Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

Patents and exclusive rights on reference biologics contribute to the emergence of biosimilars. Regulatory bodies, such as the Food and Drug Administration (FDA), World Health Organization (WHO), and EMA (European Medicines Agency) for assessing clinical safety, effectiveness, and consequences between biosimilars and reference medications, have established guidelines. Since generic small molecules from reference can be easily swapped, biosimilars cannot be used interchangeably and may not always indicate interchangeability due to highly restrictive properties. It can be replaced with a reference without the healthcare provider's help under the interchangeability context.

Objectives

The purpose of our study is to analyze and compare evidence-based clinical safety, therapeutic potential, and importance (outcomes) of several biosimilars with their references along with clinical uses in chronic diseases.

Methods

Through a comprehensive systemic literature review of more than 100 articles involving medicinally important drugs whose bio-similarity works optimally, safety-efficacy parameters have been analyzed. Analysis of biosimilar usage, approval, and safety-efficacy aspects are majorly focused upon herein in this review.

Results

From this systemic review, it can be stated that the majority of biosimilars are clinically and statistically equivalent to their originators. As biosimilars have good safety-efficacy aspects with lower prices, their utilization can be more encouraged, which was already done by the FDA with the establishment of a public online database entitled “Purple Book,” which includes all information regarding biological drugs.

Conclusion

To conclude, we suggest wide spread use of high-grade biosimilars in clinical practice, may be changing, exchanging, or switching, with appropriate clinical monitoring and pharmacovigilance to improve patient accessibility to modern medicines, as it provides similar efficacy and safety parameters across all the accumulated clinical trials and studies.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775246113231018080526
2023-11-02
2025-05-29
Loading full text...

Full text loading...

References

  1. BarbierL. DeclerckP. SimoensS. NevenP. VultoA.G. HuysI. The arrival of biosimilar monoclonal antibodies in oncology: clinical studies for trastuzumab biosimilars.Br. J. Cancer2019121319921010.1038/s41416‑019‑0480‑z31257362
    [Google Scholar]
  2. HaraF. TajimaK. TanabeK. Current situation and challenges regarding biosimilars in Japan: an example of trastuzumab biosimilars for breast cancer.Future Oncol.201915121353136110.2217/fon‑2018‑095730767568
    [Google Scholar]
  3. GollG.L. JørgensenK.K. SextonJ. Long‐term efficacy and safety of biosimilar infliximab (CT‐P13) after switching from originator infliximab: open‐label extension of the NOR‐SWITCH trial.J. Intern. Med.2019285665366910.1111/joim.1288030762274
    [Google Scholar]
  4. JassemS. WangW. SweetH. Functional and nonclinical similarity of ABP 980, a biosimilar of trastuzumab.Pharm. Res.2019361217710.1007/s11095‑019‑2702‑831696314
    [Google Scholar]
  5. MeloskyB. ReardonD.A. NixonA.B. SubramanianJ. BairA.H. JacobsI. Bevacizumab biosimilars: scientific justification for extrapolation of indications.Future Oncol.201814242507252010.2217/fon‑2018‑005129690784
    [Google Scholar]
  6. CohenS. GenoveseM.C. ChoyE. Efficacy and safety of the biosimilar ABP 501 compared with adalimumab in patients with moderate to severe rheumatoid arthritis: a randomised, double-blind, phase III equivalence study.Ann. Rheum. Dis.201776101679168710.1136/annrheumdis‑2016‑21045928584187
    [Google Scholar]
  7. FeaganB.G. LamG. MaC. LichtensteinG.R. Systematic review: efficacy and safety of switching patients between reference and biosimilar infliximab.Aliment. Pharmacol. Ther.2019491314010.1111/apt.1499730411382
    [Google Scholar]
  8. ThomasM. ThatcherN. GoldschmidtJ. OheY. McBrideH.J. HanesV. Totality of evidence in the development of ABP 215, an approved bevacizumab biosimilar.Immunotherapy201911151337135110.2217/imt‑2019‑012531556762
    [Google Scholar]
  9. DeanerJ.D. SrivastavaS.K. Hajj-AliR.A. Recurrence rates of inflammation after switching from the originator infliximab to biosimilar infliximab-abda for noninfectious uveitis.Am. J. Ophthalmol.202122517217710.1016/j.ajo.2020.08.00532795432
    [Google Scholar]
  10. Biological product definition, U.S.FDA, 2017Available from: https://www.google.co.in/search?q=Biological+product+definition,+USFDA,+2017.&spell=1&sa=X&ved=2ahUKEwiZurqeodj8AhX1xDgGHdRaCjQQBSgAegQIBhAB&biw=390&bih=664&dpr=3
  11. EMA. Biosimilar medicines can be interchanged - European Medicines Agency [Internet]. European Medicines Agency.2022Available from: https://www.ema.europa.eu/en/news/biosimilar-medicines-can-be-interchanged
    [Google Scholar]
  12. Al TabaaO. EtchetoA. DumasS. Doctor’s aptitude for switching from innovator etanercept to biosimilar etanercept in inflammatory rheumatic diseases: experience from a single French rheumatology tertiary care center.Eur. J. Clin. Pharmacol.2021771253310.1007/s00228‑020‑02957‑232888052
    [Google Scholar]
  13. JensenT.B. BartelsD. SædderE.A. The Danish model for the quick and safe implementation of infliximab and etanercept biosimilars.Eur. J. Clin. Pharmacol.2020761354010.1007/s00228‑019‑02765‑331677117
    [Google Scholar]
  14. BraunJ. KudrinA. Switching to biosimilar infliximab (CT-P13): Evidence of clinical safety, effectiveness and impact on public health.Biologicals201644425726610.1016/j.biologicals.2016.03.00627117857
    [Google Scholar]
  15. GongY. ShiY. In fliximab and biosimilar in fliximab in psoriasis: efficacy, loss of efficacy, and adverse events.Drug Des. Devel. Ther.2019132491250210.2147/DDDT.S200147
    [Google Scholar]
  16. GollG.L. JørgensenK.K. SextonJ. OlsenI.C. BolstadN. HaavardsholmE.A. Long-term efficacy and safety of biosimilar infliximab (CT-P13) after switching from originator infliximab: open-label extension of the NOR-SWITCH trial.J. Intern. Med.2019285665366910.1111/joim.12880
    [Google Scholar]
  17. YooD.H. ProdanovicN. JaworskiJ. Efficacy and safety of CT-P13 (biosimilar infliximab) in patients with rheumatoid arthritis: comparison between switching from reference infliximab to CT-P13 and continuing CT-P13 in the PLANETRA extension study.Ann. Rheum. Dis.201776235536310.1136/annrheumdis‑2015‑20878627130908
    [Google Scholar]
  18. ParkW. YooD.H. MirandaP. Efficacy and safety of switching from reference infliximab to CT-P13 compared with maintenance of CT-P13 in ankylosing spondylitis: 102-week data from the PLANETAS extension study.Ann. Rheum. Dis.201776234635410.1136/annrheumdis‑2015‑20878327117698
    [Google Scholar]
  19. JørgensenK.K. OlsenI.C. GollG.L. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial.Lancet2017389100862304231610.1016/S0140‑6736(17)30068‑528502609
    [Google Scholar]
  20. NikkonenA. KolhoK.L. Infliximab and its biosimilar produced similar first‐year therapy outcomes in patients with inflammatory bowel disease.Acta Paediatr.2020109483684110.1111/apa.1502631535405
    [Google Scholar]
  21. SchimmelpenninkM.C. VorselaarsA.D.M. van BeekF.T. Efficacy and safety of infliximab biosimilar Inflectra® in severe sarcoidosis.Respir. Med.2018138138S7S1310.1016/j.rmed.2018.02.00929496351
    [Google Scholar]
  22. KumarN. FollestadT. SenH.N. AustengD. A systematic switch from originator infliximab to biosimilar infliximab in patients with non-infectious uveitis.Am. J. Ophthalmol.202122517818410.1016/j.ajo.2020.10.01333121931
    [Google Scholar]
  23. RazanskaiteV. BetteyM. DowneyL. Biosimilar infliximab in inflammatory bowel disease: outcomes of a managed switching programme.J. Crohn’s Colitis2017116jjw21610.1093/ecco‑jcc/jjw21628130330
    [Google Scholar]
  24. BronswijkM. MoensA. LenfantM. Evaluating efficacy, safety, and pharmacokinetics after switching from infliximab originator to biosimilar CT-P13: Experience from a large tertiary referral center.Inflamm. Bowel Dis.202026462863431400283
    [Google Scholar]
  25. Martínez-FeitoA. Bravo-GallegoL.Y. Hernández-BreijoB. DiezJ. García-RamirezL. JaquototM. Infliximab concentrations in two non-switching cohorts of patients with inflammatory bowel disease: originator vs. biosimilar.Sci. Rep.20201011709910.1038/s41598‑020‑74235‑1
    [Google Scholar]
  26. EberlA. HuoponenS. PahikkalaT. BlomM. ArkkilaP. SipponenT. Switching maintenance infliximab therapy to biosimilar infliximab in inflammatory bowel disease patients.Scand. J. Gastroenterol.201752121348135310.1080/00365521.2017.136956128838273
    [Google Scholar]
  27. MeyerA. RudantJ. DrouinJ. CosteJ. CarbonnelF. WeillA. The effectiveness and safety of infliximab compared with biosimilar CT-P13, in 3112 patients with ulcerative colitis.Aliment. Pharmacol. Ther.201950326927710.1111/apt.1532331115919
    [Google Scholar]
  28. BálintA. RutkaM. KolarM. Infliximab biosimilar CT-P13 therapy is effective in maintaining endoscopic remission in ulcerative colitis – results from multicenter observational cohort.Expert Opin. Biol. Ther.201818111181118710.1080/14712598.2018.153075830277084
    [Google Scholar]
  29. HøivikM.L. BuerL.C.T. CvancarovaM. Switching from originator to biosimilar infliximab – real world data of a prospective 18 months follow-up of a single-centre IBD population.Scand. J. Gastroenterol.201853669269910.1080/00365521.2018.146339129852793
    [Google Scholar]
  30. SungY.K. ChoS.K. KimD. Characteristics and outcomes of rheumatoid arthritis patients who started biosimilar infliximab.Rheumatol. Int.20173761007101410.1007/s00296‑017‑3663‑z28214924
    [Google Scholar]
  31. RomeraA. PeredpayaS. ShparykY. Bevacizumab biosimilar BEVZ92 versus reference bevacizumab in combination with FOLFOX or FOLFIRI as first-line treatment for metastatic colorectal cancer: a multicentre, open-label, randomised controlled trial.Lancet Gastroenterol. Hepatol.201831284585510.1016/S2468‑1253(18)30269‑330262136
    [Google Scholar]
  32. ReinmuthN. BrylM. BondarenkoI. PF-06439535 (a Bevacizumab Biosimilar) Compared with reference bevacizumab (avastin®), both plus paclitaxel and carboplatin, as first-line treatment for advanced non-squamous non-small-cell lung cancer: A randomized, double-blind study.BioDrugs201933555557010.1007/s40259‑019‑00363‑431338773
    [Google Scholar]
  33. HummelM. BosjeT. ShawA. A pharmacokinetics study of proposed bevacizumab biosimilar MYL-1402O vs EU-bevacizumab and US-bevacizumab.J. Cancer Res. Clin. Oncol.2022148248749610.1007/s00432‑021‑03628‑033866430
    [Google Scholar]
  34. RosenL.S. JacobsI.A. BurkesR.L. Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars.Target. Oncol.201712559961010.1007/s11523‑017‑0518‑128801849
    [Google Scholar]
  35. TrukhinD. PoddubskayaE. AndricZ. Efficacy, safety and immunogenicity of MB02 (Bevacizumab biosimilar) versus reference bevacizumab in advanced non-small cell lung cancer: a randomized, double-blind, phase III Study (STELLA).BioDrugs202135442944410.1007/s40259‑021‑00483‑w33914256
    [Google Scholar]
  36. ShinD. LeeY.J. ChoiJ. LeeD. ParkM. PetkovaM. A phase I, randomized, single-dose pharmacokinetic study comparing sb8 (bevacizumab biosimilar) with reference bevacizumab in healthy volunteers.Cancer Chemother. Pharmacol.202086456757510.1007/s00280‑020‑04144‑732949267
    [Google Scholar]
  37. ThatcherN. GoldschmidtJ.H. ThomasM. Efficacy and safety of the biosimilar ABP 215 compared with bevacizumab in patients with advanced nonsquamous non–small cell lung cancer (MAPLE): A randomized, double-blind, phase III study.Clin. Cancer Res.20192572088209510.1158/1078‑0432.CCR‑18‑270230617139
    [Google Scholar]
  38. LiC.S.W. SweeneyK. CronenbergerC. Population pharmacokinetic modeling of PF-06439535 (a bevacizumab biosimilar) and reference bevacizumab (Avastin®) in patients with advanced non-squamous non-small cell lung cancer.Cancer Chemother. Pharmacol.202085348749910.1007/s00280‑019‑03946‑831768697
    [Google Scholar]
  39. ReckM. LuftA. BondarenkoI. A phase III, randomized, double-blind, multicenter study to compare the efficacy, safety, pharmacokinetics, and immunogenicity between SB8 (proposed bevacizumab biosimilar) and reference bevacizumab in patients with metastatic or recurrent nonsquamous non-small cell lung cancer.Lung Cancer2020146April121810.1016/j.lungcan.2020.05.02732502923
    [Google Scholar]
  40. RezvaniH. MortazavizadehS.M. AllahyariA. Efficacy and safety of proposed bevacizumab biosimilar be1040v in patients with metastatic colorectal cancer: a phase III, randomized, double-blind, noninferiority clinical trial.Clin. Ther.202042584885910.1016/j.clinthera.2020.03.00932334845
    [Google Scholar]
  41. SinnA. García-AlvaradoF. GonzalezV. HuergaC. BulloF. A randomized, double blind, single dose, comparative study of the pharmacokinetics, safety and immunogenicity of MB02 (bevacizumab biosimilar) and reference bevacizumab in healthy male volunteers.Br. J. Clin. Pharmacol.20228831063107310.1111/bcp.1503234374114
    [Google Scholar]
  42. SyrigosK. AbertI. AndricZ. Efficacy and safety of bevacizumab biosimilar fkb238 versus originator bevacizumab: results from AVANA, a phase III trial in patients with non-squamous non-small-cell lung cancer (non-sq-NSCLC).BioDrugs202135441742810.1007/s40259‑021‑00489‑434264503
    [Google Scholar]
  43. WuX. WynneC. XuC. A global phase I clinical study comparing the safety and pharmacokinetics of proposed biosimilar BAT1706 and bevacizumab (Avastin®) in healthy male subjects.BioDrugs201933333534210.1007/s40259‑019‑00352‑731016568
    [Google Scholar]
  44. ShiY. LeiK. JiaY. Bevacizumab biosimilar LY01008 compared with bevacizumab (Avastin) as first‐line treatment for Chinese patients with unresectable, metastatic, or recurrent non‐squamous non–small‐cell lung cancer: A multicenter, randomized, double‐blinded, phase III trial.Cancer Commun. (Lond.)202141988990310.1002/cac2.1217934184418
    [Google Scholar]
  45. PuriA. NiewiarowskiA. AraiY. Pharmacokinetics, safety, tolerability and immunogenicity of FKB327, a new biosimilar medicine of adalimumab/Humira, in healthy subjects.Br. J. Clin. Pharmacol.20178371405141510.1111/bcp.1324528133772
    [Google Scholar]
  46. ChadwickL. ZhaoS. MyslerE. MootsR.J. Review of biosimilar trials and data on etanercept in rheumatoid arthritis.Curr. Rheumatol. Rep.201820128410.1007/s11926‑018‑0799‑030411183
    [Google Scholar]
  47. CohenSB Alonso-RuizA KlimiukPA Similar efficacy, safety and immunogenicity of adalimumab biosimilar BI 695501 and Humira reference product in patients with moderately to severely active rheumatoid arthritis: results from the phase III randomised VOLTAIRE-RA equivalence study.Ann Rheum Dis.2018776annrheumdis-201721224510.1136/annrheumdis‑2017‑21224529514803
    [Google Scholar]
  48. GenoveseM.C. GloverJ. GreenwaldM. PorawskaW. El KhouriE.C. DokoupilovaE. VargasJ.I. StanislavchukM. KellnerH. BaranovaE. MatsunagaN. AltenR. FKB327, an adalimumab biosimilar, versus the reference product: results of a randomized, Phase III, double-blind study, and its open-label extension.Arthritis Res. Ther.201921128110.1186/s13075‑019‑2046‑0
    [Google Scholar]
  49. SuJ. LiM. HeL. ZhaoD. WanW. LiuY. Comparison of the efficacy and safety of adalimumab (Humira) and the adalimumab biosimilar candidate (HS016) in Chinese patients with active ankylosing spondylitis: A multicenter, randomized, double-blind, parallel, phase III clinical trial.BioDrugs202034338139310.1007/s40259‑020‑00408‑z
    [Google Scholar]
  50. GenoveseM.C. KellnerH. AraiY. MunizR. AltenR. Long-term safety, immunogenicity and efficacy comparing FKB327 with the adalimumab reference product in patients with active rheumatoid arthritis: data from randomised double-blind and open-label extension studies.RMD Open202061e00098710.1136/rmdopen‑2019‑00098732371430
    [Google Scholar]
  51. PappK. BachelezH. CostanzoA. Clinical similarity of biosimilar ABP 501 to adalimumab in the treatment of patients with moderate to severe plaque psoriasis: A randomized, double-blind, multicenter, phase III study.J. Am. Acad. Dermatol.20177661093110210.1016/j.jaad.2016.12.01428291552
    [Google Scholar]
  52. KaurP. ChowV. ZhangN. MoxnessM. KaliyaperumalA. MarkusR. A randomised, single-blind, single-dose, three-arm, parallel-group study in healthy subjects to demonstrate pharmacokinetic equivalence of ABP 501 and adalimumab.Ann. Rheum. Dis.201776352653310.1136/annrheumdis‑2015‑20891427466231
    [Google Scholar]
  53. FleischmannR.M. AlvarezD.F. BockA.E. Randomised study of PF-06410293, an adalimumab (ADL) biosimilar, compared with reference ADL for the treatment of active rheumatoid arthritis: results from weeks 26–52, including a treatment switch from reference ADL to PF-06410293.RMD Open202172e00157810.1136/rmdopen‑2021‑00157833883254
    [Google Scholar]
  54. von RichterO. LemkeL. HaliduolaH. GP2017, an adalimumab biosimilar: pharmacokinetic similarity to its reference medicine and pharmacokinetics comparison of different administration methods.Expert Opin. Biol. Ther.201919101075108310.1080/14712598.2019.157158030698045
    [Google Scholar]
  55. EdwardsC.J. MonnetJ. UllmannM. VlachosP. ChyrokV. GhoriV. Safety of adalimumab biosimilar MSB11022 (acetate-buffered formulation) in patients with moderately-to-severely active rheumatoid arthritis.Clin. Rheumatol.201938123381339010.1007/s10067‑019‑04679‑y31396834
    [Google Scholar]
  56. FishbaneS. SpinowitzB.S. WisemandleW.A. MartinN.E. Randomized controlled trial of subcutaneous epoetin alfa-epbx versus epoetin alfa in end-stage kidney disease.Kidney Int. Rep.2019491235124710.1016/j.ekir.2019.05.01031517143
    [Google Scholar]
  57. FishbaneS. SinghB. KumbhatS. WisemandleW.A. MartinN.E. Intravenous epoetin Alfa-epbx versus epoetin alfa for treatment of anemia in end-stage kidney disease.Clin. J. Am. Soc. Nephrol.20181381204121410.2215/CJN.1163101729921734
    [Google Scholar]
  58. StoppaG. D’AmoreC. ConfortiA. Comparative safety of originator and biosimilar epoetin alfa drugs: An observational prospective multicenter study.BioDrugs201832436737510.1007/s40259‑018‑0293‑230030767
    [Google Scholar]
  59. SörgelF. Thyroff-FriesingerU. VetterA. Vens-CappellB. KinzigM. Bioequivalence of HX575 (recombinant human epoetin alfa) and a comparator epoetin alfa after multiple intravenous administrations: an open-label randomised controlled trial.BMC Clin. Pharmacol.200991010.1186/1472‑6904‑9‑10
    [Google Scholar]
  60. WeirM.R. PergolaP.E. AgarwalR. A comparison of the safety and efficacy of HX575 (epoetin alfa proposed biosimilar) with epoetin alfa in patients with end-stage renal disease.Am. J. Nephrol.201746536437010.1159/00048173629084409
    [Google Scholar]
  61. ThadhaniR. GuilatcoR. HymesJ. MadduxF.W. AhujaA. Switching from epoetin alfa (Epogen®) to epoetin alfa-epbx (RetacritTM) using a specified dosing algorithm: A randomized, non-inferiority study in adults on hemodialysis.Am. J. Nephrol.201848321422410.1159/00049262130196301
    [Google Scholar]
  62. YoonS. RheeS.J. HeoS.J. OhT.Y. YoonS.H. ChoJ.Y. Comparable pharmacokinetics and pharmacodynamics of two epoetin alfa formulations Eporon® and Eprex® following a single subcutaneous administration in healthy male volunteers.Drug Des. Devel. Ther.2017113127313510.2147/DDDT.S142673
    [Google Scholar]
  63. HörlW.H. LocatelliF. WeberM.H. OdeM. group KRE-PASS. Prospective multicenter study of HX575 (biosimilar epoetin-α) in patients with chronic kidney disease applying a target hemoglobin of 10 – 12 g/dl.Clin. Nephrol.2012787243210.5414/CN10744022732334
    [Google Scholar]
  64. Gómez-De LeónA. Bugarin-EstradaE. Colunga-PedrazaP.R. Efficacy of three filgrastim‐intended copies for hematopoietic stem cell mobilization in healthy adult and pediatric donors in Mexico.J. Clin. Apher.201934553754410.1002/jca.2170730946494
    [Google Scholar]
  65. Raedler, By Lisa A., and Medical Writer. Approved in the United States. no. March, 2016
    [Google Scholar]
  66. CurryL.D. AndersB. DresslerE.V. KennedyL. Efficacy of a conversion from filgrastim to filgrastim-sndz in stem cell transplant patients undergoing mobilization.J. Oncol. Pharm. Pract.202127487187610.1177/107815522094158232686616
    [Google Scholar]
  67. AaproM. KrendyukovA. HöbelN. GasconP. Treatment patterns and outcomes in patients with non‐small cell lung cancer receiving biosimilar filgrastim for prophylaxis of chemotherapy‐induced/febrile neutropaenia: Results from the MONITOR‐GCSF study.Eur. J. Cancer Care (Engl.)2019284e1303410.1111/ecc.1303430968997
    [Google Scholar]
  68. YaoH.M. OtteryF.D. BoremaT. PF-06881893 (Nivestym™), a filgrastim biosimilar, versus US-licensed filgrastim reference product (US-neupogen®): pharmacokinetics, pharmacodynamics, immunogenicity, and safety of single or multiple subcutaneous doses in healthy volunteers.BioDrugs201933220722010.1007/s40259‑019‑00343‑830900158
    [Google Scholar]
  69. BlackwellK. GasconP. KrendyukovA. GattuS. LiY. HarbeckN. Safety and efficacy of alternating treatment with EP2006, a filgrastim biosimilar, and reference filgrastim: a phase III, randomised, double-blind clinical study in the prevention of severe neutropenia in patients with breast cancer receiving myelosuppressive chemotherapy.Ann. Oncol.201829124424910.1093/annonc/mdx63829091995
    [Google Scholar]
  70. BritoM. EstevesS. AndréR. IsidoroM. MoreiraA. Comparison of effectiveness of biosimilar filgrastim (Nivestim™), reference Amgen filgrastim and pegfilgrastim in febrile neutropenia primary prevention in breast cancer patients treated with neo(adjuvant) TAC: a non-interventional cohort study.Support. Care Cancer201624259760310.1007/s00520‑015‑2818‑226111956
    [Google Scholar]
  71. SchwartzbergL. LalL.S. BaluS. Incidence of febrile neutropenia during chemotherapy among patients with nonmyeloid cancer receiving filgrastim vs a filgrastim biosimilar.Clinicoecon. Outcomes Res.20181049350010.2147/CEOR.S16829830214262
    [Google Scholar]
  72. ChoiC. YooB.W. KimC.O. Comparison of biosimilar filgrastim with a reference product: pharmacokinetics, pharmacodynamics, and safety profiles in healthy volunteers.Drug Des. Devel. Ther.2018122381238710.2147/DDDT.S15827730122896
    [Google Scholar]
  73. BuyukavciM. Keskin YildirimZ. The comparison of the efficacy and safety of original and biosimilar filgrastim in prevention of chemotherapy-induced neutropenia in children with cancer.Eurasian J. Med.201951211211510.5152/eurasianjmed.2018.1803031258348
    [Google Scholar]
  74. YoshimuraH. HottaM. NakanishiT. Evaluation of a biosimilar granulocyte colony-stimulating factor (filgrastim XM02) for peripheral blood stem cell mobilization and transplantation: a single center experience in Japan.J. Blood Med.2017851210.2147/JBM.S12337428182150
    [Google Scholar]
  75. PescitelliL. LazzeriL. Di CesareA. TripoL. RicceriF. PrignanoF. Clinical experience with the etanercept biosimilar SB4 in psoriatic patients.Int. J. Clin. Pharm.201941191210.1007/s11096‑018‑0769‑730610544
    [Google Scholar]
  76. LiuL.F. ChenJ.S. GuJ. Etanercept biosimilar (recombinant human tumor necrosis factor-α receptor II: IgG Fc fusion protein) and methotrexate combination therapy in Chinese patients with moderate-to-severe plaque psoriasis: a multicentre, randomized, double-blind, placebo-controlled trial.Arch. Dermatol. Res.2020312643744510.1007/s00403‑019‑02024‑631873772
    [Google Scholar]
  77. GlintborgB. GeorgiadisS. LoftA.G. Hospital contacts due to hepatobiliary adverse events in >5000 patients with inflammatory joint disease treated with originator or biosimilar etanercept (SB4): an observational nationwide study applying linkage between DANBIO and national registries.Ann. Rheum. Dis.202079684684810.1136/annrheumdis‑2019‑21670232111583
    [Google Scholar]
  78. JaworskiJ. Matucci-CerinicM. Schulze-KoopsH. Switch from reference etanercept to SDZ ETN, an etanercept biosimilar, does not impact efficacy, safety, and immunogenicity of etanercept in patients with moderate-to-severe rheumatoid arthritis: 48-week results from the phase III, randomized, double-blind EQUIRA study.Arthritis Res. Ther.201921113010.1186/s13075‑019‑1907‑x30611312
    [Google Scholar]
  79. ParkM.C. MatsunoH. KimJ. Long-term efficacy, safety and immunogenicity in patients with rheumatoid arthritis continuing on an etanercept biosimilar (LBEC0101) or switching from reference etanercept to LBEC0101: an open-label extension of a phase III multicentre, randomised, double-blind, parallel-group study.Arthritis Res. Ther.201921112210.1186/s13075‑019‑1910‑230606217
    [Google Scholar]
  80. ShennakM. Al-JaouniR. KshirasagarS. An open-label, randomized, single-dose, crossover, comparative pharmacokinetics study of YLB113 and the etanercept reference product in healthy adult male subjects.Eur. J. Drug Metab. Pharmacokinet.202045446747510.1007/s13318‑020‑00613‑932172488
    [Google Scholar]
  81. YamanakaH. KamataniN. TanakaY. A comparative study to assess the efficacy, safety, and immunogenicity of YLB113 and the etanercept reference product for the treatment of patients with rheumatoid arthritis.Rheumatol. Ther.20207114916310.1007/s40744‑019‑00186‑331833011
    [Google Scholar]
  82. DittoM.C. ParisiS. PrioraM. Efficacy and safety of a single switch from etanercept originator to etanercept biosimilar in a cohort of inflammatory arthritis.Sci. Rep.20201011617810.1038/s41598‑020‑73183‑032999362
    [Google Scholar]
  83. AtzeniF. GerratanaE. BongiovanniS. Efficacy and safety of biosimilar and originator etanercept in rheumatoid arthritis patients: Real-life data.Isr. Med. Assoc. J.202123634434934155846
    [Google Scholar]
  84. ThieleF. KleinA. HospachA. Efficacy and safety of etanercept biosimilars compared with the originator for treatment of juvenile arthritis: A prospective observational study.ACR Open Rheumatol.202131177978710.1002/acr2.1132534449981
    [Google Scholar]
  85. SelmiC. KrügerK. CantagrelA. BENEFIT: real-world effectiveness of SB4 after transition from reference etanercept in rheumatoid arthritis and axial spondyloarthritis.Clin. Exp. Rheumatol.202139236537110.55563/clinexprheumatol/usrd9z32662409
    [Google Scholar]
  86. CodreanuC. PopescuC.C. MogoșanC. Efficacy and safety of original and biosimilar etanercept (SB4) in active rheumatoid arthritis – A comparison in a real-world national cohort.Biologicals2019625273210.1016/j.biologicals.2019.10.00931668853
    [Google Scholar]
  87. EgebergA. OttosenM.B. GniadeckiR. Safety, efficacy and drug survival of biologics and biosimilars for moderate-to-severe plaque psoriasis.Br. J. Dermatol.2018178250951910.1111/bjd.1610229094341
    [Google Scholar]
  88. KwakL.W. SanchoJ.M. ChoS.G. Efficacy and safety of CT-P10 versus rituximab in untreated low-tumor-burden follicular lymphoma: Final results of a randomized phase III study.Clin. Lymphoma Myeloma Leuk.2022222899710.1016/j.clml.2021.08.00534686445
    [Google Scholar]
  89. OguraM. SanchoJ.M. ChoS.G. Efficacy, pharmacokinetics, and safety of the biosimilar CT-P10 in comparison with rituximab in patients with previously untreated low-tumour-burden follicular lymphoma: a randomised, double-blind, parallel-group, phase 3 trial.Lancet Haematol.2018511e543e55310.1016/S2352‑3026(18)30157‑130389036
    [Google Scholar]
  90. BurmesterG. ChienD. ChowV. GessnerM. PanJ. CohenS. A randomized, double‐blind study comparing pharmacokinetics and pharmacodynamics of proposed biosimilar ABP 798 with rituximab reference product in subjects with moderate to severe rheumatoid arthritis.Clin. Pharmacol. Drug Dev.2020981003101410.1002/cpdd.84532627420
    [Google Scholar]
  91. MittalS. NaiduG.S.R.S.N.K. JhaS. Experience with similar biologic rituximab in 77 patients of granulomatosis with polyangiitis-a real-life experience.Clin. Rheumatol.202140264565110.1007/s10067‑020‑05261‑732656662
    [Google Scholar]
  92. BurmesterG. DrescherE. HrycajP. ChienD. PanZ. CohenS. Efficacy and safety results from a randomized double-blind study comparing proposed biosimilar ABP 798 with rituximab reference product in subjects with moderate-to-severe rheumatoid arthritis.Clin. Rheumatol.202039113341335210.1007/s10067‑020‑05305‑y
    [Google Scholar]
  93. LeeK. HaJ.Y. JungA.R. The clinical outcomes of rituximab biosimilar CT-P10 (Truxima ®) with CHOP as first-line treatment for patients with diffuse large B-cell lymphoma: real-world experience.Leuk. Lymphoma20206171575158310.1080/10428194.2020.174290632290739
    [Google Scholar]
  94. PerezT. RicoA. BoutièreC. Comparison of rituximab originator (MabThera®) to biosimilar (Truxima®) in patients with multiple sclerosis.Mult. Scler.202127458559210.1177/135245852091217032180508
    [Google Scholar]
  95. NiederwieserD. HammC. CobbP. Efficacy and safety of ABP 798: Results from the JASMINE trial in patients with follicular lymphoma in comparison with rituximab reference product.Target. Oncol.202015559961110.1007/s11523‑020‑00748‑433044684
    [Google Scholar]
  96. BankarA. KorulaA. AbrahamA. Comparison of the efficacy of innovator rituximab and its biosimilars in diffuse large B cell lymphoma patients: a retrospective analysis.Indian J. Hematol. Blood Transfus.2020361717710.1007/s12288‑019‑01167‑w32174693
    [Google Scholar]
  97. PaplomataE. NahtaR. ABP 980: promising trastuzumab biosimilar for HER2-positive breast cancer.Expert Opin. Biol. Ther.201818333534110.1080/14712598.2018.143076129350568
    [Google Scholar]
  98. LeeJ.H. PaekK. MoonJ.H. HamS. SongJ. KimS. Biological characterization of SB3, a trastuzumab biosimilar, and the influence of changes in reference product characteristics on the similarity assessment.BioDrugs201933441142210.1007/s40259‑019‑00362‑531190280
    [Google Scholar]
  99. LüftnerD. LymanG.H. GonçalvesJ. PivotX. SeoM. Biologic drug quality assurance to optimize HER2 + breast cancer treatment: insights from development of the trastuzumab biosimilar SB3.Target. Oncol.202015446747510.1007/s11523‑020‑00742‑w32748046
    [Google Scholar]
  100. XieL. ZhangE. XuY. Demonstrating analytical similarity of trastuzumab biosimilar HLX02 to Herceptin® with a panel of sensitive and orthogonal methods including a novel FcγRIIIa affinity chromatography technology.BioDrugs202034336337910.1007/s40259‑020‑00407‑032072477
    [Google Scholar]
  101. PivotX. PegramM. CortesJ. Three-year follow-up from a phase 3 study of SB3 (a trastuzumab biosimilar) versus reference trastuzumab in the neoadjuvant setting for human epidermal growth factor receptor 2–positive breast cancer.Eur. J. Cancer20191201910.1016/j.ejca.2019.07.01531445454
    [Google Scholar]
  102. ChenX. LiC. EwesuedoR. YinD. Population pharmacokinetics of PF-05280014 (a trastuzumab biosimilar) and reference trastuzumab (Herceptin®) in patients with HER2-positive metastatic breast cancer.Cancer Chemother. Pharmacol.2019841839210.1007/s00280‑019‑03850‑131053945
    [Google Scholar]
  103. AlexeevS.M. KhorinkoA.V. MukhametshinaG.Z. ShelepenK.G. BurdaevaO.N. KulikS.A. Randomized double-blind clinical trial comparing safety and efficacy of the biosimilar BCD-022 with reference trastuzumab.BMC Cancer202020178310.1186/s12885‑020‑07247‑9
    [Google Scholar]
  104. LammersP.E. DankM. MasettiR. Neoadjuvant PF-05280014 (a potential trastuzumab biosimilar) versus trastuzumab for operable HER2+ breast cancer.Br. J. Cancer2018119326627310.1038/s41416‑018‑0147‑130002437
    [Google Scholar]
  105. PegramM.D. BondarenkoI. ZorzettoM.M.C. PF-05280014 (a trastuzumab biosimilar) plus paclitaxel compared with reference trastuzumab plus paclitaxel for HER2-positive metastatic breast cancer: a randomised, double-blind study.Br. J. Cancer2019120217218210.1038/s41416‑018‑0340‑230568294
    [Google Scholar]
  106. WallerC.F. VutikullirdA. LawrenceT.E. A pharmacokinetics phase 1 bioequivalence study of the trastuzumab biosimilar MYL-1401O vs. EU-trastuzumab and US-trastuzumab.Br. J. Clin. Pharmacol.201884102336234310.1111/bcp.1368929926514
    [Google Scholar]
  107. StebbingJ. BaranauY. BaryashV. CT-P6 compared with reference trastuzumab for HER2-positive breast cancer: a randomised, double-blind, active-controlled, phase 3 equivalence trial.Lancet Oncol.201718791792810.1016/S1470‑2045(17)30434‑528592386
    [Google Scholar]
  108. von MinckwitzG. ColleoniM. KolbergH.C. Efficacy and safety of ABP 980 compared with reference trastuzumab in women with HER2-positive early breast cancer (LILAC study): a randomised, double-blind, phase 3 trial.Lancet Oncol.201819798799810.1016/S1470‑2045(18)30241‑929880292
    [Google Scholar]
  109. PivotX. BondarenkoI. NoweckiZ. Phase III, randomized, double-blind study comparing the efficacy, safety, and immunogenicity of SB3 (trastuzumab biosimilar) and reference trastuzumab in patients treated with neoadjuvant therapy for human epidermal growth factor receptor 2-positive early.J. Clin. Oncol.2018361096897410.1200/JCO.2017.74.012629373094
    [Google Scholar]
  110. XuB. ZhangQ. SunT. Efficacy, safety, and immunogenicity of hlx02 compared with reference trastuzumab in patients with recurrent or metastatic HER2-positive breast cancer: a randomized phase III equivalence trial.BioDrugs202135333735010.1007/s40259‑021‑00475‑w33826080
    [Google Scholar]
  111. DellannaF. GoldsmithD. KrendyukovA. SeidlA. HöbelN. CombeC. HX575: established biosimilarity in the treatment of renal anemia and 10 years of clinical experience.Drug Des. Devel. Ther.20171291410.2147/DDDT.S14614729296077
    [Google Scholar]
  112. InotaiA. PrinsC.P.J. CsanádiM. VitezicD. CodreanuC. KalóZ. Is there a reason for concern or is it just hype? – A systematic literature review of the clinical consequences of switching from originator biologics to biosimilars.Expert Opin. Biol. Ther.201717891592610.1080/14712598.2017.134148628650704
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775246113231018080526
Loading
/content/journals/cdrr/10.2174/0125899775246113231018080526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test