconrel.2014.05.031
    [Google Scholar]
  80. LiF. HurleyB. LiuY. LeonardB. GriffithM. Controlled Release of Bevacizumab Through Nanospheres for Extended Treatment of Age-Related Macular Degeneration.Open Ophthalmol. J.201265458
    [Google Scholar]
  81. StrongH.A. LevyJ. HuberG. FsadniM. Vision through photodynamic therapy of the eye.U.S. Patent No. US5910510 A, 8 June1999
    [Google Scholar]
  82. DavisB.M. NormandoE.M. GuoL. Topical delivery of avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes.Small20141081575158410.1002/smll.201303433
    [Google Scholar]
  83. Dexamethasone - PAMAM dendrimer conjugates for retinal delivery: Preparation, characterization and in vivo evaluation.J. Pharm. Pharmacol 2016 Aug;68(8):1010-2020166881010102010.1111/jphp.12587
    [Google Scholar]
  84. MandalA. BishtR. RupenthalI.D. MitraA.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release20172489611610.1016/j.jconrel.2017.01.012
    [Google Scholar]
  85. StreetsJ. BhattP. BhatiaD. 2020; Sunitinib-Loaded MPEG-PCL micelles for the treatment of age-related macular degeneration.Scientia Pharmaceutica .20208833010.3390/scipharm88030030
    [Google Scholar]
  86. AlshamraniM. SikderS. CoulibalyF. MandalA. PalD. MitraA.K. Self-Assembling Topical Nanomicellar Formulation to Improve Curcumin Absorption Across Ocular Tissues.AAPS PharmSciTech201920725410.1208/s12249‑019‑1404‑1
    [Google Scholar]
  87. LimC. KimD. SimT. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops.J. Drug Deliv. Sci. Technol.20163616817410.1016/j.jddst.2016.10.009
    [Google Scholar]
  88. FangG. YangX. WangQ. ZhangA. TangB. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases.Mater. Sci. Eng. C2021127May11221210.1016/j.msec.2021.112212
    [Google Scholar]
  89. SousaF. CruzA. FonteP. PintoI.M. Neves-PetersenM.T. SarmentoB. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles.Sci. Rep.201771373610.1038/s41598‑017‑03959‑4
    [Google Scholar]
  90. MuH. WangY. ChuY. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization.Drug Deliv.20182511372138310.1080/10717544.2018.1474967
    [Google Scholar]
  91. Luis de RedínI. BoieroC. Martínez-OhárrizM.C. Human serum albumin nanoparticles for ocular delivery of bevacizumab.Int. J. Pharm.20185411-221422310.1016/j.ijpharm.2018.02.003
    [Google Scholar]
  92. YanJ. PengX. CaiY. CongW. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.J. Photochem. Photobiol. B201818313313610.1016/j.jphotobiol.2018.04.033
    [Google Scholar]
  93. NarvekarP. BhattP. FnuG. SutariyaV. Axitinib-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Age-Related Macular Degeneration: Formulation Development and In Vitro Characterization.Assay Drug Dev. Technol.201917416717710.1089/adt.2019.920
    [Google Scholar]
  94. LiuJ. ZhangX. LiG. Anti-Angiogenic Activity Of Bevacizumab-Bearing Dexamethasone-Loaded PLGA Nanoparticles For Potential Intravitreal Applications.Int. J. Nanomedicine2019148819883410.2147/IJN.S217038
    [Google Scholar]
  95. HoshikawaA. TagamiT. MorimuraC. FukushigeK. OzekiT. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug delivery platform for age-related macular degeneration.J. Drug Deliv. Sci. Technol.201738455010.1016/j.jddst.2017.01.004
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775250144230920053548
Loading
/content/journals/cdrr/10.2174/0125899775250144230920053548
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Atrophy; drusen; nutritional recommendation; risk factors; stem cell therapy; VEGF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test