Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual’s good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998281910231231051814
2024-01-17
2025-06-21
Loading full text...

Full text loading...

References

  1. SuzukiT.A. FitzstevensJ.L. SchmidtV.T. Codiversification of gut microbiota with humans.Science202237766121328133210.1126/science.abm7759 36108023
    [Google Scholar]
  2. RonanV. YeasinR. ClaudE.C. Childhood development and the microbiome-the intestinal Microbiota in maintenance of health and development of disease during childhood development.Gastroenterology2021160249550610.1053/j.gastro.2020.08.065 33307032
    [Google Scholar]
  3. FerrettiP. PasolliE. TettA. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome.Cell Host Microbe2018241133145.e510.1016/j.chom.2018.06.005 30001516
    [Google Scholar]
  4. Dominguez-BelloM.G. Godoy-VitorinoF. KnightR. BlaserM.J. Role of the microbiome in human development.Gut20196861108111410.1136/gutjnl‑2018‑317503 30670574
    [Google Scholar]
  5. DalbyM.J. HallL.J. Recent advances in understanding the neonatal microbiome.F1000 Res.2020942210.12688/f1000research.22355.1 32518631
    [Google Scholar]
  6. Van WinckelM. De BruyneR. Van De VeldeS. Van BiervlietS. Vitamin K, an update for the paediatrician.Eur. J. Pediatr.2009168212713410.1007/s00431‑008‑0856‑1 18982351
    [Google Scholar]
  7. LippiG. FranchiniM. Vitamin K in neonates: Facts and myths.Blood Transfus.2011914910.2450/2010.0034‑10 21084009
    [Google Scholar]
  8. KennedyK.M. de GoffauM.C. Perez-MuñozM.E. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies.Nature2023613794563964910.1038/s41586‑022‑05546‑8 36697862
    [Google Scholar]
  9. MishraA. LaiG.C. YaoL.J. Microbial exposure during early human development primes fetal immune cells.Cell20211841333943409.e2010.1016/j.cell.2021.04.039 34077752
    [Google Scholar]
  10. RoswallJ. OlssonL.M. Kovatcheva-DatcharyP. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life.Cell Host Microbe2021295765776.e310.1016/j.chom.2021.02.021 33794185
    [Google Scholar]
  11. KupermanA.A. ZimmermanA. HamadiaS. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome.BJOG2020127215916910.1111/1471‑0528.15896 31376240
    [Google Scholar]
  12. TanakaM. NakayamaJ. Development of the gut microbiota in infancy and its impact on health in later life.Allergol. Int.201766451552210.1016/j.alit.2017.07.010 28826938
    [Google Scholar]
  13. EnavH. BäckhedF. LeyR.E. The developing infant gut microbiome: A strain-level view.Cell Host Microbe202230562763810.1016/j.chom.2022.04.009 35550666
    [Google Scholar]
  14. AagaardK. MaJ. AntonyK.M. GanuR. PetrosinoJ. VersalovicJ. The placenta harbors a unique microbiome.Sci. Transl. Med.20146237237ra6510.1126/scitranslmed.3008599 24848255
    [Google Scholar]
  15. Al AlamD. DanopoulosS. GrubbsB. Human fetal lungs harbor a microbiome signature.Am. J. Respir. Crit. Care Med.202020181002100610.1164/rccm.201911‑2127LE 31898918
    [Google Scholar]
  16. ArdissoneA.N. de la CruzD.M. Davis-RichardsonA.G. Meconium microbiome analysis identifies bacteria correlated with premature birth.PLoS One201493e9078410.1371/journal.pone.0090784 24614698
    [Google Scholar]
  17. ChenC. SongX. WeiW. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases.Nat. Commun.20178187510.1038/s41467‑017‑00901‑0 29042534
    [Google Scholar]
  18. ColladoM.C. RautavaS. AakkoJ. IsolauriE. SalminenS. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid.Sci. Rep.2016612312910.1038/srep23129 27001291
    [Google Scholar]
  19. de GoffauM.C. LagerS. SovioU. Human placenta has no microbiome but can contain potential pathogens.Nature2019572776932933410.1038/s41586‑019‑1451‑5 31367035
    [Google Scholar]
  20. Diaz HeijtzR. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior.Semin. Fetal Neonatal Med.201621641041710.1016/j.siny.2016.04.012 27255860
    [Google Scholar]
  21. D’ArgenioV. The prenatal microbiome: A new player for human health.High Throughput2018743810.3390/ht7040038 30544936
    [Google Scholar]
  22. FunkhouserL.J. BordensteinS.R. Mom knows best: The universality of maternal microbial transmission.PLoS Biol.2013118e100163110.1371/journal.pbio.1001631 23976878
    [Google Scholar]
  23. WalkerR.W. ClementeJ.C. PeterI. LoosR.J.F. The prenatal gut microbiome: Are we colonized with bacteria in utero?Pediatr. Obes.201712S1Suppl. 131710.1111/ijpo.12217 28447406
    [Google Scholar]
  24. BolteE.E. MoorsheadD. AagaardK.M. Maternal and early life exposures and their potential to influence development of the microbiome.Genome Med.2022141410.1186/s13073‑021‑01005‑7 35016706
    [Google Scholar]
  25. PodlesnyD. FrickeW.F. Strain inheritance and neonatal gut microbiota development: A meta-analysis.Int. J. Med. Microbiol.2021311315148310.1016/j.ijmm.2021.151483 33689953
    [Google Scholar]
  26. StinsonL.F. PayneM.S. KeelanJ.A. A critical review of the bacterial baptism hypothesis and the impact of cesarean delivery on the infant microbiome.Front. Med.2018513510.3389/fmed.2018.00135 29780807
    [Google Scholar]
  27. StewartC.J. AjamiN.J. O’BrienJ.L. Temporal development of the gut microbiome in early childhood from the TEDDY study.Nature2018562772858358810.1038/s41586‑018‑0617‑x 30356187
    [Google Scholar]
  28. Dominguez-BelloM.G. CostelloE.K. ContrerasM. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.Proc. Natl. Acad. Sci. USA201010726119711197510.1073/pnas.1002601107 20566857
    [Google Scholar]
  29. ShaoY. ForsterS.C. TsalikiE. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth.Nature2019574777611712110.1038/s41586‑019‑1560‑1 31534227
    [Google Scholar]
  30. WampachL. Heintz-BuschartA. FritzJ.V. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential.Nat. Commun.201891509110.1038/s41467‑018‑07631‑x 30504906
    [Google Scholar]
  31. ReymanM. van HoutenM.A. van BaarleD. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life.Nat. Commun.2019101499710.1038/s41467‑019‑13014‑7 31676793
    [Google Scholar]
  32. MakinoH. KushiroA. IshikawaE. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota.PLoS One2013811e7833110.1371/journal.pone.0078331 24244304
    [Google Scholar]
  33. KoenigJ.E. SporA. ScalfoneN. Succession of microbial consortia in the developing infant gut microbiome.Proc. Natl. Acad. Sci. USA2011108Suppl. 14578458510.1073/pnas.1000081107
    [Google Scholar]
  34. LimE.S. WangD. HoltzL.R. The bacterial microbiome and virome milestones of infant development.Trends Microbiol.2016241080181010.1016/j.tim.2016.06.001 27353648
    [Google Scholar]
  35. BokulichN.A. ChungJ. BattagliaT. Antibiotics, birth mode, and diet shape microbiome maturation during early life.Sci. Transl. Med.20168343343ra8210.1126/scitranslmed.aad7121 27306664
    [Google Scholar]
  36. MarcobalA. BarbozaM. FroehlichJ.W. Consumption of human milk oligosaccharides by gut-related microbes.J. Agric. Food Chem.20105895334534010.1021/jf9044205 20394371
    [Google Scholar]
  37. Le Huërou-LuronI. BlatS. BoudryG. Breast- v. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects.Nutr. Res. Rev.2010231233610.1017/S0954422410000065 20450531
    [Google Scholar]
  38. MatsukiT. YahagiK. MoriH. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development.Nat. Commun.2016711193910.1038/ncomms11939 27340092
    [Google Scholar]
  39. McKeenS. YoungW. FraserK. RoyN.C. McNabbW.C. Glycan utilisation and function in the microbiome of weaning infants.Microorganisms20197719010.3390/microorganisms7070190 31277402
    [Google Scholar]
  40. LiuY. QinS. SongY. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding.Front. Microbiol.20191059810.3389/fmicb.2019.00598 30972048
    [Google Scholar]
  41. BäckhedF. RoswallJ. PengY. Dynamics and stabilization of the human gut microbiome during the first year of life.Cell Host Microbe201517685210.1016/j.chom.2015.05.012 26308884
    [Google Scholar]
  42. HenderickxJ.G.E. ZwittinkR.D. van LingenR.A. KnolJ. BelzerC. The preterm gut microbiota: An inconspicuous challenge in nutritional neonatal care.Front. Cell. Infect. Microbiol.201998510.3389/fcimb.2019.00085 31001489
    [Google Scholar]
  43. IhekweazuF.D. VersalovicJ. Development of the pediatric gut microbiome: Impact on health and disease.Am. J. Med. Sci.2018356541342310.1016/j.amjms.2018.08.005 30384950
    [Google Scholar]
  44. LeggettR.M. Alcon-GinerC. HeavensD. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens.Nat. Microbiol.20195343044210.1038/s41564‑019‑0626‑z 31844297
    [Google Scholar]
  45. PammiM. CopeJ. TarrP.I. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis.Microbiome2017513110.1186/s40168‑017‑0248‑8 28274256
    [Google Scholar]
  46. Alcon-GinerC. DalbyM.J. CaimS. Microbiota supplementation with bifidobacterium and lactobacillus modifies the preterm infant gut microbiota and metabolome: An observational study.Cell Rep. Med.20201510007710.1016/j.xcrm.2020.100077 32904427
    [Google Scholar]
  47. LaursenM.F. SakanakaM. von BurgN. Breastmilk-promoted bifidobacteria produce aromatic amino acids in the infant gut.bioRxiv202010.1101/2020.01.22.914994
    [Google Scholar]
  48. AlFalehK. AnabreesJ. Probiotics for prevention of necrotizing enterocolitis in preterm infants.Cochrane Libr.20144CD00549610.1002/14651858.CD005496.pub4 24723255
    [Google Scholar]
  49. DermyshiE. WangY. YanC. The “golden age” of probiotics: A systematic review and meta-analysis of randomized and observational studies in preterm infants.Neonatology2017112192310.1159/000454668 28196365
    [Google Scholar]
  50. YatsunenkoT. ReyF.E. ManaryM.J. Human gut microbiome viewed across age and geography.Nature2012486740222222710.1038/nature11053 22699611
    [Google Scholar]
  51. BergströmA. SkovT.H. BahlM.I. Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants.Appl. Environ. Microbiol.20148092889290010.1128/AEM.00342‑14 24584251
    [Google Scholar]
  52. ChengJ. Ringel-KulkaT. Heikamp-de JongI. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children.ISME J.20161041002101410.1038/ismej.2015.177 26430856
    [Google Scholar]
  53. FallaniM. AmarriS. UusijarviA. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres.Microbiology201115751385139210.1099/mic.0.042143‑0 21330436
    [Google Scholar]
  54. AhnJ. HayesR.B. Environmental influences on the human microbiome and implications for noncommunicable disease.Annu. Rev. Public Health202142127729210.1146/annurev‑publhealth‑012420‑105020 33798404
    [Google Scholar]
  55. SharmaA. GilbertJ.A. Microbial exposure and human health.Curr. Opin. Microbiol.201844798710.1016/j.mib.2018.08.003 30195150
    [Google Scholar]
  56. SommerF. BäckhedF. The gut microbiota — masters of host development and physiology.Nat. Rev. Microbiol.201311422723810.1038/nrmicro2974 23435359
    [Google Scholar]
  57. MihaiP. CurtisH. DirkG. A framework for human microbiome research.Nature2012486740221522110.1038/nature11209 22699610
    [Google Scholar]
  58. DeLongE.F. PaceN.R. Environmental diversity of bacteria and archaea.Syst. Biol.200150447047810.1080/106351501750435040 12116647
    [Google Scholar]
  59. HolmesE. WijeyesekeraA. Taylor-RobinsonS.D. NicholsonJ.K. The promise of metabolic phenotyping in gastroenterology and hepatology.Nat. Rev. Gastroenterol. Hepatol.201512845847110.1038/nrgastro.2015.114 26194948
    [Google Scholar]
  60. LeyR.E. LozuponeC.A. HamadyM. KnightR. GordonJ.I. Worlds within worlds: Evolution of the vertebrate gut microbiota.Nat. Rev. Microbiol.200861077678810.1038/nrmicro1978 18794915
    [Google Scholar]
  61. ClementeJ.C. UrsellL.K. ParfreyL.W. KnightR. The impact of the gut microbiota on human health: An integrative view.Cell201214861258127010.1016/j.cell.2012.01.035 22424233
    [Google Scholar]
  62. DavidL.A. MauriceC.F. CarmodyR.N. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  63. MueggeB.D. KuczynskiJ. KnightsD. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.Science2011332603297097410.1126/science.1198719 21596990
    [Google Scholar]
  64. ArthurJ.C. GharaibehR.Z. MühlbauerM. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer.Nat. Commun.201451472410.1038/ncomms5724 25182170
    [Google Scholar]
  65. QinN. YangF. LiA. Alterations of the human gut microbiome in liver cirrhosis.Nature20145137516596410.1038/nature13568 25079328
    [Google Scholar]
  66. MarriP.R. SternD.A. WrightA.L. BillheimerD. MartinezF.D. Asthma-associated differences in microbial composition of induced sputum.J. Allergy Clin. Immunol.2013131234635210.1016/j.jaci.2012.11.013
    [Google Scholar]
  67. ClarkeG. StillingR.M. KennedyP.J. StantonC. CryanJ.F. DinanT.G. Minireview: Gut microbiota: The neglected endocrine organ.Mol. Endocrinol.20142881221123810.1210/me.2014‑1108 24892638
    [Google Scholar]
  68. UrsellL.K. HaiserH.J. Van TreurenW. The intestinal metabolome: An intersection between microbiota and host.Gastroenterology201414661470147610.1053/j.gastro.2014.03.001 24631493
    [Google Scholar]
  69. LouisP. YoungP. HoltropG. FlintH.J. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐CoA: Acetate CoA‐transferase gene.Environ. Microbiol.201012230431410.1111/j.1462‑2920.2009.02066.x 19807780
    [Google Scholar]
  70. LayeghifardM. HwangD.M. GuttmanD.S. Disentangling interactions in the microbiome: A network perspective.Trends Microbiol.201725321722810.1016/j.tim.2016.11.008 27916383
    [Google Scholar]
  71. DoniaM.S. FischbachM.A. Small molecules from the human microbiota.Science20153496246125476610.1126/science.1254766 26206939
    [Google Scholar]
  72. WuG.D. CompherC. ChenE.Z. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.Gut2016651637210.1136/gutjnl‑2014‑308209 25431456
    [Google Scholar]
  73. HanS. Van TreurenW. FischerC.R. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome.Nature2021595786741542010.1038/s41586‑021‑03707‑9 34262212
    [Google Scholar]
  74. MarchesiJ.R. AdamsD.H. FavaF. The gut microbiota and host health: A new clinical frontier.Gut201665233033910.1136/gutjnl‑2015‑309990 26338727
    [Google Scholar]
  75. RupL. The human microbiome project.Indian J. Microbiol.201252331510.1007/s12088‑012‑0304‑9 23997318
    [Google Scholar]
  76. The human microbiome project consortium. Structure, function and diversity of the healthy human microbiome.Nature2012486740220721410.1038/nature11234 22699609
    [Google Scholar]
  77. TurnbaughP.J. HamadyM. YatsunenkoT. A core gut microbiome in obese and lean twins.Nature200945748048410.1038/nature07540
    [Google Scholar]
  78. QinJ. LiR. RaesJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature2010464596510.1038/nature08821
    [Google Scholar]
  79. FredricksD.N. FiedlerT.L. MarrazzoJ.M. Molecular identification of bacteria associated with bacterial vaginosis.N. Engl. J. Med.2005353181899191110.1056/NEJMoa043802 16267321
    [Google Scholar]
  80. WeissM.A. The structure and function of insulin: Decoding the TR transition.Vitam. Horm.200980334910.1016/S0083‑6729(08)00602‑X 19251033
    [Google Scholar]
  81. UtigerR.D. Insulin Encyclopedia Britannica.2023Available from: https://www.britannica.com/science/insulin
    [Google Scholar]
  82. RahmanM.S. HossainK.S. DasS. Role of insulin in health and disease: An update.Int. J. Mol. Sci.20212212640310.3390/ijms22126403 34203830
    [Google Scholar]
  83. SuckaleJ. SolimenaM. The insulin secretory granule as a signaling hub.Trends Endocrinol. Metab.2010211059960910.1016/j.tem.2010.06.003 20609596
    [Google Scholar]
  84. YangB.Y. ZhaiG. GongY.L. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish.Am. J. Physiol. Endocrinol. Metab.20183151E38E5110.1152/ajpendo.00227.2017 29351486
    [Google Scholar]
  85. KolkaC.M. BergmanR.N. The endothelium in diabetes: Its role in insulin access and diabetic complications.Rev. Endocr. Metab. Disord.2013141131910.1007/s11154‑012‑9233‑5 23306780
    [Google Scholar]
  86. OnyangoA.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance.Oxid. Med. Cell. Longev.2018201812710.1155/2018/4321714 30116482
    [Google Scholar]
  87. ShanikM.H. XuY. SkrhaJ. DanknerR. ZickY. RothJ. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse?Diabetes Care200831Suppl. 2S262S26810.2337/dc08‑s264
    [Google Scholar]
  88. ReavenG.M. Role of insulin resistance in human disease.Nutrition19971316410.1016/S0899‑9007(96)00380‑2 9058458
    [Google Scholar]
  89. RobertsC.K. HevenerA.L. BarnardR.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training.Compr. Physiol.20133115810.1002/cphy.c110062 23720280
    [Google Scholar]
  90. DeFronzoR.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The claude bernard lecture 2009.Diabetologia20105371270128710.1007/s00125‑010‑1684‑1 20361178
    [Google Scholar]
  91. DeFronzoR.A. FerranniniE. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.Diabetes Care199114317319410.2337/diacare.14.3.173 2044434
    [Google Scholar]
  92. DeFronzoR.A. Is insulin resistance atherogenic? Possible mechanisms.Atheroscler. Suppl.200674111510.1016/j.atherosclerosissup.2006.05.002 16815101
    [Google Scholar]
  93. ZavaroniI. BoniniL. GaspariniP. Hyperinsulinemia in a normal population as a predictor of non—insulin-dependent diabetes mellitus, hypertension, and coronary heart disease: The barilla factory revisited.Metabolism199948898999410.1016/S0026‑0495(99)90195‑6 10459563
    [Google Scholar]
  94. KashyapS.R. DefronzoR.A. The insulin resistance syndrome: physiological considerations.Diab. Vasc. Dis. Res.200741131910.3132/dvdr.2007.001 17469039
    [Google Scholar]
  95. WagenknechtL.E. LangefeldC.D. ScherzingerA.L. Insulin sensitivity, insulin secretion, and abdominal fat: The insulin resistance atherosclerosis study (IRAS) family study.Diabetes200352102490249610.2337/diabetes.52.10.2490 14514631
    [Google Scholar]
  96. VirtanenK.A. IozzoP. HällstenK. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: A positron-emitting tomography study.Diabetes20055492720272610.2337/diabetes.54.9.2720 16123362
    [Google Scholar]
  97. BonadonnaR.C. LeifG. KraemerN. FerranniniE. PratoS.D. DeFronzoR.A. Obesity and insulin resistance in humans: A dose-response study.Metabolism199039545245910.1016/0026‑0495(90)90002‑T 2186255
    [Google Scholar]
  98. BaysH. MandarinoL. DeFronzoR.A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach.J. Clin. Endocrinol. Metab.200489246347810.1210/jc.2003‑030723 14764748
    [Google Scholar]
  99. McGarryJ.D. Banting lecture 2001.Diabetes200251171810.2337/diabetes.51.1.7 11756317
    [Google Scholar]
  100. GrecoA.V. MingroneG. GiancateriniA. Insulin resistance in morbid obesity: Reversal with intramyocellular fat depletion.Diabetes200251114415110.2337/diabetes.51.1.144 11756334
    [Google Scholar]
  101. KimJ.K. FillmoreJ.J. ChenY. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance.Proc. Natl. Acad. Sci. USA200198137522752710.1073/pnas.121164498 11390966
    [Google Scholar]
  102. BajajM. DefronzoR.A. Metabolic and molecular basis of insulin resistance.J. Nucl. Cardiol.200310331132310.1016/S1071‑3581(03)00520‑8 12794631
    [Google Scholar]
  103. GastaldelliA. FerranniniE. MiyazakiY. MatsudaM. DeFronzoR.A. Beta-cell dysfunction and glucose intolerance: Results from the San Antonio metabolism (SAM) study.Diabetologia2004471313910.1007/s00125‑003‑1263‑9 14666364
    [Google Scholar]
  104. KashyapS. BelfortR. GastaldelliA. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes.Diabetes200352102461247410.2337/diabetes.52.10.2461 14514628
    [Google Scholar]
  105. HundalR.S. PetersenK.F. MayersonA.B. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes.J. Clin. Invest.2002109101321132610.1172/JCI0214955 12021247
    [Google Scholar]
  106. MaachiM. PiéroniL. BruckertE. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFα, leptin and IL-6 levels in obese women.Int. J. Obes.200428899399710.1038/sj.ijo.0802718 15211360
    [Google Scholar]
  107. LeinonenE. Hurt-CamejoE. WiklundO. HulténL.M. HiukkaA. TaskinenM.R. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes.Atherosclerosis2003166238739410.1016/S0021‑9150(02)00371‑4 12535753
    [Google Scholar]
  108. GhanimH. AljadaA. HofmeyerD. SyedT. MohantyP. DandonaP. Circulating mononuclear cells in the obese are in a proinflammatory state.Circulation2004110121564157110.1161/01.CIR.0000142055.53122.FA 15364812
    [Google Scholar]
  109. EspositoK. PontilloA. Di PaloC. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: A randomized trial.JAMA2003289141799180410.1001/jama.289.14.1799 12684358
    [Google Scholar]
  110. EspositoK. PontilloA. CiotolaM. Weight loss reduces interleukin-18 levels in obese women.J. Clin. Endocrinol. Metab.20028783864386610.1210/jcem.87.8.8781 12161523
    [Google Scholar]
  111. TomásE. LinY.S. DagherZ. Hyperglycemia and insulin resistance: Possible mechanisms.Ann. N. Y. Acad. Sci.20029671435110.1111/j.1749‑6632.2002.tb04262.x 12079834
    [Google Scholar]
  112. KurowskiT.G. LinY. LuoZ. Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle.Diabetes199948365866310.2337/diabetes.48.3.658 10078574
    [Google Scholar]
  113. SahaA.K. LaybuttD.R. DeanD. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo.Am. J. Physiol. Endocrinol. Metab.19992766E1030E103710.1152/ajpendo.1999.276.6.E1030 10362615
    [Google Scholar]
  114. SokolowskaE. Blachnio-ZabielskaA. The role of ceramides in insulin resistance.Front. Endocrinol.20191057710.3389/fendo.2019.00577 31496996
    [Google Scholar]
  115. PetersenM.C. ShulmanG.I. Roles of diacylglycerols and ceramides in hepatic insulin resistance.Trends Pharmacol. Sci.201738764966510.1016/j.tips.2017.04.004 28551355
    [Google Scholar]
  116. PetersenM.C. MadirajuA.K. GassawayB.M. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance.J. Clin. Invest.2016126114361437110.1172/JCI86013 27760050
    [Google Scholar]
  117. SamuelV.T. LiuZ.X. WangA. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease.J. Clin. Invest.2007117373974510.1172/JCI30400 17318260
    [Google Scholar]
  118. TakayamaS. WhiteM.F. KahnC.R. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.J. Biol. Chem.198826373440344710.1016/S0021‑9258(18)69090‑8 3125181
    [Google Scholar]
  119. SemenkovichC.F. Insulin resistance and atherosclerosis.J. Clin. Invest.200611671813182210.1172/JCI29024 16823479
    [Google Scholar]
  120. LewisG.F. SteinerG. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state.Diabetes Care199619439039310.2337/diacare.19.4.390 8729170
    [Google Scholar]
  121. HaasM.E. AttieA.D. BiddingerS.B. The regulation of ApoB metabolism by insulin.Trends Endocrinol. Metab.201324839139710.1016/j.tem.2013.04.001 23721961
    [Google Scholar]
  122. VergèsB. Pathophysiology of diabetic dyslipidaemia: Where are we?Diabetologia201558588689910.1007/s00125‑015‑3525‑8 25725623
    [Google Scholar]
  123. SzaparyP.O. RaderD.J. The triglyceride–high-density lipoprotein axis: An important target of therapy?Am. Heart J.2004148221122110.1016/j.ahj.2004.03.037 15308990
    [Google Scholar]
  124. ZhouM.S. SchulmanI.H. ZengQ. Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease.Vasc. Med.201217533034110.1177/1358863X12450094 22814999
    [Google Scholar]
  125. LastraG. DhuperS. JohnsonM.S. SowersJ.R. Salt, aldosterone, and insulin resistance: Impact on the cardiovascular system.Nat. Rev. Cardiol.201071057758410.1038/nrcardio.2010.123 20697411
    [Google Scholar]
  126. ScherrerU. RandinD. VollenweiderP. VollenweiderL. NicodP. Nitric oxide release accounts for insulin’s vascular effects in humans.J. Clin. Invest.19949462511251510.1172/JCI117621 7989610
    [Google Scholar]
  127. ManhianiM.M. CormicanM.T. BrandsM.W. Chronic sodium-retaining action of insulin in diabetic dogs.Am. J. Physiol. Renal Physiol.20113004F957F96510.1152/ajprenal.00395.2010 21228110
    [Google Scholar]
  128. HoritaS. SekiG. YamadaH. SuzukiM. KoikeK. FujitaT. Insulin resistance, obesity, hypertension, and renal sodium transport.Int. J. Hypertens.201120111810.4061/2011/391762 21629870
    [Google Scholar]
  129. SchulmanI.H. ZhouM.S. Vascular insulin resistance: A potential link between cardiovascular and metabolic diseases.Curr. Hypertens. Rep.2009111485510.1007/s11906‑009‑0010‑0 19146801
    [Google Scholar]
  130. CooperS.A. Whaley-ConnellA. HabibiJ. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance.Am. J. Physiol. Heart Circ. Physiol.20072934H2009H202310.1152/ajpheart.00522.2007 17586614
    [Google Scholar]
  131. MuniyappaR. MontagnaniM. KohK.K. QuonM.J. Cardiovascular actions of insulin.Endocr. Rev.200728546349110.1210/er.2007‑0006 17525361
    [Google Scholar]
  132. ZhouM.S. SchulmanI.H. RaijL. Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: Role of nuclear factor kappa B activation.J. Hypertens.201028352753510.1097/HJH.0b013e3283340da8 19898250
    [Google Scholar]
  133. FreemanAM PenningsN Insulin resistance2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK507839/ [cited 2023 Aug 11].
  134. DeFronzoR.A. TobinJ.D. AndresR. Glucose clamp technique: A method for quantifying insulin secretion and resistance.Am. J. Physiol. Endocrinol. Metab.19792373E214E22310.1152/ajpendo.1979.237.3.E214 382871
    [Google Scholar]
  135. MuniyappaR. MadanR. VargheseR.T. Assessing insulin sensitivity and resistance in humans.Endotext2009Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK278954/ [cited 2023 Aug 11]
    [Google Scholar]
  136. TamC.S. XieW. JohnsonW.D. CefaluW.T. RedmanL.M. RavussinE. Defining insulin resistance from hyperinsulinemic-euglycemic clamps.Diabetes Care20123571605161010.2337/dc11‑2339 22511259
    [Google Scholar]
  137. KnowlesJ.W. AssimesT.L. TsaoP.S. Measurement of insulin-mediated glucose uptake: Direct comparison of the modified insulin suppression test and the euglycemic, hyperinsulinemic clamp.Metabolism201362454855310.1016/j.metabol.2012.10.002 23151437
    [Google Scholar]
  138. LevyJ.C. MatthewsD.R. HermansM.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program.Diabetes Care199821122191219210.2337/diacare.21.12.2191 9839117
    [Google Scholar]
  139. VilelaB.S. VasquesA.C.J. CassaniR.S.L. The HOMA-adiponectin (HOMA-AD) closely mirrors the HOMA-IR index in the screening of insulin resistance in the brazilian metabolic syndrome study (brams).PLoS One2016118e015875110.1371/journal.pone.0158751 27490249
    [Google Scholar]
  140. HOMA calculatorAvailable from: https://www.rdm.ox.ac.uk/about/our- clinical-facilities-and-mrc-units/DTU/software/homa [cited 2023 Aug 11].
  141. KatzA. NambiS.S. MatherK. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans.J. Clin. Endocrinol. Metab.20008572402241010.1210/jcem.85.7.6661 10902785
    [Google Scholar]
  142. ChenH. SullivanG. QuonM.J. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model.Diabetes20055471914192510.2337/diabetes.54.7.1914 15983190
    [Google Scholar]
  143. SøndergaardE. Espinosa De YcazaA.E. Morgan-BathkeM. JensenM.D. How to measure adipose tissue insulin sensitivity.J. Clin. Endocrinol. Metab.201710241193119910.1210/jc.2017‑00047 28323973
    [Google Scholar]
  144. van der AaM.P. Fazeli FarsaniS. KnibbeC.A.J. de BoerA. van der VorstM.M.J. Population-based studies on the epidemiology of insulin resistance in children.J. Diabetes Res.201520151910.1155/2015/362375 26273668
    [Google Scholar]
  145. Al-BeltagiM. BediwyA.S. SaeedN.K. Insulin-resistance in paediatric age: Its magnitude and implications.World J. Diabetes202213428230710.4239/wjd.v13.i4.282 35582667
    [Google Scholar]
  146. FahedM. Abou JaoudehM.G. MerhiS. Evaluation of risk factors for insulin resistance: A cross sectional study among employees at a private university in Lebanon.BMC Endocr. Disord.20202018510.1186/s12902‑020‑00558‑9 32522257
    [Google Scholar]
  147. DenysK. CankurtaranM. JanssensW. PetrovicM. Metabolic syndrome in the elderly: An overview of the evidence.Acta Clin. Belg.2009641233410.1179/acb.2009.006 19317238
    [Google Scholar]
  148. PandyaN. HamesE. SandhuS. Challenges and strategies for managing diabetes in the elderly in long-term care settings.Diabetes Spectr.202033323624510.2337/ds20‑0018 32848345
    [Google Scholar]
  149. CholertonB. BakerL.D. CraftS. Insulin resistance and pathological brain ageing.Diabet. Med.201128121463147510.1111/j.1464‑5491.2011.03464.x 21974744
    [Google Scholar]
  150. JiaoN. BakerS.S. NugentC.A. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: A meta-analysis.Physiol. Genomics201850424425410.1152/physiolgenomics.00114.2017 29373083
    [Google Scholar]
  151. ScheithauerT.P.M. Dallinga-ThieG.M. de VosW.M. NieuwdorpM. van RaalteD.H. Causality of small and large intestinal microbiota in weight regulation and insulin resistance.Mol. Metab.20165975977010.1016/j.molmet.2016.06.002 27617199
    [Google Scholar]
  152. BäckhedF. DingH. WangT. The gut microbiota as an environmental factor that regulates fat storage.Proc. Natl. Acad. Sci. USA200410144157181572310.1073/pnas.0407076101 15505215
    [Google Scholar]
  153. VriezeA. Van NoodE. HollemanF. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.Gastroenterology20121434913916.e710.1053/j.gastro.2012.06.031 22728514
    [Google Scholar]
  154. MorrisonD.J. PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes20167318920010.1080/19490976.2015.1134082 26963409
    [Google Scholar]
  155. PetersenM.C. ShulmanG.I. Mechanisms of insulin action and insulin resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.2017 30067154
    [Google Scholar]
  156. SamuelV.T. ShulmanG.I. Mechanisms for insulin resistance: common threads and missing links.Cell2012148585287110.1016/j.cell.2012.02.017 22385956
    [Google Scholar]
  157. BastosR.M. RangelÉ.B. Gut microbiota-derived metabolites are novel targets for improving insulin resistance.World J. Diabetes20221316510.4239/wjd.v13.i1.65
    [Google Scholar]
  158. LieberR.L. RobertsT.J. BlemkerS.S. LeeS.S.M. HerzogW. Skeletal muscle mechanics, energetics and plasticity.J. Neuroeng. Rehabil.201714110810.1186/s12984‑017‑0318‑y 29058612
    [Google Scholar]
  159. BaronA.D. BrechtelG. WallaceP. EdelmanS.V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans.Am. J. Physiol. Endocrinol. Metab.19882556E769E77410.1152/ajpendo.1988.255.6.E769 3059816
    [Google Scholar]
  160. KarlssonH.K.R. ZierathJ.R. Insulin signaling and glucose transport in insulin resistant human skeletal muscle.Cell Biochem. Biophys.2007482-310311310.1007/s12013‑007‑0030‑9 17709880
    [Google Scholar]
  161. ChoiY. KwonY. KimD.K. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle.Sci. Rep.2015511587810.1038/srep15878 26510393
    [Google Scholar]
  162. SongM.J. KimK.H. YoonJ.M. KimJ.B. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes.Biochem. Biophys. Res. Commun.2006346373974510.1016/j.bbrc.2006.05.170 16781673
    [Google Scholar]
  163. TamrakarA.K. SchertzerJ.D. ChiuT.T. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance.Endocrinology2010151125624563710.1210/en.2010‑0437 20926588
    [Google Scholar]
  164. SchertzerJ.D. TamrakarA.K. MagalhãesJ.G. NOD1 activators link innate immunity to insulin resistance.Diabetes20116092206221510.2337/db11‑0004 21715553
    [Google Scholar]
  165. TakedaK. KaishoT. AkiraS. Toll-like receptors.Annu. Rev. Immunol.200321133537610.1146/annurev.immunol.21.120601.141126 12524386
    [Google Scholar]
  166. BeutlerB. Inferences, questions and possibilities in Toll-like receptor signalling.Nature2004430699625726310.1038/nature02761 15241424
    [Google Scholar]
  167. AkiraS. UematsuS. TakeuchiO. Pathogen recognition and innate immunity.Cell2006124478380110.1016/j.cell.2006.02.015 16497588
    [Google Scholar]
  168. LeeY.H. GiraudJ. DavisR.J. WhiteM.F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade.J. Biol. Chem.200327852896290210.1074/jbc.M208359200 12417588
    [Google Scholar]
  169. PoltorakA. HeX. SmirnovaI. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene.Science199828253962085208810.1126/science.282.5396.2085 9851930
    [Google Scholar]
  170. KawaiT. TakeuchiO. FujitaT. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes.J. Immunol.2001167105887589410.4049/jimmunol.167.10.5887 11698465
    [Google Scholar]
  171. TsukumoD.M.L. Carvalho-FilhoM.A. CarvalheiraJ.B.C. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance.Diabetes20075681986199810.2337/db06‑1595 17519423
    [Google Scholar]
  172. MorrisonD.K. MAP kinase pathways.Cold Spring Harb. Perspect. Biol.2012411a01125410.1101/cshperspect.a011254 23125017
    [Google Scholar]
  173. HotamisligilG.S. PeraldiP. BudavariA. EllisR. WhiteM.F. SpiegelmanB.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance.Science1996271524966567010.1126/science.271.5249.665 8571133
    [Google Scholar]
  174. ChungS. LaPointK. MartinezK. KennedyA. Boysen SandbergM. McIntoshM.K. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes.Endocrinology2006147115340535110.1210/en.2006‑0536 16873530
    [Google Scholar]
  175. GehartH. KumpfS. IttnerA. RicciR. MAPK signalling in cellular metabolism: Stress or wellness?EMBO Rep.2010111183484010.1038/embor.2010.160 20930846
    [Google Scholar]
  176. RajanM.R. FagerholmS. JönssonC. KjølhedeP. TurkinaM.V. StrålforsP. Phosphorylation of IRS1 at serine 307 in response to insulin in human adipocytes is not likely to be catalyzed by p70 ribosomal S6 kinase.PLoS One201384e5972510.1371/journal.pone.0059725 23565163
    [Google Scholar]
  177. Carvalho-FilhoM.A. UenoM. HirabaraS.M. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance.Diabetes200554495996710.2337/diabetes.54.4.959 15793233
    [Google Scholar]
  178. KapurS. PicardF. PerreaultM. DeshaiesY. MaretteA. Nitric oxide: A new player in the modulation of energy metabolism.Int. J. Obes.200024S4Suppl. 4S36S4010.1038/sj.ijo.0801502 11126239
    [Google Scholar]
  179. ChanM.M. YangX. WangH. SaaoudF. SunY. FongD. The microbial metabolite trimethylamine n-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis.Nutrients2019118182110.3390/nu11081821 31394758
    [Google Scholar]
  180. SchugarR.C. ShihD.M. WarrierM. The tmao- producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue.Cell Rep.201719122451246110.1016/j.celrep.2017.05.077 28636934
    [Google Scholar]
  181. GaoX. LiuX. XuJ. XueC. XueY. WangY. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.J. Biosci. Bioeng.2014118447648110.1016/j.jbiosc.2014.03.001 24721123
    [Google Scholar]
  182. ChenK. ZhengX. FengM. LiD. ZhangH. Gut microbiota-dependent metabolite trimethylamine n-oxide contributes to cardiac dysfunction in western diet-induced obese mice.Front. Physiol.2017813910.3389/fphys.2017.00139 28377725
    [Google Scholar]
  183. ZhaoL. HuP. ZhouY. PurohitJ. HwangD. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes.Am. J. Physiol. Endocrinol. Metab.20113014E587E59810.1152/ajpendo.00709.2010 21693690
    [Google Scholar]
  184. ThorensB. GLUT2, glucose sensing and glucose homeostasis.Diabetologia201558222123210.1007/s00125‑014‑3451‑1 25421524
    [Google Scholar]
  185. LeeH.Y. BirkenfeldA.L. JornayvazF.R. Apolipoprotein CIII overexpressing mice are predisposed to diet‐induced hepatic steatosis and hepatic insulin resistance.Hepatology20115451650166010.1002/hep.24571 21793029
    [Google Scholar]
  186. KohA. MolinaroA. StåhlmanM. Microbially produced imidazole propionate impairs insulin signaling through mtorc1.Cell20181754947961.e1710.1016/j.cell.2018.09.055 30401435
    [Google Scholar]
  187. JiaL. ViannaC.R. FukudaM. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance.Nat. Commun.201451387810.1038/ncomms4878 24815961
    [Google Scholar]
  188. SvingenG.F.T. Schartum-HansenH. PedersenE.R. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes.Clin. Chem.201662575576510.1373/clinchem.2015.250761 26980210
    [Google Scholar]
  189. MiaoJ. LingA.V. ManthenaP.V. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis.Nat. Commun.201561649810.1038/ncomms7498 25849138
    [Google Scholar]
  190. ChenS. HendersonA. PetrielloM.C. Trimethylamine n-oxide binds and activates perk to promote metabolic dysfunction.Cell Metab.201930611411151.e510.1016/j.cmet.2019.08.021 31543404
    [Google Scholar]
  191. ZhangL. YangG. UntereinerA. JuY. WuL. WangR. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes.Endocrinology2013154111412610.1210/en.2012‑1658 23183179
    [Google Scholar]
  192. ZhangH. HuangY. ChenS. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review.J. Adv. Res.202127193010.1016/j.jare.2020.02.013 33318863
    [Google Scholar]
  193. RussellW.R. DuncanS.H. ScobbieL. Major phenylpropanoid‐derived metabolites in the human gut can arise from microbial fermentation of protein.Mol. Nutr. Food Res.201357352353510.1002/mnfr.201200594 23349065
    [Google Scholar]
  194. WikoffW.R. AnforaA.T. LiuJ. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites.Proc. Natl. Acad. Sci. USA2009106103698370310.1073/pnas.0812874106 19234110
    [Google Scholar]
  195. HoylesL. Fernández-RealJ.M. FedericiM. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women.Nat. Med.20182471070108010.1038/s41591‑018‑0061‑3 29942096
    [Google Scholar]
  196. HirschfeldM. MaY. WeisJ.H. VogelS.N. WeisJ.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2.J. Immunol.2000165261862210.4049/jimmunol.165.2.618 10878331
    [Google Scholar]
  197. KoepsellH. Glucose transporters in the small intestine in health and disease.Pflugers Arch.202047291207124810.1007/s00424‑020‑02439‑5 32829466
    [Google Scholar]
  198. PavlicM. XiaoC. SzetoL. PattersonB.W. LewisG.F. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids.Diabetes201059358058710.2337/db09‑1297 20028946
    [Google Scholar]
  199. UssarS. HaeringM.F. FujisakaS. Regulation of glucose uptake and enteroendocrine function by the intestinal epithelial insulin receptor.Diabetes201766488689610.2337/db15‑1349 28096258
    [Google Scholar]
  200. DenouE. LolmèdeK. GaridouL. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance.EMBO Mol. Med.20157325927410.15252/emmm.201404169 25666722
    [Google Scholar]
  201. SchertzerJ.D. KlipA. Give a NOD to insulin resistance.Am. J. Physiol. Endocrinol. Metab.20113014E585E58610.1152/ajpendo.00362.2011 21771969
    [Google Scholar]
  202. CavallariJ.F. BarraN.G. FoleyK.P. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice.Am. J. Physiol. Endocrinol. Metab.20203184E579E58510.1152/ajpendo.00033.2020 32101030
    [Google Scholar]
  203. ChiW. DaoD. LauT.C. Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1.PLoS One201495e9767510.1371/journal.pone.0097675 24828250
    [Google Scholar]
  204. CavallariJ.F. FullertonM.D. DugganB.M. Muramyl dipeptide-based postbiotics mitigate obesity- induced insulin resistance via irf4.Cell Metab.201725510631074.e310.1016/j.cmet.2017.03.021 28434881
    [Google Scholar]
  205. AndersenK. KesperM.S. MarschnerJ.A. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for ckd-related systemic inflammation.J. Am. Soc. Nephrol.2017281768310.1681/ASN.2015111285 27151924
    [Google Scholar]
  206. CaricilliA. SaadM. The role of gut microbiota on insulin resistance.Nutrients20135382985110.3390/nu5030829 23482058
    [Google Scholar]
  207. ChoiS.H. GinsbergH.N. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance.Trends Endocrinol. Metab.201122935336310.1016/j.tem.2011.04.007 21616678
    [Google Scholar]
  208. ZhangS.Y. LiR.J.W. LimY.M. FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats.Gut20217091675168310.1136/gutjnl‑2020‑321757 33087489
    [Google Scholar]
  209. WaiseT.M.Z. LimY.M. DanaeiZ. ZhangS.Y. LamT.K.T. Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats.Mol. Metab.20214410113210113210.1016/j.molmet.2020.101132 33264656
    [Google Scholar]
  210. LiR.J.W. ZhangS.Y. LamT.K.T. Interaction of glucose sensing and leptin action in the brain.Mol. Metab.20203910101110101110.1016/j.molmet.2020.101011 32416314
    [Google Scholar]
  211. JiangC. XieC. LvY. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction.Nat. Commun.2015611016610.1038/ncomms10166 26670557
    [Google Scholar]
  212. ShapiroH. KolodziejczykA.A. HalstuchD. ElinavE. Bile acids in glucose metabolism in health and disease.J. Exp. Med.2018215238339610.1084/jem.20171965 29339445
    [Google Scholar]
  213. OguraY. BonenD.K. InoharaN. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease.Nature2001411683760360610.1038/35079114 11385577
    [Google Scholar]
  214. PascaultN. RouxS. ArtigasJ. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole.FEMS Microbiol. Ecol.201490356357410.1111/1574‑6941.12416 25135322
    [Google Scholar]
  215. KarlssonF.H. TremaroliV. NookaewI. Gut metagenome in European women with normal, impaired and diabetic glucose control.Nature201349874529910310.1038/nature12198 23719380
    [Google Scholar]
  216. JohnsonC.L. VersalovicJ. The human microbiome and its potential importance to pediatrics.Pediatrics2012129595096010.1542/peds.2011‑2736 22473366
    [Google Scholar]
  217. ColladoM.C. IsolauriE. LaitinenK. SalminenS. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy.Am. J. Clin. Nutr.20109251023103010.3945/ajcn.2010.29877 20844065
    [Google Scholar]
  218. MshvildadzeM. NeuJ. ShusterJ. TheriaqueD. LiN. MaiV. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques.J. Pediatr.20101561202510.1016/j.jpeds.2009.06.063 19783002
    [Google Scholar]
  219. AvershinaE. RudiK. Confusion about the species richness of human gut microbiota.Benef. Microbes20156565765910.3920/BM2015.0007 26036144
    [Google Scholar]
  220. JakobssonH.E. AbrahamssonT.R. JenmalmM.C. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section.Gut201463455956610.1136/gutjnl‑2012‑303249 23926244
    [Google Scholar]
  221. VassalloM.F. WalkerW.A. Neonatal microbial flora and disease outcome. In: Nestlé nutrition workshop series: Pediatric program.BaselKARGER2008211224
    [Google Scholar]
  222. JakobssonH.E. JernbergC. AnderssonA.F. Sjölund-KarlssonM. JanssonJ.K. EngstrandL. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome.PLoS One201053e983610.1371/journal.pone.0009836 20352091
    [Google Scholar]
  223. DaiD. WalkerW.A. Protective nutrients and bacterial colonization in the immature human gut.Adv. Pediatr.199946353382 10645469
    [Google Scholar]
  224. CarvalhoF.A. KorenO. GoodrichJ.K. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice.Cell Host Microbe201212213915210.1016/j.chom.2012.07.004 22863420
    [Google Scholar]
  225. ShulzhenkoN. MorgunA. HsiaoW. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut.Nat. Med.201117121585159310.1038/nm.2505 22101768
    [Google Scholar]
  226. De FilippoC. CavalieriD. Di PaolaM. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Proc. Natl. Acad. Sci. USA201010733146911469610.1073/pnas.1005963107 20679230
    [Google Scholar]
  227. AzziniE. PolitoA. FumagalliA. Mediterranean diet effect: An Italian picture.Nutr. J.201110112510.1186/1475‑2891‑10‑125 22087545
    [Google Scholar]
  228. ChassaingB. KorenO. GoodrichJ.K. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.Nature20155197541929610.1038/nature14232 25731162
    [Google Scholar]
  229. SuezJ. KoremT. ZeeviD. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.Nature2014514752118118610.1038/nature13793 25231862
    [Google Scholar]
  230. MoyaA. FerrerM. Functional redundancy-induced stability of gut microbiota subjected to disturbance.Trends Microbiol.201624540241310.1016/j.tim.2016.02.002 26996765
    [Google Scholar]
  231. CostelloE.K. StagamanK. DethlefsenL. BohannanB.J.M. RelmanD.A. The application of ecological theory toward an understanding of the human microbiome.Science201233660861255126210.1126/science.1224203 22674335
    [Google Scholar]
  232. WilsonM.L. DaviesI.G. WaraksaW. KhayyatzadehS.S. Al-AsmakhM. MazidiM. The impact of microbial composition on postprandial glycaemia and lipidaemia: A systematic review of current evidence.Nutrients20211311388710.3390/nu13113887 34836140
    [Google Scholar]
  233. ZeeviD. KoremT. ZmoraN. Personalized nutrition by prediction of glycemic responses.Cell201516351079109410.1016/j.cell.2015.11.001 26590418
    [Google Scholar]
  234. SharmaN. NavikU. TikooK. Unveiling the presence of epigenetic mark by Lactobacillus supplementation in high-fat diet-induced metabolic disorder in Sprague-Dawley rats.J. Nutr. Biochem.20208410844210.1016/j.jnutbio.2020.108442
    [Google Scholar]
  235. Ben-YacovO. GodnevaA. ReinM. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: A diet intervention in pre-diabetes.Gut20237281486149610.1136/gutjnl‑2022‑329201 37137684
    [Google Scholar]
  236. WuZ. ZhangB. ChenF. Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study.Front. Cell. Infect. Microbiol.202312108999110.3389/fcimb.2022.1089991 36704100
    [Google Scholar]
  237. WuG.D. ChenJ. HoffmannC. Linking long-term dietary patterns with gut microbial enterotypes.Science2011334605210510810.1126/science.1208344 21885731
    [Google Scholar]
  238. ErejuwaO. SulaimanS. WahabM. Modulation of gut microbiota in the management of metabolic disorders: The prospects and challenges.Int. J. Mol. Sci.20141534158418810.3390/ijms15034158 24608927
    [Google Scholar]
  239. ChoI. YamanishiS. CoxL. Antibiotics in early life alter the murine colonic microbiome and adiposity.Nature2012488741362162610.1038/nature11400 22914093
    [Google Scholar]
  240. TrasandeL. BlusteinJ. LiuM. CorwinE. CoxL.M. BlaserM.J. Infant antibiotic exposures and early-life body mass.Int. J. Obes.2013371162310.1038/ijo.2012.132 22907693
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998281910231231051814
Loading
/content/journals/cdr/10.2174/0115733998281910231231051814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test