Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The utilization of nanotechnology-based herbal medication delivery systems is gaining attention as a novel approach to treating diabetes mellitus. The incorporation of nanotechnology into herbal medicine provides benefits such as enhanced Stability, solubility, and bioavailability of herbal medications. The purpose of this paper is to summarise the present status of research on herbal medicine delivery systems based on nanotechnology for the treatment of diabetic patients. The paper evaluates the various nanocarriers and herbal drugs used, the challenges and opportunities in the development of these systems, and their potential efficacy and safety. Additionally, the paper highlights the need for further research to optimize the formulation and delivery of these systems. This review's overarching objective is to provide a complete understanding of the possibilities of herbal medication delivery systems based on nanotechnology in diabetes mellitus treatment.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998282162240116202813
2024-01-31
2025-05-24
Loading full text...

Full text loading...

References

  1. MarellaS. TollamaduguN.V.K.V.P. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus - A critical review.IET Nanobiotechnol.201812554955610.1049/iet‑nbt.2017.0242 30095411
    [Google Scholar]
  2. AmjadS. JafriA. SharmaA.K. SerajuddinM. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects.J. Herb. Med.201917-1810027910.1016/j.hermed.2019.100279
    [Google Scholar]
  3. AtkinsonM.A. EisenbarthG.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment.Lancet2001358927722122910.1016/S0140‑6736(01)05415‑0 11476858
    [Google Scholar]
  4. ZimmetP. TuomiT. MackayI.R. Latent autoimmune diabetes mellitus in adults (LADA): The role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency.Diabet. Med.199411329930310.1111/j.1464‑5491.1994.tb00275.x 8033530
    [Google Scholar]
  5. DeFronzoR.A. Pathogenesis of type 2 diabetes mellitus.Med. Clin. North Am.ix.200488478783510.1016/j.mcna.2004.04.013 15308380
    [Google Scholar]
  6. Abdul-GhaniM.A. DeFronzoR.A. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus.Curr. Diab. Rep.20088317317810.1007/s11892‑008‑0030‑1 18625112
    [Google Scholar]
  7. ChenH. NieQ. HuJ. HuangX. HuangW. NieS. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats.Food Hydrocoll.202010210558210.1016/j.foodhyd.2019.105582
    [Google Scholar]
  8. ArmstrongD.G. LaveryL.A. Diabetic foot ulcers: Prevention, diagnosis and classification.Am. Fam. Physician199857613251332, 1337-1338 9531915
    [Google Scholar]
  9. FuchsbergerC. FlannickJ. TeslovichT.M. The genetic architecture of type 2 diabetes.Nature20165367614414710.1038/nature18642 27398621
    [Google Scholar]
  10. Solis-HerreraC TriplittC ReasnerC Endotext. South Dartmouth: MDText.com, Inc2000
    [Google Scholar]
  11. DeSistoC.L. KimS.Y. SharmaA.J. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007-2010.Prev. Chronic Dis.20141113041510.5888/pcd11.130415 24945238
    [Google Scholar]
  12. KotaS.K. MeherL.K. JammulaS. KotaS.K. ModiK.D. Genetics of type 2 diabetes mellitus and other specific types of diabetes; its role in treatment modalities.Diabetes Metab. Syndr.201261545810.1016/j.dsx.2012.05.014 23014256
    [Google Scholar]
  13. McCarthyM.I. FroguelP. Genetic approaches to the molecular understanding of type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20022832E217E22510.1152/ajpendo.00099.2002 12110525
    [Google Scholar]
  14. KahnC.R. FlierJ.S. BarR.S. The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man.N. Engl. J. Med.19762941473974510.1056/NEJM197604012941401 176581
    [Google Scholar]
  15. BarkaouiM. KatiriA. BoubakerH. MsandaF. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco.J. Ethnopharmacol.201719833835010.1016/j.jep.2017.01.023 28109915
    [Google Scholar]
  16. RifaaiR.A. El-TahawyN.F. Ali SaberE. Effect of quercetin on the endocrine pancreas of the experimentally induced diabetes in male albino rats: A histological and immunohistochemical study Ali.J. Diabetes Metab.20123318210.4172/2155‑6156.1000182
    [Google Scholar]
  17. Module 3: Characteristics of particles – Particle size categories.Available from: www.epa.gov/apti/bces/module3/category/category.htmtt (Accessed 01 September 2015).
  18. SchmidG. Nanoparticles: From theory to application.Chichester, UKJohn Wiley & Sons201126
    [Google Scholar]
  19. MuddapurU.M. AlshehriS. GhoneimM.M. Plant-based synthesis of gold nanoparticles and theranostic applications: A review.Molecules2022274139110.3390/molecules27041391 35209180
    [Google Scholar]
  20. HasanS. A review on nanoparticles: Their synthesis and types.Res. J. Recent Sci.201522772502
    [Google Scholar]
  21. WeerapreeyakulN. HollenbeckR.G. ChikhaleP.J. Stability of bioreductive drug delivery systems containing melphalan is influenced by conformational constraint and electronic properties of substituents.Bioorg. Med. Chem. Lett.200010212391239510.1016/S0960‑894X(00)00496‑0 11078186
    [Google Scholar]
  22. Khaleel BashaS. GovindarajuK. ManikandanR. AhnJ.S. BaeE.Y. SingaraveluG. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity.Colloids Surf. B Biointerfaces201075240540910.1016/j.colsurfb.2009.09.008 19815393
    [Google Scholar]
  23. HuH.G. WangM.J. ZhaoQ.J. YuS.C. LiuC.M. WuQ.Y. Synthesis of mangiferin derivates and study their potent PTP1B inhibitory activity.Chin. Chem. Lett.200718111323132610.1016/j.cclet.2007.09.011
    [Google Scholar]
  24. KlasenH.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver.Burns200026213113810.1016/S0305‑4179(99)00116‑3 10716355
    [Google Scholar]
  25. GongP. LiH. HeX. Preparation and antibacterial activity of Fe3 O4 @Ag nanoparticles.Nanotechnology2007182828560410.1088/0957‑4484/18/28/285604
    [Google Scholar]
  26. RaiM. YadavA. GadeA. Silver nanoparticles as a new generation of antimicrobials.Biotechnol. Adv.2009271768310.1016/j.biotechadv.2008.09.002 18854209
    [Google Scholar]
  27. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  28. Ghaffari-MoghaddamM. Hadi-DabanlouR. KhajehM. RakhshanipourM. ShameliK. Green synthesis of silver nanoparticles using plant extracts.Korean J. Chem. Eng.201431454855710.1007/s11814‑014‑0014‑6
    [Google Scholar]
  29. IravaniS. ZolfaghariB. Green synthesis of silver nanoparticles using Pinus eldarica bark extract.BioMed Res. Int.201320131510.1155/2013/639725 24083233
    [Google Scholar]
  30. LasicD.D. FrederikP.M. StuartM.C.A. BarenholzY. McIntoshT.J. Gelation of liposome interior A novel method for drug encapsulation.FEBS Lett.19923122-325525810.1016/0014‑5793(92)80947‑F 1426260
    [Google Scholar]
  31. DyerA.M. HinchcliffeM. WattsP. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles.Pharm. Res.2002197998100810.1023/A:1016418523014 12180553
    [Google Scholar]
  32. BharaliD.J. KhalilM. GurbuzM. SimoneT.M. MousaS.A. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers.Int. J. Nanomedicine2009417 19421366
    [Google Scholar]
  33. TomaliaD.A. BakerH. DewaldJ. A new class of polymers: Starburst-dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  34. GilliesE. FréchetJ. Dendrimers and dendritic polymers in drug delivery.Drug Discov. Today2005101354310.1016/S1359‑6446(04)03276‑3 15676297
    [Google Scholar]
  35. IwakiT. KakiharaY. TodaT. AbdullahM. OkuyamaK. Preparation of high coercivity magnetic FePt nanoparticles by liquid process.J. Appl. Phys.200394106807681110.1063/1.1619577
    [Google Scholar]
  36. von zur MuhlenC. von ElverfeldtD. BasslerN. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques.Atherosclerosis2007193110211110.1016/j.atherosclerosis.2006.08.048 16997307
    [Google Scholar]
  37. SohnB.H. CohenR.E. Processible optically transparent block copolymer films containing superparamagnetic iron oxide nanoclusters.Chem. Mater.19979126426910.1021/cm960339d
    [Google Scholar]
  38. TartajP. MoralesM.P. González-CarreñoT. Veintemillas-VerdaguerS. SernaC.J. Advances in magnetic nanoparticles for biotechnology applications.J. Magn. Magn. Mater.2005290-291283410.1016/j.jmmm.2004.11.155
    [Google Scholar]
  39. KouwenhovenL. MarcusC. Quantum dots.Phys. World1998116354010.1088/2058‑7058/11/6/26
    [Google Scholar]
  40. BaileyR.E. SmithA.M. NieS. Quantum dots in biology and medicine.Physica E200425111210.1016/j.physe.2004.07.013
    [Google Scholar]
  41. HyungH. KimJ.H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters.Environ. Sci. Technol.200842124416442110.1021/es702916h 18605564
    [Google Scholar]
  42. SharonM. Carbon nano forms and applications.New York, USAMcGraw-Hill Education2010
    [Google Scholar]
  43. NowackB. DavidR.M. FissanH. Potential release scenarios for carbon nanotubes used in composites.Environ. Int.20135911110.1016/j.envint.2013.04.003 23708563
    [Google Scholar]
  44. BennettS.W. AdeleyeA. JiZ. KellerA.A. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes.Water Res.201347124074408510.1016/j.watres.2012.12.039 23591109
    [Google Scholar]
  45. NagavarmaB.V. YadavH.K. AyazA.V. VasudhaL.S. ShivakumarH.G. Different techniques for preparation of polymeric nanoparticles-A review.Asian J. Pharm. Clin. Res.201251623
    [Google Scholar]
  46. ShokriN Akbari JavarH FouladdelSh Preparation and evaluation of poly (caprolactone fumarate) nanoparticles containing doxorubicin HCI.Daru20111911222 22615635
    [Google Scholar]
  47. Quintanar-GuerreroD. AllémannE. FessiH. DoelkerE. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers.Drug Dev. Ind. Pharm.199824121113112810.3109/03639049809108571 9876569
    [Google Scholar]
  48. ChronopoulouL. FratoddiI. PalocciC. VendittiI. RussoM.V. Osmosis based method drives the self-assembly of polymeric chains into micro- and nanostructures.Langmuir20092519119401194610.1021/la9016382 19572495
    [Google Scholar]
  49. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  50. MaddenT.D. BallyM.B. HopeM.J. CullisP.R. SchierenH.P. JanoffA.S. Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents.Biochim. Biophys. Acta Biomembr.19858171677410.1016/0005‑2736(85)90069‑0 4005259
    [Google Scholar]
  51. DombA.J. Long acting injectable oxytetracycline-liposphere formulations.Int. J. Pharm.1995124227127810.1016/0378‑5173(95)00098‑4
    [Google Scholar]
  52. HouD. XieC. HuangK. ZhuC. The production and characteristics of solid lipid nanoparticles (SLNs).Biomaterials200324101781178510.1016/S0142‑9612(02)00578‑1 12593960
    [Google Scholar]
  53. VermaH. PrasadS.B. YashwantS.H. Herbal drug delivery system: A modern era perspective.Int J Curr Pharmaceut Rev Res2013488101
    [Google Scholar]
  54. AtmakuriL.R. DathiS. Current trends in herbal medicines.J. Pharm. Res.20103109113
    [Google Scholar]
  55. HarishP. Herbal drugs. Current Science.2001Apr81115
    [Google Scholar]
  56. ColemanL.M. FowlerL.L. WilliamsM.E. Use of unproven therapies by people with Alzheimer’s disease.J. Am. Geriatr. Soc.199543774775010.1111/j.1532‑5415.1995.tb07043.x 7602024
    [Google Scholar]
  57. KulkarniG.T. Herbal drug delivery systems: An emerging area in herbal drug research.J Chronotherapy Drug Deliv20112113119
    [Google Scholar]
  58. JainN. ValliK.S. DeviV.K. Importance of novel drug delivery systems in herbal medicines.Pharmacogn. Rev.201047273110.4103/0973‑7847.65322 22228938
    [Google Scholar]
  59. SarangiM. PadhiS. Novel herbal drug delivery system: An overview.Arch Med Health Sci20186117110.4103/amhs.amhs_88_17
    [Google Scholar]
  60. DhimanA. NandaA. AhmadS. Novel herbal drug delivery system (NHDDS).2012Available from: https://venusremedies.com/nhdds#:~:text=Novel%20herbal%20drug%20delivery%20system%20opens%20new%20wistars%20for%20the,the%20standardization%20of%20herbal%20drugs
  61. Nanotechnology for diabetes treatment.2013Available from: http://www.AZoM.com (Accessed December 16 2013).
  62. JafriS.A. SyedS. HasanA.N.K. IqbalJ. Hypoglycemic effect of Aloe vera extract in alloxan-induced diabetic albino rats.Med J Islam World Academy Sci2011193127130
    [Google Scholar]
  63. AnanthiJ. PrakasamA. PugalendiK.V. Antihyperglycemic activity of Eclipta alba leaf on alloxan-induced diabetic rats.Yale J. Biol. Med.200376397102 15369623
    [Google Scholar]
  64. SinduraniJ.A. RajamohanT. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats.Indian J. Physiol. Pharmacol.200044197100 10919103
    [Google Scholar]
  65. VinuthanM.K. Girish KumarV. RavindraJ.P. JayaprakashN. NarayanaK. Effect of extracts of Murraya koenigii leaves on the levels of blood glucose and plasma insulin in alloxan-induced diabetic rats.Indian J. Physiol. Pharmacol.2004483348352 15648408
    [Google Scholar]
  66. ThomsonM. ZainabM. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats.Int. J. Diab. Metab.200715108115
    [Google Scholar]
  67. PatilR. PatilR. AhirwarB. AhirwarD. Current status of Indian medicinal plants with antidiabetic potential: A review.Asian Pac. J. Trop. Biomed.201112S291S29810.1016/S2221‑1691(11)60175‑5
    [Google Scholar]
  68. SilvaM.L. BernardoM.A. SinghJ. de MesquitaM.F. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review.Nutrients20221413277310.3390/nu14132773 35807953
    [Google Scholar]
  69. GaoY. LiX. HuangY. ChenJ. QiuM. Bitter melon and diabetes mellitus.Food Rev. Int.202339161863810.1080/87559129.2021.1923733
    [Google Scholar]
  70. PuriD. PrabhuK.M. MurthyP.S. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds.Indian J. Physiol. Pharmacol.2002464457462 12683221
    [Google Scholar]
  71. UadiaP.O. ImagbovomwanI.O. OriakhiK. EzeI.G. Effect of Abelmoschus esculentus (okra)-based diet on streptozotocin-induced diabetes mellitus in adult Wistar rats.Trop. J. Pharm. Res.20201981737174310.4314/tjpr.v19i8.24
    [Google Scholar]
  72. KurodaM. MimakiY. OhtomoT. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients.J. Nat. Med.201266239439910.1007/s11418‑011‑0593‑z 21987283
    [Google Scholar]
  73. ParthaR. ConyersJ.L. Biomedical applications of functionalized fullerene-based nanomaterials.Int. J. Nanomedicine20094261275 20011243
    [Google Scholar]
  74. LoureiroJ.A. GomesB. CoelhoM.A.N. Carmo PereiraM. RochaS. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies.Nanomedicine20149570972210.2217/nnm.14.27 24827845
    [Google Scholar]
  75. UK Prospective Diabetes Study (UKPDS) GroupIntensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet1998352913183785310.1016/S0140‑6736(98)07019‑6 9742976
    [Google Scholar]
  76. JungT. KammW. BreitenbachA. KaiserlingE. XiaoJ.X. KisselT. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake?Eur. J. Pharm. Biopharm.200050114716010.1016/S0939‑6411(00)00084‑9 10840198
    [Google Scholar]
  77. ViswanathB. KimS. Recent insights into the development of nanotechnology to detect circulating tumor cells.Trends Analyt. Chem.20168219119810.1016/j.trac.2016.05.026
    [Google Scholar]
  78. SethS.D. SharmaB. Medicinal plants in India.Indian J. Med. Res.20041201911 15299226
    [Google Scholar]
  79. Alarcon-AguilarF.J. Roman-RamosR. Flores-SaenzJ.L. Aguirre-GarciaF. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and Alloxan‐diabetic mice.Phytother. Res.200216438338610.1002/ptr.914 12112298
    [Google Scholar]
  80. Alarcon-AguilaraF.J. Roman-RamosR. Perez-GutierrezS. Aguilar-ContrerasA. Contreras-WeberC.C. Flores-SaenzJ.L. Study of the anti-hyperglycemic effect of plants used as antidiabetics.J. Ethnopharmacol.199861210111010.1016/S0378‑8741(98)00020‑8 9683340
    [Google Scholar]
  81. ChakravartyS. KalitaJ.C. An investigation on antidiabetic medicinal plants used by villagers in Nalbari District, Assam, India.Int. J. Pharm. Sci. Res.201231693
    [Google Scholar]
  82. DasT. MishraS.B. SahaD. AgarwalS. Ethnobotanical survey of medicinal plants used by ethnic and rural people in eastern Sikkim Himalayan region.African Jf Basic Appl Sci201241620
    [Google Scholar]
  83. KhanM.H. YadavaP.S. Antidiabetic plants used in thoubal district of manipur, Northeast India.Indian J. Tradit. Knowl.201093510514
    [Google Scholar]
  84. DasA. SaikiaR. PathakK. GogoiU. PathakM.P. Antidiabetic nanoformulation from herbal source. In: Nano Medicine & Nano safety.Springer2020
    [Google Scholar]
  85. MondalP. BhuyanN. DasS. KumarM. BorahS. MahatoK. Herbal medicines useful for the treatment of diabetes in North-East India: A review.Int. J. Pharm. Biol. Sci.20133575589
    [Google Scholar]
  86. LakshmideviG.B. Diabetes and medicinal plants-A review.Int. J. Pharma Bio Sci.201126580
    [Google Scholar]
  87. SastryM. AhmedA. KhanM.I. Biosynthesis of metal nanoparticles using fungi Andactinomycete.Curr. Sci.200385162170
    [Google Scholar]
  88. WangS. SuR. NieS. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals.J. Nutr. Biochem.201425436337610.1016/j.jnutbio.2013.10.002 24406273
    [Google Scholar]
  89. AggarwalB.B. SundaramC. MalaniN. IchikawaH. Curcumin: The Indian solid gold.Adv. Exp. Med. Biol.200759517510.1007/978‑0‑387‑46401‑5_1 17569205
    [Google Scholar]
  90. Pérez-TorresI. Ruiz-RamírezA. BañosG. El-HafidiM. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome.Cardiovasc. Hematol. Agents Med. Chem.2013111253710.2174/1871525711311010006 22721439
    [Google Scholar]
  91. SinghI.P. MahajanS. Berberine and its derivatives: A patent review (2009 - 2012).Expert Opin. Ther. Pat.201323221523110.1517/13543776.2013.746314 23231038
    [Google Scholar]
  92. ChuehW.H. LinJ.Y. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice.J. Agric. Food Chem.201159148021802710.1021/jf201627w 21696141
    [Google Scholar]
  93. ChuehW.H. LinJ.Y. Protective effect of berberine on serum glucose levels in non-obese diabetic mice.Int. Immunopharmacol.201212353453810.1016/j.intimp.2012.01.003 22266065
    [Google Scholar]
  94. ChenC. ZhouJ. JiC. Quercetin: A potential drug to reverse multidrug resistance.Life Sci.20108711-1233333810.1016/j.lfs.2010.07.004 20637779
    [Google Scholar]
  95. ShiG.J. LiY. CaoQ.H. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature.Biomed. Pharmacother.20191091085109910.1016/j.biopha.2018.10.130 30551359
    [Google Scholar]
  96. KirtikarK.R. BasuB.D. Indian Medicinal Plants.Indian Medicinal Plants1935
    [Google Scholar]
  97. SuryavanshiS.V. BarveK. AddepalliV. UtpatS.V. KulkarniY.A. ChurnaT. Triphala Churna-A traditional formulation in Ayurveda mitigates diabetic neuropathy in rats.Front. Pharmacol.20211266200010.3389/fphar.2021.662000 34149415
    [Google Scholar]
  98. BhartiN. Hari KumarS.L. BudhirajaA. Pulmonary drug delivery as a vital route for deliverying nanoparticles.World J. Pharm. Pharm. Sci.2013240374060
    [Google Scholar]
  99. SubramaniK. NPDDS for the treatment of diabetes. PathakY. ThassuD. Drug Delivery Nanoparticles Formulation and Characterization.USAInforma Healthcare, Inc.2009117
    [Google Scholar]
  100. PlumleyC.J. Nanoparticle agglomeration via ionic colloidal destabilization as a novel approach to dry powder formulations for pulmonary drug delivery.2009Available from: https://dblp.org/rec/phd/basesearch/Plumley08.html
    [Google Scholar]
  101. ChalasaniK.B. Russell-JonesG.J. YandrapuS.K. DiwanP.V. JainS.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin.J. Control. Release2007117342142910.1016/j.jconrel.2006.12.003 17239471
    [Google Scholar]
  102. PriyaB. RashmiT. BozenaM. Transdermal iontophoresis.Expert Opin. Drug Deliv.20063112713810.1517/17425247.3.1.127 16370945
    [Google Scholar]
  103. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: An emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  104. KlonoffD.C. Overview of fluorescence glucose sensing: A technology with a bright future.J. Diabetes Sci. Technol.2012661242125010.1177/193229681200600602 23294768
    [Google Scholar]
  105. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑150124 22524388
    [Google Scholar]
  106. DasP. GangulyS. BoseM. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor.Mater. Sci. Eng. C20188811512910.1016/j.msec.2018.03.010 29636126
    [Google Scholar]
  107. GuZ. DangT.T. MaM. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery.ACS Nano2013786758676610.1021/nn401617u 23834678
    [Google Scholar]
  108. LuoJ. CaoS. ChenX. Super long-term glycemic control in diabetic rats by glucose-sensitive LbL films constructed of supramolecular insulin assembly.Biomaterials201233338733874210.1016/j.biomaterials.2012.08.041 22954517
    [Google Scholar]
  109. QiW. YanX. FeiJ. WangA. CuiY. LiJ. Triggered release of insulin from glucose-sensitive enzyme multilayer shells.Biomaterials200930142799280610.1016/j.biomaterials.2009.01.027 19203789
    [Google Scholar]
  110. GuZ. AimettiA.A. WangQ. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano2013754194420110.1021/nn400630x 23638642
    [Google Scholar]
  111. PanditS. DasguptaD. DewanN. PrinceA. Nanotechnology based biosensors and its application.J. Pharm. Innov.2016518
    [Google Scholar]
  112. CashK.J. ClarkH.A. Nanosensors and nanomaterials for monitoring glucose in diabetes.Trends Mol. Med.2010161258459310.1016/j.molmed.2010.08.002 20869318
    [Google Scholar]
  113. ChangL. HuJ. ChenF. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives.Nanoscale2016863181320610.1039/C5NR06694H 26745513
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998282162240116202813
Loading
/content/journals/cdr/10.2174/0115733998282162240116202813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test