Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Flavonoids have been reported to be vital in treating various chronic disorders. Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a flavonoid present in a variety of plant sources such as celery, green pepper, olive oil, peppermint, thyme, rosemary, oregano, It has been reported to have various pharmacological activities such as antioxidant, anti-inflammatory, anticancer, antidiabetic, anti-Alzheimer, antimicrobial, Many scientific studies have been carried out on luteolin for its possible effects on diabetes and its associated complications. The present review focuses on the role of luteolin in diabetes mellitus and the associated complications. The antidiabetic impact of luteolin is linked with the increased expression of PPARγ and GLUT. Various and studies have been performed to explore the effects of luteolin on diabetic complications, and it has shown a significant impact in the management of the same.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998285798240217084632
2024-02-29
2025-05-24
Loading full text...

Full text loading...

References

  1. DiMeglioL.A. Evans-MolinaC. OramR.A. Type 1 diabetes.Lancet2018391101382449246210.1016/S0140‑6736(18)31320‑5 29916386
    [Google Scholar]
  2. TanS.Y. Mei WongJ.L. SimY.J. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  3. ArtasensiA. PedrettiA. VistoliG. FumagalliL. Type 2 diabetes mellitus: A review of multi-target drugs.Molecules2020258198710.3390/molecules25081987 32340373
    [Google Scholar]
  4. Facts & figures International Diabetes Federation.Available from: https://idf.org/about-diabetes/facts-figures/ (accessed 2023-06-16).
  5. NallyL.M. SherrJ.L. Van NameM.A. PatelA.D. TamborlaneW.V. Pharmacologic treatment options for type 1 diabetes: What’s new?Expert Rev. Clin. Pharmacol.201912547147910.1080/17512433.2019.1597705 30892094
    [Google Scholar]
  6. HaahrH. HeiseT. Fast-acting insulin aspart: A review of its pharmacokinetic and pharmacodynamic properties and the clinical consequences.Clin. Pharmacokinet.202059215517210.1007/s40262‑019‑00834‑5 31667789
    [Google Scholar]
  7. HoyS.M. MYL1501D insulin glargine: A review in diabetes mellitus.BioDrugs202034224525110.1007/s40259‑020‑00418‑x 32215829
    [Google Scholar]
  8. Picón-CésarM.J. Molina-VegaM. Suárez-AranaM. Metformin for gestational diabetes study: metformin vs insulin in gestational diabetes: Flycemic control and obstetrical and perinatal outcomes: randomized prospective trial.Am. J. Obstet. Gynecol.20212255517.e1517.e1710.1016/j.ajog.2021.04.229 33887240
    [Google Scholar]
  9. PriyaG. KalraS. A review of insulin resistance in type 1 diabetes: Is there a place for adjunctive metformin?Diabetes Ther.20189134936110.1007/s13300‑017‑0333‑9 29139080
    [Google Scholar]
  10. ApostolovaN. IannantuoniF. GruevskaA. MuntaneJ. RochaM. VictorV.M. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions.Redox Biol.20203410151710.1016/j.redox.2020.101517 32535544
    [Google Scholar]
  11. LeeC.B. ChaeS.U. JoS.J. JerngU.M. BaeS.K. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus.Int. J. Mol. Sci.2021227356610.3390/ijms22073566 33808194
    [Google Scholar]
  12. LvW. WangX. XuQ. LuW. Mechanisms and characteristics of sulfonylureas and glinides.Curr. Top. Med. Chem.2020201375610.2174/1568026620666191224141617 31884929
    [Google Scholar]
  13. TaoY eM ShiJ ZhangZ Sulfonylureas use and fractures risk in elderly patients with type 2 diabetes mellitus: A meta-analysis study.Aging Clin. Exp. Res.20213382133213910.1007/s40520‑020‑01736‑4 33104983
    [Google Scholar]
  14. PhilipJ. FernandezC.J. Efficacy and cardiovascular safety of meglitinides.Curr. Drug Saf.202116220721610.2174/1574886315666201026125848 33106149
    [Google Scholar]
  15. RosenstockJ. AllisonD. BirkenfeldA.L. Effect of additional oral semaglutide vs sitagliptin on glycated hemoglobin in adults with type 2 diabetes uncontrolled with metformin alone or with sulfonylurea.JAMA2019321151466148010.1001/jama.2019.2942 30903796
    [Google Scholar]
  16. ZhouD. ChenL. MouX. Acarbose ameliorates spontaneous type 2 diabetes in db/db mice by inhibiting PDX 1 methylation.Mol. Med. Rep.20202317210.3892/mmr.2020.11710 33236139
    [Google Scholar]
  17. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.0280 34965646
    [Google Scholar]
  18. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816110.1002/jcp.27603 30317615
    [Google Scholar]
  19. HillM.A. YangY. ZhangL. Insulin resistance, cardiovascular stiffening and cardiovascular disease.Metabolism202111915476610.1016/j.metabol.2021.154766 33766485
    [Google Scholar]
  20. EsinR.G. KhairullinI.K. EsinO.R. Diabetic encephalopathy: Current insights and potential therapeutic strategies.Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova20211217495410.17116/jnevro202112107149 34460157
    [Google Scholar]
  21. WangW. LoA. Diabetic retinopathy: Pathophysiology and treatments.Int. J. Mol. Sci.2018196181610.3390/ijms19061816 29925789
    [Google Scholar]
  22. NeuropathyD. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514210.1038/s41572‑019‑0097‑9 31197183
    [Google Scholar]
  23. KhouryJ. ZoharY. ShehadehN. SaadiT. Glycogenic hepatopathy.Hepatobiliary Pancreat. Dis. Int.201817211311810.1016/j.hbpd.2018.02.006 29709217
    [Google Scholar]
  24. YuanZ. TangZ. HeC. TangW. Diabetic cystopathy: A review: Diabetic cystopathy.J. Diabetes20157444244710.1111/1753‑0407.12272 25619174
    [Google Scholar]
  25. LiuW. FengY. YuS. The flavonoid biosynthesis network in plants.Int. J. Mol. Sci.202122231282410.3390/ijms222312824 34884627
    [Google Scholar]
  26. LaddhaA.P. KulkarniY.A. Pharmacokinetics, pharmacodynamics, toxicity, and formulations of daidzein: An important isoflavone.Phytother. Res.20233762578260410.1002/ptr.7852 37118928
    [Google Scholar]
  27. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  28. JoshiR. KulkarniY.A. WairkarS. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update.Life Sci.2018215435610.1016/j.lfs.2018.10.066
    [Google Scholar]
  29. UllahA. MunirS. BadshahS.L. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  30. SalatinS. BazmaniA. ShahiS. NaghiliB. MemarM.Y. DizajS.M. Antimicrobial benefits of flavonoids and their nanoformulations.Curr. Pharm. Des.202228171419143210.2174/1381612828666220509151407 35579158
    [Google Scholar]
  31. ZhaoK. YuanY. LinB. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo.Gene201864253354110.1016/j.gene.2017.11.065 29196258
    [Google Scholar]
  32. DiaoH.M. HaoY. LiJ. Flavonoids from Scutellaria likiangensis Diels and their antimalarial activities.Fitoterapia202316410535710.1016/j.fitote.2022.105357 36460204
    [Google Scholar]
  33. WangY. LiuX.J. ChenJ.B. CaoJ.P. LiX. SunC.D. Citrus flavonoids and their antioxidant evaluation.Crit. Rev. Food Sci. Nutr.202262143833385410.1080/10408398.2020.1870035 33435726
    [Google Scholar]
  34. DajasF. Rivera-MegretF. BlasinaF. Neuroprotection by flavonoids.Braz. J. Med. Biol. Res.200336121613162010.1590/S0100‑879X2003001200002 14666245
    [Google Scholar]
  35. OżarowskiM. KarpińskiT.M. Extracts and flavonoids of passiflora species as promising anti-inflammatory and antioxidant substances.Curr. Pharm. Des.202127222582260410.2174/18734286MTA2yOTM80 32452323
    [Google Scholar]
  36. AzizN. KimM.Y. ChoJ.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies.J. Ethnopharmacol.201822534235810.1016/j.jep.2018.05.019 29801717
    [Google Scholar]
  37. KulkarniY.A. GarudM.S. OzaM.J. BarveK.H. GaikwadA.B. Chapter 5 - Diabetes, diabetic complications, and flavonoids. WatsonR.R. PreedyV.R. Fruits, Vegetables, and Herbs. Academic Press.20167710410.1016/B978‑0‑12‑802972‑5.00005‑6
    [Google Scholar]
  38. AgarawalK. Anant KulkarniY. WairkarS. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications.Drug Deliv. Transl. Res.2023131183610.1007/s13346‑022‑01174‑x 35637334
    [Google Scholar]
  39. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050 18991571
    [Google Scholar]
  40. MieanK.H. MohamedS. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants.J. Agric. Food Chem.20014963106311210.1021/jf000892m 11410016
    [Google Scholar]
  41. SmA. R F, A S, M R. Structure-antioxidant activity relationships of luteolin and catechin.J. Food Sci.202085210.1111/1750‑3841.14994
    [Google Scholar]
  42. LeopoldiniM. MarinoT. RussoN. ToscanoM. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism.J. Phys. Chem. A2004108224916492210.1021/jp037247d
    [Google Scholar]
  43. LeopoldiniM. PitarchI.P. RussoN. ToscanoM. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study.J. Phys. Chem. A20041081929610.1021/jp035901j
    [Google Scholar]
  44. JosephA. Experimental determination of octanol−water partition coefficients of quercetin and related flavonoids.J. Agric. Food Chem.200553114355436010.1021/jf0483669
    [Google Scholar]
  45. PubChem LuteolinAvailable from: https://pubchem.ncbi.nlm.nih.gov/compound/5280445 (accessed 2023-06-16).
  46. ShimoiK. OkadaH. FurugoriM. Intestinal absorption of luteolin and luteolin 7‐ O ‐β‐glucoside in rats and humans.FEBS Lett.1998438322022410.1016/S0014‑5793(98)01304‑0
    [Google Scholar]
  47. BoersmaM.G. van der WoudeH. BogaardsJ. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases.Chem. Res. Toxicol.200215566267010.1021/tx0101705 12018987
    [Google Scholar]
  48. KureA. NakagawaK. KondoM. Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect.J. Agric. Food Chem.201664214246425410.1021/acs.jafc.6b00964 27170112
    [Google Scholar]
  49. WuL. LiuJ. HanW. Time-dependent metabolism of luteolin by human UDP-glucuronosyltransferases and its intestinal first-pass glucuronidation in mice.J. Agric. Food Chem.201563398722873310.1021/acs.jafc.5b02827 26377048
    [Google Scholar]
  50. ChenZ. ChenM. PanH. Role of catechol-O-methyltransferase in the disposition of luteolin in rats.Drug Metab. Dispos.201139466767410.1124/dmd.110.037333 21209248
    [Google Scholar]
  51. DengC. GaoC. TianX. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile.J. Funct. Foods20173533234010.1016/j.jff.2017.05.056
    [Google Scholar]
  52. MinY.S. BaiK.L. YimS.H. The effect of luteolin-7-O-β-d-glucuronopyranoside on gastritis and esophagitis in rats.Arch. Pharm. Res.200629648448910.1007/BF02969421 16833016
    [Google Scholar]
  53. IwakiM. MatsudaM. MaedaN. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors.Diabetes20035271655166310.2337/diabetes.52.7.1655
    [Google Scholar]
  54. HollenbergA.N. SusulicV.S. MaduraJ.P. Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter.J. Biol. Chem.199727285283529010.1074/jbc.272.8.5283 9030601
    [Google Scholar]
  55. DingL. JinD. ChenX. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes.J. Nutr. Biochem.2010211094194710.1016/j.jnutbio.2009.07.009 19954946
    [Google Scholar]
  56. WangJ. GaoT. WangF. XueJ. YeH. XieM. Luteolin improves myocardial cell glucolipid metabolism by inhibiting hypoxia inducible factor-1α expression in angiotensin II/hypoxia-induced hypertrophic H9c2 cells.Nutr. Res.201965637010.1016/j.nutres.2019.02.004 30954346
    [Google Scholar]
  57. ShehnazS.I. RoyA. VijayaraghavanR. SivanesanS. PazhanivelN. Modulation of PPAR-γ, SREBP-1c and inflammatory mediators by luteolin ameliorates β-cell dysfunction and renal damage in a rat model of type-2 diabetes mellitus.Mol. Biol. Rep.202350119129914210.1007/s11033‑023‑08804‑8 37749346
    [Google Scholar]
  58. DillmannW.H. Diabetic cardiomyopathy.Circ. Res.201912481160116210.1161/CIRCRESAHA.118.314665 30973809
    [Google Scholar]
  59. RublerS. DlugashJ. YuceogluY.Z. KumralT. BranwoodA.W. GrishmanA. New type of cardiomyopathy associated with diabetic glomerulosclerosis.Am. J. Cardiol.197230659560210.1016/0002‑9149(72)90595‑4
    [Google Scholar]
  60. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  61. SuryavanshiS.V. KulkarniY.A. NF-κβ: A potential target in the management of vascular complications of diabetes.Front. Pharmacol.2017879810.3389/fphar.2017.00798 29163178
    [Google Scholar]
  62. SwynghedauwB. Molecular mechanisms of myocardial remodeling.Physiol. Rev.199979121526210.1152/physrev.1999.79.1.215 9922372
    [Google Scholar]
  63. Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P.IDF Diabetes Atlas 2021 | IDF Diabetes Atlas2021Available from: https://diabetesatlas.org/atlas/tenth-edition/ (accessed 2024-01-22).
    [Google Scholar]
  64. WernerC.M. BöhmM. Review: The therapeutic role of RAS blockade in chronic heart failure.Ther. Adv. Cardiovasc. Dis.20082316717710.1177/1753944708091777 19124420
    [Google Scholar]
  65. M Sano K Fukuda T Sato ERK and P38 MAPK, but Not NF-kappaB, Are Critically Involved in Reactive Oxygen Species-Mediated Induction of IL-6 by Angiotensin II in Cardiac Fibroblasts.Circ. Res.200189810.1161/hh2001.098873
    [Google Scholar]
  66. ChengT.H. ChengP.Y. ShihN.L. ChenI.B. WangD.L. ChenJ.J. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts.J. Am. Coll. Cardiol.200342101845185410.1016/j.jacc.2003.06.010 14642698
    [Google Scholar]
  67. ManabeI. ShindoT. NagaiR. Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy.Circ. Res.200291121103111310.1161/01.RES.0000046452.67724.B8 12480810
    [Google Scholar]
  68. RosenkranzS. TGF-?1 and angiotensin networking in cardiac remodeling.Cardiovasc. Res.200463342343210.1016/j.cardiores.2004.04.030 15276467
    [Google Scholar]
  69. YuC.M. TipoeG.L. Wing-Hon LaiK. LauC.P. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction.J. Am. Coll. Cardiol.20013841207121510.1016/S0735‑1097(01)01518‑2 11583905
    [Google Scholar]
  70. LimD.S. LutucutaS. BachireddyP. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy.Circulation2001103678979110.1161/01.CIR.103.6.789 11171784
    [Google Scholar]
  71. LeaskA. AbrahamD.J. TGF‐β signaling and the fibrotic response.FASEB J.200418781682710.1096/fj.03‑1273rev 15117886
    [Google Scholar]
  72. AndoC. TakahashiN. HiraiS. Luteolin, a food‐derived flavonoid, suppresses adipocyte‐dependent activation of macrophages by inhibiting JNK activation.FEBS Lett.2009583223649365410.1016/j.febslet.2009.10.045 19854181
    [Google Scholar]
  73. PhL. LmH. YhC. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats.Circ. J.201175244345010.1253/circj.CJ‑10‑0381
    [Google Scholar]
  74. LiX. RekepM. TianJ. Luteolin attenuates diabetic myocardial hypertrophy by inhibiting proteasome activity.Pharmacology20231081476010.1159/000527201 36423586
    [Google Scholar]
  75. ZhangW. LiD. ShanY. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus.Diabetol. Metab. Syndr.20231515910.1186/s13098‑023‑01026‑9 36966325
    [Google Scholar]
  76. MogensenC.E. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes.J. Intern. Med.20032541456610.1046/j.1365‑2796.2003.01157.x 12823642
    [Google Scholar]
  77. NajafianB. AlpersC.E. FogoA.B. Pathology of human diabetic nephropathy.Contrib. Nephrol.2011170364710.1159/000324942
    [Google Scholar]
  78. MoraC. NavarroJ.F. Inflammation and diabetic nephropathy.Curr. Diab. Rep.20066646346810.1007/s11892‑006‑0080‑1 17118230
    [Google Scholar]
  79. QiuY. TangL. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy.Pharmacol. Res.201611425126410.1016/j.phrs.2016.11.004 27826011
    [Google Scholar]
  80. GarudM. KulkarniY. Hyperglycemia to nephropathy via transforming growth factor beta.Curr. Diabetes Rev.201410318218910.2174/1573399810666140606103645 24919657
    [Google Scholar]
  81. WenH. MiaoE.A. TingJ.P-Y. Mechanisms of NOD-like receptor-associated inflammasome activation.Immunity201339343244110.1016/j.immuni.2013.08.037
    [Google Scholar]
  82. ElliottE.I. SutterwalaF.S. Initiation and perpetuation of NLRP 3 inflammasome activation and assembly.Immunol. Rev.20152651355210.1111/imr.12286 25879282
    [Google Scholar]
  83. Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P.Diabetes and kidney disease | IDF Diabetes AtlasAvailable from: https://diabetesatlas.org/atlas/diabetes-and-kidney-disease/ (accessed 2024-01-22).
    [Google Scholar]
  84. YuQ. ZhangM. QianL. WenD. WuG. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway.Life Sci.20192251710.1016/j.lfs.2019.03.073 30935950
    [Google Scholar]
  85. XiongC. WuQ. FangM. LiH. ChenB. ChiT. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats.J. Int. Med. Res.202048410.1177/0300060520903642 32242458
    [Google Scholar]
  86. ZhangM. HeL. LiuJ. ZhouL. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting stat3 pathway.Exp. Clin. Endocrinol. Diabetes20211291072973910.1055/a‑0998‑7985 31896157
    [Google Scholar]
  87. MizisinA.P. SheltonG.D. WagnerS. RusbridgeC. PowellH.C. Myelin splitting, Schwann cell injury and demyelination in feline diabetic neuropathy.Acta Neuropathol.199895217117410.1007/s004010050783 9498053
    [Google Scholar]
  88. GumyL.F. BamptonE.T.W. TolkovskyA.M. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG.Mol. Cell. Neurosci.200837229831110.1016/j.mcn.2007.10.004 18024075
    [Google Scholar]
  89. PanS. ChanJ.R. Regulation and dysregulation of axon infrastructure by myelinating glia.J. Cell Biol.2017216123903391610.1083/jcb.201702150 29114067
    [Google Scholar]
  90. AdkiK.M. KulkarniY.A. Biomarkers in diabetic neuropathy.Arch. Physiol. Biochem.2023129246047510.1080/13813455.2020.1837183 33186087
    [Google Scholar]
  91. Va CC.C.C. The role of glutamate in diabetic and in chemotherapy induced peripheral neuropathies and its regulation by glutamate carboxypeptidase II.Curr. Med. Chem.201219910.2174/092986712799462694
    [Google Scholar]
  92. LinT.Y. LuC.W. WangS.J. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats.Neurotoxicology201655485710.1016/j.neuro.2016.05.008 27185356
    [Google Scholar]
  93. MoustafaE.M. MoawedF.S.M. ElmaghrabyD.F. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA ‐124 by targeting C/EBPA.Environ. Toxicol.202338112691270410.1002/tox.23903 37483155
    [Google Scholar]
  94. AdkiK.M. KulkarniY.A. Potential biomarkers in diabetic retinopathy.Curr. Diabetes Rev.202016997198310.2174/18756417MTA0uNTMf5 32065092
    [Google Scholar]
  95. LechnerJ. O’LearyO.E. StittA.W. The pathology associated with diabetic retinopathy.Vision Res.201713971410.1016/j.visres.2017.04.003 28412095
    [Google Scholar]
  96. Eye Disease IDF europe site.Available from: https://idf.org/europe/life-with-diabetes/diabetes-related-complications/eye-disease/ (accessed 2024-01-22).
    [Google Scholar]
  97. YangY. ZhouM. LiuH. Luteolin, an aryl hydrocarbon receptor antagonist, alleviates diabetic retinopathy by regulating the NLRP/NOX4 signalling pathway: Experimental and molecular docking study.Physiol. Int.2021108217218410.1556/2060.2021.00148 34143751
    [Google Scholar]
  98. ChengL. LiW. ChenY. LinY. MiaoY. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications.Aging Dis.202213244745710.14336/AD.2021.0823 35371595
    [Google Scholar]
  99. XuT. LiuJ. LiX. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy.Mol. Neurobiol.20215883848386210.1007/s12035‑021‑02390‑1 33860440
    [Google Scholar]
  100. MijnhoutG.S. ScheltensP. DiamantM. Diabetic encephalopathy: A concept in need of a definition.Diabetologia20064961447144810.1007/s00125‑006‑0221‑8 16598451
    [Google Scholar]
  101. LiuY. TianX. GouL. SunL. LingX. YinX. Luteolin attenuates diabetes-associated cognitive decline in rats.Brain Res. Bull.201394232910.1016/j.brainresbull.2013.02.001 23415807
    [Google Scholar]
  102. RenG. KongJ. JiaN. ShangX. Luteolin attenuates neuronal apoptosis in the hippocampi of diabetic encephalopathy rats.Neural Regen. Res.20138121071108010.3969/j.issn.1673‑5374.2013.12.002 25206401
    [Google Scholar]
  103. HotamisligilG.S. PeraldiP. BudavariA. EllisR. WhiteM.F. SpiegelmanB.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance.Science1996271524966567010.1126/science.271.5249.665 8571133
    [Google Scholar]
  104. EngelmanJ.A. BergA.H. LewisR.Y. LisantiM.P. SchererP.E. Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes.Mol. Endocrinol.200014101557156910.1210/mend.14.10.0542 11043572
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998285798240217084632
Loading
/content/journals/cdr/10.2174/0115733998285798240217084632
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test