Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Dementia is the primary cause of disability and dependence among the elderly population worldwide. The population living with dementia is anticipated to double in the next 17 years. Recent studies show the fact that compared to people without diabetes, people with Type 2 Diabetes (T2D) have about a 60% increased chance of developing dementia. In addition to cholinergic function being downregulated, improper insulin signalling also has a negative impact on synaptic plasticity and neuronal survival. Type 2 diabetes and dementia share various similar pathophysiological components. The ageing of the population and the ensuing rise in dementia prevalence are both results of ongoing medical advancements. It is possible that restoring insulin signaling could be a helpful therapy against dementia, as it is linked to both diminished cognitive function and the development of dementia, including AD. This review article comprehensively focused on scientific literature to analyze the relationship of Dementia with diabetes, recent experimental studies, and insight into incretin-based drug therapy for diabetes-related dementia.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998279875240216093902
2024-02-29
2024-11-22
Loading full text...

Full text loading...

References

  1. HusbandA. WorsleyA. Different types of dementia.Pharm. J.2006277579582
    [Google Scholar]
  2. GaleS.A. AcarD. DaffnerK.R. Dementia.Am. J. Med.2018131101161116910.1016/j.amjmed.2018.01.02229425707
    [Google Scholar]
  3. ShajiK.S. JithuV.P. JyothiK.S. Indian research on aging and dementia.Indian J. Psychiatry201052714810.4103/0019‑5545.6922721836672
    [Google Scholar]
  4. DuongS. PatelT. ChangF. Dementia.Can. Pharm. J.2017150211812910.1177/171516351769074528405256
    [Google Scholar]
  5. FymatA.L. Dementia: A review.J Clin Psychiatr Neurosci2018132734
    [Google Scholar]
  6. NisbetR.M. PolancoJ.C. IttnerL.M. GötzJ. Tau aggregation and its interplay with amyloid-β.Acta Neuropathol.2015129220722010.1007/s00401‑014‑1371‑225492702
    [Google Scholar]
  7. FymatA.L. Neurological disorders and the blood brain barrier: Parkinson’s disease and other movement disorders.J. Curr. Opin. Neurol. Sci.201821362383
    [Google Scholar]
  8. KarlawishJ.H.T. ClarkC.M. Diagnostic evaluation of elderly patients with mild memory problems.Ann. Intern. Med.2003138541141910.7326/0003‑4819‑138‑5‑200303040‑0001112614094
    [Google Scholar]
  9. DeliriumG.O.C. Am. Fam. Physician20036751027103412643363
    [Google Scholar]
  10. ShegaJ. EmanuelL. VargishL. LevineS.K. BurschH. HerrK. KarpJ.F. WeinerD.K. Pain in persons with dementia: Complex, common, and challenging.J. Pain20078537337810.1016/j.jpain.2007.03.00317485039
    [Google Scholar]
  11. LangaK.M. LevineD.A. The diagnosis and management of mild cognitive impairment: A clinical review.JAMA2014312232551256110.1001/jama.2014.1380625514304
    [Google Scholar]
  12. ChenJ.H. LinK.P. ChenY.C. Risk factors for dementia.J. Formos. Med. Assoc.20091081075476410.1016/S0929‑6646(09)60402‑219864195
    [Google Scholar]
  13. de la MonteS.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease.Curr. Alzheimer Res.201291356610.2174/15672051279901503722329651
    [Google Scholar]
  14. NathanD.M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview.Diabetes Care201437191610.2337/dc13‑211224356592
    [Google Scholar]
  15. Cukierman-YaffeT. GersteinH.C. WilliamsonJ.D. LazarR.M. LovatoL. MillerM.E. CokerL.H. MurrayA. SullivanM.D. MarcovinaS.M. LaunerL.J. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: The action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial.Diabetes Care200932222122610.2337/dc08‑115319171735
    [Google Scholar]
  16. WhitmerR.A. KarterA.J. YaffeK. QuesenberryC.P.Jr SelbyJ.V. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus.JAMA2009301151565157210.1001/jama.2009.46019366776
    [Google Scholar]
  17. ÅsvoldB.O. SandT. HestadK. BjørgaasM.R. Cognitive function in type 1 diabetic adults with early exposure to severe hypoglycemia: A 16-year follow-up study.Diabetes Care20103391945194710.2337/dc10‑062120805272
    [Google Scholar]
  18. GersteinH.C. MillerM.E. ByingtonR.P. GoffD.C.Jr BiggerJ.T. BuseJ.B. CushmanW.C. GenuthS. Ismail-BeigiF. GrimmR.H.Jr ProbstfieldJ.L. Simons-MortonD.G. FriedewaldW.T. Action to Control Cardiovascular Risk in Diabetes Study Group Effects of intensive glucose lowering in type 2 diabetes.N. Engl. J. Med.2008358242545255910.1056/NEJMoa080274318539917
    [Google Scholar]
  19. LavielleP. TalaveraJ.O. ReynosoN. GonzálezM. Gómez-DíazR.A. CruzM. VázquezF. WacherN.H. DIMSS Study Group Prevalence of cognitive impairment in recently diagnosed type 2 diabetes patients: Are chronic inflammatory diseases responsible for cognitive decline?PLoS One20151010e014132510.1371/journal.pone.014132526517541
    [Google Scholar]
  20. BiesselsG.J. StrachanM.W.J. VisserenF.L.J. KappelleL.J. WhitmerR.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions.Lancet Diabetes Endocrinol.20142324625510.1016/S2213‑8587(13)70088‑324622755
    [Google Scholar]
  21. GudalaK. BansalD. SchifanoF. BhansaliA. Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies.J. Diabetes Investig.20134664065010.1111/jdi.1208724843720
    [Google Scholar]
  22. HanyuH. Diabetes-related dementia.Adv. Exp. Med. Biol.2019112814716010.1007/978‑981‑13‑3540‑2_831062329
    [Google Scholar]
  23. KimY.G. JeonJ. KimH. KimD. LeeK.W. MoonS. HanS. Risk of dementia in older patients with type 2 diabetes on dipeptidyl-peptidase iv inhibitors versus sulfonylureas: A real-world population-based cohort study.J. Clin. Med.2018812810.3390/jcm801002830597861
    [Google Scholar]
  24. HuangC-N. LinC-L. The neuroprotective effects of the anti-diabetic drug linagliptin against Aß-induced neurotoxicity.Neural Regen. Res.201611223623710.4103/1673‑5374.17772427073371
    [Google Scholar]
  25. PasquierF. BoulogneA. LeysD. FontaineP. Diabetes mellitus and dementia.Diabetes Metab.200632540341410.1016/S1262‑3636(07)70298‑717110895
    [Google Scholar]
  26. NinomiyaT. Diabetes mellitus and dementia.Curr. Diab. Rep.201414548710.1007/s11892‑014‑0487‑z24623199
    [Google Scholar]
  27. HaanM.N. Therapy insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease.Nat. Clin. Pract. Neurol.20062315916610.1038/ncpneuro012416932542
    [Google Scholar]
  28. HongM. LeeV.M.Y. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons.J. Biol. Chem.199727231195471955310.1074/jbc.272.31.195479235959
    [Google Scholar]
  29. SridharG. ThotaH. AllamA.R. Suresh BabuC. Siva PrasadA. DivakarC. Alzheimer’s disease and type 2 diabetes mellitus: The cholinesterase connection?Lipids Health Dis.2006512810.1186/1476‑511X‑5‑2817096857
    [Google Scholar]
  30. FoxM.D. SnyderA.Z. VincentJ.L. CorbettaM. Van EssenD.C. RaichleM.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks.Proc. Natl. Acad. Sci.2005102279673967810.1073/pnas.050413610215976020
    [Google Scholar]
  31. BassilF. FernagutP.O. BezardE. MeissnerW.G. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification?Prog. Neurobiol.201411811810.1016/j.pneurobio.2014.02.00524582776
    [Google Scholar]
  32. PuttannaA. PadinjakaraN.K. Management of diabetes and dementia.British J. Diabetes2017173939910.15277/bjd.2017.139
    [Google Scholar]
  33. CunninghamE.L. McGuinnessB. HerronB. PassmoreA.P. Dementia.Ulster Med. J.2015842798726170481
    [Google Scholar]
  34. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X1366615071616572626813123
    [Google Scholar]
  35. HamiltonA. PattersonS. PorterD. GaultV.A. HolscherC. Novel GLP‐1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain.J. Neurosci. Res.201189448148910.1002/jnr.2256521312223
    [Google Scholar]
  36. McCleanP.L. ParthsarathyV. FaivreE. HölscherC. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease.J. Neurosci.201131176587659410.1523/JNEUROSCI.0529‑11.201121525299
    [Google Scholar]
  37. De MeesterI. KoromS. Van DammeJ. ScharpéS. CD26, let it cut or cut it down.Immunol. Today199920836737510.1016/S0167‑5699(99)01486‑310431157
    [Google Scholar]
  38. AbbottC.A. YuD.M.T. WoollattE. SutherlandG.R. McCaughanG.W. GorrellM.D. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8.Eur. J. Biochem.2000267206140615010.1046/j.1432‑1327.2000.01617.x11012666
    [Google Scholar]
  39. KimN.H. YuT. LeeD.H. The nonglycemic actions of dipeptidyl peptidase-4 inhibitors.BioMed Res. Int.2014201411010.1155/2014/36870325140306
    [Google Scholar]
  40. GreenB.D. IrwinN. FlattP.R. Pituitary adenylate cyclase-activating peptide (PACAP): Assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential.Peptides20062761349135810.1016/j.peptides.2005.11.01016406202
    [Google Scholar]
  41. MatteucciE. GiampietroO. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme.Curr. Med. Chem.200916232943295110.2174/09298670978880311419689275
    [Google Scholar]
  42. OmarB. AhrénB. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors.Diabetes20146372196220210.2337/db14‑005224962916
    [Google Scholar]
  43. MentleinR. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides.Regul. Pept.199985192410.1016/S0167‑0115(99)00089‑010588446
    [Google Scholar]
  44. ChalichemN.S.S. GonuguntaC. KrishnamurthyP.T. DuraiswamyB. DPP4 inhibitors can be a drug of choice for type 3 diabetes: A mini review.Am. J. Alzheimers Dis. Other Demen.201732744445110.1177/153331751772200528747063
    [Google Scholar]
  45. HolstJ.J. BurcelinR. NathansonE. Neuroprotective properties of GLP-1: Theoretical and practical applications.Curr. Med. Res. Opin.201127354755810.1185/03007995.2010.54946621222567
    [Google Scholar]
  46. SalcedoI. TweedieD. LiY. GreigN.H. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders.Br. J. Pharmacol.201216651586159910.1111/j.1476‑5381.2012.01971.x22519295
    [Google Scholar]
  47. Hyun LeeC. YanB. YooK.Y. ChoiJ.H. KwonS.H. HerS. SohnY. HwangI.K. ChoJ.H. KimY.M. WonM.H. Ischemia‐induced changes in glucagon‐like peptide‐1 receptor and neuroprotective effect of its agonist, exendin‐4, in experimental transient cerebral ischemia.J. Neurosci. Res.20118971103111310.1002/jnr.2259621472764
    [Google Scholar]
  48. KosarajuJ. MadhunapantulaS.V. ChinniS. KhatwalR.B. DubalaA. Muthureddy NatarajS.K. BasavanD. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease.Behav. Brain Res.2014267556510.1016/j.bbr.2014.03.02624667360
    [Google Scholar]
  49. KimY.G. JeonJ.Y. KimH.J. KimD.J. LeeK.W. MoonS.Y. HanS.J. Risk of dementia in older patients with type 2 diabetes on dipeptidyl-peptidase iv inhibitors versus sulfonylureas: A real-world population-based cohort study.J. Clin. Med.20198311010.3390/jcm803038930897780
    [Google Scholar]
  50. CastorinaA. Al-BadriG. LeggioG.M. MusumeciG. MarzagalliR. DragoF. Tackling dipeptidyl peptidase IV in neurological disorders.Neural Regen. Res.2018131263410.4103/1673‑5374.22436529451201
    [Google Scholar]
  51. D’AmicoM. Di FilippoC. MarfellaR. AbbatecolaA.M. FerraraccioF. RossiF. PaolissoG. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice.Exp. Gerontol.201045320220710.1016/j.exger.2009.12.00420005285
    [Google Scholar]
  52. IsikA.T. SoysalP. YayA. UsarelC. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease.Diabetes Res. Clin. Pract.201712319219810.1016/j.diabres.2016.12.01028056430
    [Google Scholar]
  53. KosarajuJ. GaliC.C. KhatwalR.B. DubalaA. ChinniS. HolsingerR.M.D. MadhunapantulaV.S.R. Muthureddy NatarajS.K. BasavanD. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease.Neuropharmacology20137229130010.1016/j.neuropharm.2013.04.00823603201
    [Google Scholar]
  54. KosarajuJ. HolsingerR.M.D. GuoL. TamK.Y. Linagliptin, a dipeptidyl peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer’s disease.Mol. Neurobiol.20175486074608410.1007/s12035‑016‑0125‑727699599
    [Google Scholar]
  55. KosarajuJ. MurthyV. KhatwalR.B. DubalaA. ChinniS. Muthureddy NatarajS.K. BasavanD. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease.J. Pharm. Pharmacol.201365121773178410.1111/jphp.1214824117480
    [Google Scholar]
  56. YangD. NakajoY. IiharaK. KataokaH. YanamotoH. Alogliptin, a dipeptidylpeptidase-4 inhibitor, for patients with diabetes mellitus type 2, induces tolerance to focal cerebral ischemia in non-diabetic, normal mice.Brain Res.2013151710411310.1016/j.brainres.2013.04.01523602966
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998279875240216093902
Loading
/content/journals/cdr/10.2174/0115733998279875240216093902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cognitive; Dementia; diabetes-related-dementia; gliptins; incretin; insulin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test