Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Fibrosis is the leading cause of many lethal diseases. It is characterized by the accumulation of extracellular matrix (ECM) components, which leads to damaged tissue functioning in the influenced organs. Essential oils are concentrated hydrophobic liquid having volatile compounds extracted from plant or plant parts while antioxidants are the compounds that help in scavenging free radicals and prevent reducing the oxidation processes. In this review, challenges that come during the treatment of fibrosis have been covered, mechanism of action of both essential oil and antioxidants is also outlined in this article. This review aimed to provide scientific fundamental and knowledge, ideas for the development and application of essential oils and antioxidants in the treatment of fibrosis.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775271616231205111827
2023-12-15
2025-06-19
Loading full text...

Full text loading...

References

  1. WynnT. Cellular and molecular mechanisms of fibrosis.The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland2008214219921010.1002/path.2277
    [Google Scholar]
  2. WickG. GrundtmanC. MayerlC. WimpissingerT.F. FeichtingerJ. ZelgerB. SgoncR. WolframD. The immunology of fibrosis.Annu. Rev. Immunol.201331110713510.1146/annurev‑immunol‑032712‑09593723516981
    [Google Scholar]
  3. GriffinM.F. HuberJ. EvanF.J. QuartoN. LongakerM.T. The role of Wnt signaling in skin fibrosis.Med. Res. Rev.202242161562810.1002/med.2185334431110
    [Google Scholar]
  4. BauesM. DasguptaA. EhlingJ. PrakashJ. BoorP. TackeF. KiesslingF. LammersT. Fibrosis imaging: Current concepts and future directions.Adv. Drug Deliv. Rev.201712192610.1016/j.addr.2017.10.01329108860
    [Google Scholar]
  5. RautJ.S. KaruppayilS.M. A status review on the medicinal properties of essential oils.Ind. Crops Prod.20146225026410.1016/j.indcrop.2014.05.055
    [Google Scholar]
  6. YuS. LongY. LiD. ShiA. DengJ. MaY. WenJ. LiX. ZhangY. LiuS. WanJ. LiN. GuoJ. Natural essential oils efficacious in internal organs fibrosis treatment: Mechanisms of action and application perspectives.Pharmacol. Res.202218210633910.1016/j.phrs.2022.10633935792297
    [Google Scholar]
  7. KrishnaiahD. SarbatlyR. NithyanandamR. A review of the antioxidant potential of medicinal plant species.Food Bioprod. Process.201189321723310.1016/j.fbp.2010.04.008
    [Google Scholar]
  8. ArulselvanP. FardM.T. TanW.S. GothaiS. FakuraziS. NorhaizanM.E. KumarS.S. Role of antioxidants and natural products in inflammation.Oxid. Med. Cell. Longev.2016201611510.1155/2016/527613027803762
    [Google Scholar]
  9. WynnT.A. VannellaK.M. Macrophages in tissue repair, regeneration, and fibrosis.Immunity201644345046210.1016/j.immuni.2016.02.01526982353
    [Google Scholar]
  10. WynnT.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.J. Clin. Invest.2007117352452910.1172/JCI3148717332879
    [Google Scholar]
  11. PoljsakB. ŠuputD. MilisavI. x160, uput D, # x161, an, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants.Oxid. Med. Cell. Longev.2013201311110.1155/2013/956792
    [Google Scholar]
  12. LeaskA. AbrahamD.J. TGF‐β signaling and the fibrotic response.FASEB J.200418781682710.1096/fj.03‑1273rev15117886
    [Google Scholar]
  13. RichterK. KietzmannT. Reactive oxygen species and fibrosis: Further evidence of a significant liaison.Cell Tissue Res.2016365359160510.1007/s00441‑016‑2445‑327345301
    [Google Scholar]
  14. KinnulaV.L. HodgsonU.A. LakariE.K. TanR.J. SormunenR.T. SoiniY.M. KakkoS.J. LaitinenT.H. OuryT.D. PääkköP.K. Extracellular superoxide dismutase has a highly specific localization in idiopathic pulmonary fibrosis/usual interstitial pneumonia.Histopathology2006491667410.1111/j.1365‑2559.2006.02470.x16842247
    [Google Scholar]
  15. PoljsakB MilisavI The neglected significance of “antioxidative stress.Oxidative medicine and cellular longevity20122012
    [Google Scholar]
  16. IredaleJ.P. BenyonR.C. PickeringJ. McCullenM. NorthropM. PawleyS. HovellC. ArthurM.J. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors.J. Clin. Invest.1998102353854910.1172/JCI10189691091
    [Google Scholar]
  17. MariaA.T.J. BourgierC. MartinaudC. BorieR. RozierP. RivièreS. CrestaniB. GuilpainP. [From fibrogenesis towards fibrosis: Pathophysiological mechanisms and clinical presentations].Rev. Med. Interne202041532532910.1016/j.revmed.2020.01.00232046868
    [Google Scholar]
  18. HinzB. Tissue stiffness, latent TGF-β1 Activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis.Curr. Rheumatol. Rep.200911212012610.1007/s11926‑009‑0017‑119296884
    [Google Scholar]
  19. GyörfiA.H. MateiA.E. DistlerJ.H.W. Targeting TGF-β signaling for the treatment of fibrosis.Matrix Biol.201868-6982710.1016/j.matbio.2017.12.01629355590
    [Google Scholar]
  20. AschnerY. DowneyG.P. Transforming growth factor-β: master regulator of the respiratory system in health and disease.Am. J. Respir. Cell Mol. Biol.201654564765510.1165/rcmb.2015‑0391TR26796672
    [Google Scholar]
  21. KramerE.L. ClancyJ.P. TGFβ as a therapeutic target in cystic fibrosis.Expert Opin. Ther. Targets201822217718910.1080/14728222.2018.140692229168406
    [Google Scholar]
  22. WaltonK.L. JohnsonK.E. HarrisonC.A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis.Front. Pharmacol.2017846110.3389/fphar.2017.0046128769795
    [Google Scholar]
  23. LodygaM HinzB. TGF-β1–a truly transforming growth factor in fibrosis and immunity.InSeminars in cell & developmental biology2020101123139
    [Google Scholar]
  24. KimK.K. SheppardD. ChapmanH.A. TGF-β1 signaling and tissue fibrosis.Cold Spring Harb. Perspect. Biol.2018104a02229310.1101/cshperspect.a02229328432134
    [Google Scholar]
  25. GrotendorstG.R. Connective tissue growth factor: A mediator of TGF-β action on fibroblasts.Cytokine Growth Factor Rev.19978317117910.1016/S1359‑6101(97)00010‑59462483
    [Google Scholar]
  26. LipsonKE WongC TengY SpongS CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis.. InFibrogenesis & tissue repair201251810.1186/1755‑1536‑5‑S1‑S24
    [Google Scholar]
  27. JonesD.P. Extracellular redox state: Refining the definition of oxidative stress in aging.Rejuvenation Res.20069216918110.1089/rej.2006.9.16916706639
    [Google Scholar]
  28. BarnesJ.L. GorinY. Myofibroblast differentiation during fibrosis: Role of NAD(P)H oxidases.Kidney Int.201179994495610.1038/ki.2010.51621307839
    [Google Scholar]
  29. SamoylenkoA. HossainJ.A. MennerichD. KellokumpuS. HiltunenJ.K. KietzmannT. Nutritional countermeasures targeting reactive oxygen species in cancer: From mechanisms to biomarkers and clinical evidence.Antioxid. Redox Signal.201319172157219610.1089/ars.2012.466223458328
    [Google Scholar]
  30. RiordanJ.R. RommensJ.M. KeremB.S. AlonN. RozmahelR. GrzelczakZ. ZielenskiJ. LokS. PlavsicN. ChouJ.L. DrummM.L. IannuzziM.C. CollinsF.S. TsuiL-C. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA.Science198924549221066107310.1126/science.24759112475911
    [Google Scholar]
  31. VeitG. AvramescuR.G. ChiangA.N. HouckS.A. CaiZ. PetersK.W. HongJ.S. PollardH.B. GugginoW.B. BalchW.E. SkachW.R. CuttingG.R. FrizzellR.A. SheppardD.N. CyrD.M. SorscherE.J. BrodskyJ.L. LukacsG.L. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations.Mol. Biol. Cell201627342443310.1091/mbc.e14‑04‑093526823392
    [Google Scholar]
  32. ParkesJ. RoderickP. HarrisS. DayC. MutimerD. CollierJ. LombardM. AlexanderG. RamageJ. DusheikoG. WheatleyM. GoughC. BurtA. RosenbergW. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease.Gut20105991245125110.1136/gut.2009.20316620675693
    [Google Scholar]
  33. ToshimaT. ShirabeK. IkegamiT. YoshizumiT. KunoA. TogayachiA. GotohM. NarimatsuH. KorenagaM. MizokamiM. NishieA. AishimaS. MaeharaY. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP), for assessing liver fibrosis.J. Gastroenterol.2015501768410.1007/s00535‑014‑0946‑y24603981
    [Google Scholar]
  34. DaccordC. MaherT.M. Recent advances in understanding idiopathic pulmonary fibrosis.F1000 Res.20165104610.12688/f1000research.8209.127303645
    [Google Scholar]
  35. HarariS. CaminatiA. IPF: New insight on pathogenesis and treatment.Allergy201065553755310.1111/j.1398‑9995.2009.02305.x20121758
    [Google Scholar]
  36. HewitsonT.D. Renal tubulointerstitial fibrosis: Common but never simple.Am. J. Physiol. Renal Physiol.20092966F1239F124410.1152/ajprenal.90521.200819144691
    [Google Scholar]
  37. SzymczakM. KuźniarJ. KlingerM. The role of heparanase in diseases of the glomeruli.Arch. Immunol. Ther. Exp.2010581455610.1007/s00005‑009‑0061‑620049646
    [Google Scholar]
  38. McGrathL.T. MallonP. DoweyL. SilkeB. McCleanE. McDonnellM. DevineA. CopelandS. ElbornS. Oxidative stress during acute respiratory exacerbations in cystic fibrosis.Thorax199954651852310.1136/thx.54.6.51810335006
    [Google Scholar]
  39. HullJ. SouthM. PhelanP. GrimwoodK. Surfactant composition in infants and young children with cystic fibrosis.Am. J. Respir. Crit. Care Med.1997156116116510.1164/ajrccm.156.1.96090909230741
    [Google Scholar]
  40. MeyerK.C. SharmaA. BrownR. WeatherlyM. MoyaF.R. LewandoskiJ. ZimmermanJ.J. Function and composition of pulmonary surfactant and surfactant-derived fatty acid profiles are altered in young adults with cystic fibrosis.Chest2000118116417410.1378/chest.118.1.16410893374
    [Google Scholar]
  41. MalhotraJ.D. MiaoH. ZhangK. WolfsonA. PennathurS. PipeS.W. KaufmanR.J. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion.Proc. Natl. Acad. Sci.200810547185251853010.1073/pnas.080967710519011102
    [Google Scholar]
  42. MathewsS. FengD. MaricicI. JuC. KumarV. GaoB. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration.Cell. Mol. Immunol.201613220621610.1038/cmi.2015.0625661730
    [Google Scholar]
  43. PoliG. Pathogenesis of liver fibrosis: Role of oxidative stress.Mol. Aspects Med.2000213499810.1016/S0098‑2997(00)00004‑210978499
    [Google Scholar]
  44. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  45. ItagakiT. ShimizuI. ChengX. YuanY. OshioA. TamakiK. FukunoH. HondaH. OkamuraY. ItoS. Opposing effects of oestradiol and progesterone on intracellular pathways and activation processes in the oxidative stress-induced activation of cultured rat hepatic stellate cells.Gut200554121782178910.1136/gut.2004.05372816284289
    [Google Scholar]
  46. OkudaM. LiK. BeardM.R. ShowalterL.A. ScholleF. LemonS.M. WeinmanS.A. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein.Gastroenterology2002122236637510.1053/gast.2002.3098311832451
    [Google Scholar]
  47. Sánchez-ValleV. Chávez-TapiaN.C. UribeM. Méndez-SánchezN. Role of oxidative stress and molecular changes in liver fibrosis: a review.Curr. Med. Chem.201219284850486010.2174/09298671280334152022709007
    [Google Scholar]
  48. ChereshP. KimS.J. TulasiramS. KampD.W. Oxidative stress and pulmonary fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.2013183271028104010.1016/j.bbadis.2012.11.021
    [Google Scholar]
  49. LuoJ.Y. LiuX. JiangM. ZhaoH.P. ZhaoJ.J. Oxidative stress markers in blood in systemic sclerosis: A meta-analysis.Mod. Rheumatol.201727230631410.1080/14397595.2016.120651027425641
    [Google Scholar]
  50. AvouacJ. BorderieD. EkindjianO.G. KahanA. AllanoreY. High DNA oxidative damage in systemic sclerosis.J. Rheumatol.201037122540254710.3899/jrheum.10039820843906
    [Google Scholar]
  51. MurrayA.K. MooreT.L. ManningJ.B. GriffithsC.M. HerrickA.L. Noninvasive measurement of skin autofluorescence is increased in patients with systemic sclerosis: An indicator of increased advanced glycation endproducts?J. Rheumatol.20123981654165810.3899/jrheum.11135922753661
    [Google Scholar]
  52. DoridotL. JeljeliM. ChêneC. BatteuxF. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis.Redox Biol.20192510112210.1016/j.redox.2019.10112230737171
    [Google Scholar]
  53. HyldgaardM. MygindT. MeyerR.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components.Front. Microbiol.201231210.3389/fmicb.2012.0001222291693
    [Google Scholar]
  54. de GrootA.C. SchmidtE. Essential oils, part I: introduction.Dermatitis2016272394210.1097/DER.000000000000017526983089
    [Google Scholar]
  55. FirenzuoliF. JaitakV. HorvathG. BassoléI.H.N. SetzerW.N. GoriL. Essential oils: New perspectives in human health and wellness.Evid. Based Complement. Alternat. Med.201420141210.1155/2014/46736325050126
    [Google Scholar]
  56. HarrisB. 11 Phytotherapeutic Uses of Essential Oils. ESSENTIAL2010315
    [Google Scholar]
  57. BuchbauerG. Biological activities of essential oils.Science, technology, and applications201027235280
    [Google Scholar]
  58. TurekC. StintzingF.C. Stability of essential oils: A review.Compr. Rev. Food Sci. Food Saf.2013121405310.1111/1541‑4337.12006
    [Google Scholar]
  59. AdorjanB. BuchbauerG. Biological properties of essential oils: An updated review.Flavour Fragrance J.201025640742610.1002/ffj.2024
    [Google Scholar]
  60. BlakeK. RaissyH. Inhaling essential oils: Purported benefits and harms.Pediatr. Allergy Immunol. Pulmonol.201730318618810.1089/ped.2017.080535923005
    [Google Scholar]
  61. MisharinaT.A. TereninaM.B. KrikunovaN.I. [Antioxidant properties of essential oils].Prikl. Biokhim. Mikrobiol.200945671071620067158
    [Google Scholar]
  62. SheweitaS.A. El-HosseinyL.S. NashashibiM.A. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice.PLoS One20161111e016566710.1371/journal.pone.016566727802299
    [Google Scholar]
  63. SaharkhizMJ MotamediM ZomorodianK Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L.International Scholarly Research Notices20122012
    [Google Scholar]
  64. SharmaA. SharmaM.K. KumarM. Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss albino mice.Basic Clin. Pharmacol. Toxicol.2007100424925710.1111/j.1742‑7843.2006.00030.x17371529
    [Google Scholar]
  65. DesaiS.S. GhaisasS.D. JakhiS.D. BhideS.V. Cytogenetic damage in exfoliated oral mucosal cells and circulating lymphocytes of patients suffering from precancerous oral lesions.Cancer Lett.19961091-291410.1016/S0304‑3835(96)04390‑X9020897
    [Google Scholar]
  66. BohraA. MaheswariT.N. HarshA. GargA. Black turmeric and Aloe Vera in the management of oral submucous fibrosis: A prospective clinical study.Asian Pac. J. Cancer Prev.202122123941394710.31557/APJCP.2021.22.12.394134967575
    [Google Scholar]
  67. AlokA. SinghI.D. SinghS. KishoreM. JhaP.C. Curcumin–pharmacological actions and its role in oral submucous fibrosis: A review.J. Clin. Diagn. Res.2015910ZE01ZE0310.7860/JCDR/2015/13857.655226557633
    [Google Scholar]
  68. SriramN. GheenaS. YuvarajS. Effects of turmeric on oral submucous fibrosis: A systematic review.Research Journal of Pharmacy and Technology2015881051105510.5958/0974‑360X.2015.00180.8
    [Google Scholar]
  69. KhedrN.F. KhedrE.G. Antioxidant and anti-inflammatory effects of curcumin on CCl4–induced liver fibrosis in rats.Am. J. Biomed. Sci.20146319120010.5099/aj140300191
    [Google Scholar]
  70. AbidiA. AissaniN. SebaiH. SerairiR. KourdaN. Ben KhamsaS. Protective effect of Pistacia lentiscus oil against bleomycin-induced lung fibrosis and oxidative stress in rat.Nutr. Cancer201769349049710.1080/01635581.2017.128342328287322
    [Google Scholar]
  71. AbidiA. SerairiR. KourdaN. Ben AliR. Ben KhamsaS. FekiM. Therapeutic effect of flaxseed oil on experimental pulmonary fibrosis induced by bleomycin in rats.Eur. J. Inflamm.201614213314310.1177/1721727X16652147
    [Google Scholar]
  72. KammD.R. McCommisK.S. Hepatic stellate cells in physiology and pathology.J. Physiol.202260081825183710.1113/JP28106135307840
    [Google Scholar]
  73. TounektiT. JoubertE. HernándezI. Munné-BoschS. Improving the polyphenol content of tea.Crit. Rev. Plant Sci.201332319221510.1080/07352689.2012.747384
    [Google Scholar]
  74. ShahA.J. GilaniA.H. AbbasK. RasheedM. AhmedA. AhmadV.U. Studies on the chemical composition and possible mechanisms underlying the antispasmodic and bronchodilatory activities of the essential oil of Artemisia maritima L.Arch. Pharm. Res.20113481227123810.1007/s12272‑011‑0801‑021910043
    [Google Scholar]
  75. HuangL. AbuhamdahS. HowesM.J.R. DixonC.L. ElliotM.S.J. BallardC. HolmesC. BurnsA. PerryE.K. FrancisP.T. LeesG. ChazotP.L. Pharmacological profile of essential oils derived from <I>Lavandula angustifolia</I> and <I>Melissa officinalis</I> with anti-agitation properties: focus on ligand-gated channels.J. Pharm. Pharmacol.200860111515152210.1211/jpp/60.11.001318957173
    [Google Scholar]
  76. de AraújoD.A.M. FreitasC. CruzJ.S. Essential oils components as a new path to understand ion channel molecular pharmacology.Life Sci.20118915-1654054410.1016/j.lfs.2011.04.02021620870
    [Google Scholar]
  77. LahlouM. Essential oils and fragrance compounds: Bioactivity and mechanisms of action.Flavour Fragrance J.200419215916510.1002/ffj.1288
    [Google Scholar]
  78. SaadN.Y. MullerC.D. LobsteinA. Major bioactivities and mechanism of action of essential oils and their components.Flavour Fragrance J.201328526927910.1002/ffj.3165
    [Google Scholar]
  79. TanuB. HarpreetK. Benefits of essential oil.J. Chem. Pharm. Res.201686143149
    [Google Scholar]
  80. AraujoM.W.B. CharlesC.A. WeinsteinR.B. McGuireJ.A. Parikh-DasA.M. DuQ. ZhangJ. BerlinJ.A. GunsolleyJ.C. Meta-analysis of the effect of an essential oil–containing mouthrinse on gingivitis and plaque.J. Am. Dent. Assoc.2015146861062210.1016/j.adaj.2015.02.01126227646
    [Google Scholar]
  81. KimH.J. ChenF. WuC. WangX. ChungH.Y. JinZ. Evaluation of antioxidant activity of australian tea tree (Melaleuca alternifolia) oil and its components.J. Agric. Food Chem.200452102849285410.1021/jf035377d15137824
    [Google Scholar]
  82. BoskabadyM.H. ShafeiM.N. SaberiZ. AminiS. Pharmacological effects of rosa damascena.Iran. J. Basic Med. Sci.201114429530723493250
    [Google Scholar]
  83. YenHF HsiehCT HsiehTJ ChangFR WangCK In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products.journal of food and drug analysis2015231124129
    [Google Scholar]
  84. HalliwellB. Antioxidants: The Basics-what they are and how to Evaluate them.Adv. Pharmacol.19963832010.1016/S1054‑3589(08)60976‑X8895801
    [Google Scholar]
  85. Santos-SánchezN.F. Salas-CoronadoR. Villanueva-CañongoC. Hernández-CarlosB. Antioxidant compounds and their antioxidant mechanism.Antioxidants201910129
    [Google Scholar]
  86. OroianM. EscricheI. Antioxidants: Characterization, natural sources, extraction and analysis.Food Res. Int.201574103610.1016/j.foodres.2015.04.01828411973
    [Google Scholar]
  87. TanB.L. NorhaizanM.E. LiewW.P.P. Sulaiman RahmanH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases.Front. Pharmacol.20189116210.3389/fphar.2018.0116230405405
    [Google Scholar]
  88. El-LateefH.M.A. El-DabeaT. KhalafM.M. Abu-DiefA.M. Recent overview of potent antioxidant activity of coordination compounds.Antioxidants202312221310.3390/antiox1202021336829772
    [Google Scholar]
  89. HreliaS. AngeloniC. New mechanisms of action of natural antioxidants in health and disease.Antioxidants20209434410.3390/antiox904034432340104
    [Google Scholar]
  90. BendaryE. FrancisR.R. AliH.M.G. SarwatM.I. El HadyS. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds.Ann. Agric. Sci.201358217318110.1016/j.aoas.2013.07.002
    [Google Scholar]
  91. MadhaviDL DeshpandeSS SalunkheDK Food antioxidants: Technological: Toxicological and health perspectives.CRC Press1995
    [Google Scholar]
  92. KumarS SharmaS VasudevaN Review on antioxidants and evaluation procedures.Chin. J. Integr. Med.201712
    [Google Scholar]
  93. JanciauskieneS. The beneficial effects of antioxidants in health and diseases. Chronic Obstructive Pulmonary Diseases.Chronic Obstr. Pulm. Dis.20207318220210.15326/jcopdf.7.3.2019.015232558487
    [Google Scholar]
  94. NimseS.B. PalD. Free radicals, natural antioxidants, and their reaction mechanisms.RSC Advances2015535279862800610.1039/C4RA13315C
    [Google Scholar]
  95. HalliwellB. Free radicals and other reactive species in disease.e LS2001
    [Google Scholar]
  96. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.04025942353
    [Google Scholar]
  97. ParolaM. RobinoG. Oxidative stress-related molecules and liver fibrosis.J. Hepatol.200135229730610.1016/S0168‑8278(01)00142‑811580156
    [Google Scholar]
  98. SingalA.K. JampanaS.C. WeinmanS.A. Antioxidants as therapeutic agents for liver disease.Liver Int.201131101432144810.1111/j.1478‑3231.2011.02604.x22093324
    [Google Scholar]
  99. WangX. GongG. YangW. LiY. JiangM. LiL. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model.Environ. Toxicol. Pharmacol.201336228829510.1016/j.etap.2013.04.00423686009
    [Google Scholar]
  100. PariL. AmudhaK. Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats.Eur. J. Pharmacol.2011650136437010.1016/j.ejphar.2010.09.06820950607
    [Google Scholar]
  101. RenugadeviJ. PrabuS.M. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin.Exp. Toxicol. Pathol.201062217118110.1016/j.etp.2009.03.01019409769
    [Google Scholar]
  102. ZhouF. WangA. LiD. WangY. LinL. Pinocembrin from penthorum chinense pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway.Toxicol. Appl. Pharmacol.2018341385010.1016/j.taap.2018.01.00929352975
    [Google Scholar]
  103. KoneruM. SahuB.D. GudemS. KunchaM. RavuriH.G. KumarJ.M. KilariE.K. SistlaR. Polydatin alleviates alcohol-induced acute liver injury in mice: Relevance of matrix metalloproteinases (MMPs) and hepatic antioxidants.Phytomedicine201727233210.1016/j.phymed.2017.01.01328314476
    [Google Scholar]
  104. KimM. YooG. RandyA. KimH.S. NhoC.W. Chicoric acid attenuate a nonalcoholic steatohepatitis by inhibiting key regulators of lipid metabolism, fibrosis, oxidation, and inflammation in mice with methionine and choline deficiency.Mol. Nutr. Food Res.2017615160063210.1002/mnfr.20160063227981809
    [Google Scholar]
  105. TsaiC.F. LuF.J. HsuY.W. Protective effects of Dunaliella salina - a carotenoids-rich alga - against ultraviolet B-induced corneal oxidative damage in mice.Mol. Vis.2012181540154722736944
    [Google Scholar]
  106. de VriesJJ ChangAB BonifantCM ShevillE MarchantJM Vitamin A and beta (β)‐carotene supplementation for cystic fibrosis.Cochrane Database of Systematic Reviews.20188
    [Google Scholar]
  107. LiuH. LiuS. JiangJ. ZhangY. LuoY. ZhaoJ. XuJ. XieY. LiaoW. WangW. NieY. LiS. DengW. CoQ10 enhances the efficacy of airway basal stem cell transplantation on bleomycin-induced idiopathic pulmonary fibrosis in mice.Respir. Res.20222313910.1186/s12931‑022‑01964‑435219329
    [Google Scholar]
  108. SapiejkaE. Krzyżanowska-JankowskaP. Wenska-ChyżyE. SzczepanikM. WalkowiakD. CoftaS. PogorzelskiA. SkorupaW. WalkowiakJ. Vitamin E status and its determinants in patients with cystic fibrosis.Adv. Med. Sci.201863234134610.1016/j.advms.2018.04.00130081288
    [Google Scholar]
  109. ShamseerL AdamsD BrownN JohnsonJA VohraS Antioxidant micronutrients for lung disease in cystic fibrosis.Cochrane Database of Systematic Reviews20101210.1002/14651858.CD007020.pub2
    [Google Scholar]
  110. KandhareA.D. MukherjeeA. GhoshP. BodhankarS.L. Efficacy of antioxidant in idiopathic pulmonary fibrosis: A systematic review and meta-analysis.EXCLI J.20161563665128096793
    [Google Scholar]
  111. HerrickA.L. Matucci CerinicM. The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis.Clin. Exp. Rheumatol.20011914811247323
    [Google Scholar]
  112. ShroffA. MamalisA. JagdeoJ. Oxidative stress, and skin fibrosis.Curr. Pathobiol. Rep.20142425726710.1007/s40139‑014‑0062‑y25401052
    [Google Scholar]
  113. PerniceC. MurriD. ValliR. CrocettaF.M. IoriM. AstiM. GhidiniA. CapponiP.C. Complete response of cutaneous SCC to topical treatment with ascorbic acid solution: A case report.Clin. Case Rep.2021931060106510.1002/ccr3.358533768783
    [Google Scholar]
  114. JagetiaG. RajanikantG. Curcumin stimulates the antioxidant mechanisms in mouse skin exposed to fractionated γ-irradiation.Antioxidants201541254110.3390/antiox401002526785336
    [Google Scholar]
  115. ZerrP. VollathS. Palumbo-ZerrK. TomcikM. HuangJ. DistlerA. BeyerC. DeesC. GelaK. DistlerO. SchettG. DistlerJ.H.W. Vitamin D receptor regulates TGF-β signalling in systemic sclerosis.Ann. Rheum. Dis.2015743e2010.1136/annrheumdis‑2013‑20437824448349
    [Google Scholar]
  116. MorryJ. NgamcherdtrakulW. YantaseeW. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles.Redox Biol.20171124025310.1016/j.redox.2016.12.01128012439
    [Google Scholar]
  117. DosokiH. StegemannA. TahaM. SchnittlerH. LugerT.A. SchröderK. DistlerJ.H.W. KerkhoffC. BöhmM. Targeting of NADPH oxidase in vitro and in vivo suppresses fibroblast activation and experimental skin fibrosis.Exp. Dermatol.2017261738110.1111/exd.1318027576129
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775271616231205111827
Loading
/content/journals/cdrr/10.2174/0125899775271616231205111827
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antioxidants; essential oils; extracellular matrix; fibrosis; oxidation; scavenging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test