Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been well-documented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998278669240226061329
2024-03-11
2024-11-22
Loading full text...

Full text loading...

References

  1. MahgoubM.O. AliI.I. AdeghateJ.O. TekesK. KalászH. AdeghateE.A. An update on the molecular and cellular basis of pharmacotherapy in type 2 diabetes mellitus.Int. J. Mol. Sci.20232411932810.3390/ijms2411932837298274
    [Google Scholar]
  2. NakaeJ. BiggsW.H.III KitamuraT. CaveneeW.K. WrightC.V.E. ArdenK.C. AcciliD. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1.Nat. Genet.200232224525310.1038/ng89012219087
    [Google Scholar]
  3. JiangQ. ZhangX. DaiX. HanS. WuX. WangL. WeiW. ZhangN. XieW. GuoJ. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions.Nat. Commun.2022131154810.1038/s41467‑022‑28910‑835318320
    [Google Scholar]
  4. BayascasJ.R. PDK1: The major transducer of PI 3-kinase actions.Curr. Top. Microbiol. Immunol.201034692910.1007/82_2010_4320563709
    [Google Scholar]
  5. DongL.Q. ZhangR. LanglaisP. HeH. ClarkM. ZhuL. LiuF. Primary structure, tissue distribution, and expression of mouse phosphoinositide-dependent protein kinase-1, a protein kinase that phosphorylates and activates protein kinase Czeta.J. Biol. Chem.1999274128117812210.1074/jbc.274.12.811710075713
    [Google Scholar]
  6. TawaramotoK. KotaniK. HashiramotoM. KandaY. NagareT. SakaueH. OgawaW. EmotoN. YanagisawaM. NodaT. KasugaM. KakuK. Ablation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in vascular endothelial cells enhances insulin sensitivity by reducing visceral fat and suppressing angiogenesis.Mol. Endocrinol.20122619510910.1210/me.2010‑041222108800
    [Google Scholar]
  7. SongB.R. AlamM.B. LeeS.H. Terpenoid-rich extract of dillenia indica l. bark displays antidiabetic action in insulin-resistant c2c12 cells and stz-induced diabetic mice by attenuation of oxidative stress.Antioxidants2022117122710.3390/antiox1107122735883721
    [Google Scholar]
  8. MaieseK. Daniela MorhanS. Zhong ChongZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus.Curr. Neurovasc. Res.200741637110.2174/15672020777994065317311546
    [Google Scholar]
  9. KataseN. NishimatsuS.I. YamauchiA. YamamuraM. FujitaS. DKK3 knockdown confers negative effects on the malignant potency of head and neck squamous cell carcinoma cells via the PI3K/Akt and MAPK signaling pathways.Int. J. Oncol.20195431021103230569110
    [Google Scholar]
  10. SatoS. FujitaN. TsuruoT. Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway.J. Biol. Chem.200427932337593376710.1074/jbc.M40205520015175348
    [Google Scholar]
  11. LiuC. PeiJ. MuX. YuB. GongT. LiangW. Ponatinib inhibits the proliferation of SNU-449 human hepatocellular cancer cells and blocks MAPK and PDK1/AKT/mTOR signaling pathways.Xibao Yu Fenzi Mianyixue Zazhi202238542543135603651
    [Google Scholar]
  12. HosookaT. HosokawaY. MatsugiK. ShinoharaM. SengaY. TamoriY. AokiC. MatsuiS. SasakiT. KitamuraT. KurodaM. SakaueH. NomuraK. YoshinoK. NabatameY. ItohY. YamaguchiK. HayashiY. NakaeJ. AcciliD. YokomizoT. SeinoS. KasugaM. OgawaW. The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase–leukotriene B 4 axis.Proc. Natl. Acad. Sci.202011721116741168410.1073/pnas.192101511732393635
    [Google Scholar]
  13. AlessiD.R. JamesS.R. DownesC.P. HolmesA.B. GaffneyP.R.J. ReeseC.B. CohenP. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα.Curr. Biol.19977426126910.1016/S0960‑9822(06)00122‑99094314
    [Google Scholar]
  14. AlessiD.R. DeakM. CasamayorA. Barry CaudwellF. MorriceN. NormanD.G. GaffneyP. ReeseC.B. MacDougallC.N. HarbisonD. AshworthA. BownesM. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase.Curr. Biol.199771077678910.1016/S0960‑9822(06)00336‑89368760
    [Google Scholar]
  15. PearceL.R. KomanderD. AlessiD.R. The nuts and bolts of AGC protein kinases.Nat. Rev. Mol. Cell Biol.201011192210.1038/nrm282220027184
    [Google Scholar]
  16. BiondiR.M. KomanderD. ThomasC.C. LizcanoJ.M. DeakM. AlessiD.R. van AaltenD.M. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site.EMBO J.200221164219422810.1093/emboj/cdf43712169624
    [Google Scholar]
  17. KomanderD. KularG. DeakM. AlessiD.R. van AaltenD.M.F. Role of T-loop phosphorylation in PDK1 activation, stability, and substrate binding.J. Biol. Chem.200528019187971880210.1074/jbc.M50097720015741170
    [Google Scholar]
  18. CollinsB.J. DeakM. Murray-TaitV. StoreyK.G. AlessiD.R. In vivo role of the phosphate groove of PDK1 defined by knockin mutation.J. Cell Sci.2005118215023503410.1242/jcs.0261716219676
    [Google Scholar]
  19. XuX. ChenY. FuQ. NiD. ZhangJ. LiX. LuS. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1.J. Enzyme Inhib. Med. Chem.201934136137410.1080/14756366.2018.155316730734603
    [Google Scholar]
  20. BoucherJ. KleinriddersA. KahnC.R. Insulin receptor signaling in normal and insulin-resistant states.Cold Spring Harb. Perspect. Biol.201461a00919110.1101/cshperspect.a00919124384568
    [Google Scholar]
  21. ParkH. LeeS. ShresthaP. KimJ. ParkJ.A. KoY. BanY.H. ParkD.Y. HaS.J. KohG.Y. HongV.S. MochizukiN. KimY.M. LeeW. KwonY.G. AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation.J. Cell Biol.2015211361963710.1083/jcb.20150311326553931
    [Google Scholar]
  22. WilliamsM.R. ArthurJ.S.C. BalendranA. van der KaayJ. PoliV. CohenP. AlessiD.R. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells.Curr. Biol.200010843944810.1016/S0960‑9822(00)00441‑310801415
    [Google Scholar]
  23. GagliardiP.A. PuliafitoA. PrimoL. PDK1: At the crossroad of cancer signaling pathways.Semin. Cancer Biol.201848273510.1016/j.semcancer.2017.04.01428473254
    [Google Scholar]
  24. SarbassovD.D. GuertinD.A. AliS.M. SabatiniD.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.Science200530757121098110110.1126/science.110614815718470
    [Google Scholar]
  25. AlessiD.R. KozlowskiM.T. WengQ.P. MorriceN. AvruchJ. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro.Curr. Biol.199882698110.1016/S0960‑9822(98)70037‑59427642
    [Google Scholar]
  26. ParkJ. LeongM.L. BuseP. MaiyarA.C. FirestoneG.L. HemmingsB.A. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway.EMBO J.199918113024303310.1093/emboj/18.11.302410357815
    [Google Scholar]
  27. JensenC.J. BuchM.B. KragT.O. HemmingsB.A. GammeltoftS. FrödinM. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1.J. Biol. Chem.199927438271682717610.1074/jbc.274.38.2716810480933
    [Google Scholar]
  28. CasamayorA. MorriceN.A. AlessiD.R. Alessi, Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo.Biochem J1999342287292
    [Google Scholar]
  29. LevinaA. FlemingK.D. BurkeJ.E. LeonardT.A. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation.Nat. Commun.2022131187410.1038/s41467‑022‑29368‑435387990
    [Google Scholar]
  30. MastersT.A. CallejaV. ArmoogumD.A. MarshR.J. ApplebeeC.J. LaguerreM. BainA.J. LarijaniB. Regulation of 3-phosphoinositide-dependent protein kinase 1 activity by homodimerization in live cells.Sci. Signal.20103145ra7810.1126/scisignal.200073820978239
    [Google Scholar]
  31. SacerdotiM. GrossL.Z.F. RileyA.M. ZehnderK. GhodeA. KlinkeS. AnandG.S. ParisK. WinkelA. HerbrandA.K. GodageH.Y. CozierG.E. SüßE. SchulzeJ.O. Pastor-FloresD. BolliniM. CappellariM.V. SvergunD. GräwertM.A. AramendiaP.F. LerouxA.E. PotterB.V.L. CamachoC.J. BiondiR.M. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein.Sci. Signal.202316789eadd318410.1126/scisignal.add318437311034
    [Google Scholar]
  32. KingC.C. GardinerE.M.M. ZenkeF.T. BohlB.P. NewtonA.C. HemmingsB.A. BokochG.M. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1).J. Biol. Chem.200027552412014120910.1074/jbc.M00655320010995762
    [Google Scholar]
  33. TanJ. LiZ. LeeP.L. GuanP. AauM.Y. LeeS.T. FengM. LimC.Z. LeeE.Y.J. WeeZ.N. LimY.C. KaruturiR.K.M. YuQ. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy.Cancer Discov.20133101156117110.1158/2159‑8290.CD‑12‑059523887393
    [Google Scholar]
  34. di BlasioL. GagliardiP.A. PuliafitoA. SessaR. SeanoG. BussolinoF. PrimoL. PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin.J. Cell Sci.2015128586387725588838
    [Google Scholar]
  35. PinnerS. SahaiE. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE.Nat. Cell Biol.200810212713710.1038/ncb167518204440
    [Google Scholar]
  36. GagliardiP.A. di BlasioL. PuliafitoA. SeanoG. SessaR. ChianaleF. LeungT. BussolinoF. PrimoL. PDK1-mediated activation of MRCKα regulates directional cell migration and lamellipodia retraction.J. Cell Biol.2014206341543410.1083/jcb.20131209025092657
    [Google Scholar]
  37. BiondiR. Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation.Trends Biochem. Sci.200429313614210.1016/j.tibs.2004.01.00515003271
    [Google Scholar]
  38. GaßelM. BreitenlechnerC.B. RügerP. JucknischkeU. SchneiderT. HuberR. BossemeyerD. EnghR.A. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT).J. Mol. Biol.200332951021103410.1016/S0022‑2836(03)00518‑712798691
    [Google Scholar]
  39. BogoyevitchM. FairlieD. A new paradigm for protein kinase inhibition: Blocking phosphorylation without directly targeting ATP binding.Drug Discov. Today20071215-1662263310.1016/j.drudis.2007.06.00817706543
    [Google Scholar]
  40. StrobaA. SchaefferF. HindieV. Lopez-GarciaL. AdrianI. FröhnerW. HartmannR.W. BiondiR.M. EngelM. 3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds.J. Med. Chem.200952154683469310.1021/jm900149919606904
    [Google Scholar]
  41. SadowskyJ.D. BurlingameM.A. WolanD.W. McClendonC.L. JacobsonM.P. WellsJ.A. Turning a protein kinase on or off from a single allosteric site via disulfide trapping.Proc. Natl. Acad. Sci. USA2011108156056606110.1073/pnas.110237610821430264
    [Google Scholar]
  42. NussinovR. TsaiC.J. Allostery in disease and in drug discovery.Cell2013153229330510.1016/j.cell.2013.03.03423582321
    [Google Scholar]
  43. FangZ. GrütterC. RauhD. Strategies for the selective regulation of kinases with allosteric modulators: Exploiting exclusive structural features.ACS Chem. Biol.201381587010.1021/cb300663j23249378
    [Google Scholar]
  44. NagashimaK. ShumwayS.D. SathyanarayananS. ChenA.H. DolinskiB. XuY. KeilhackH. NguyenT. WiznerowiczM. LiL. LutterbachB.A. ChiA. PaweletzC. AllisonT. YanY. MunshiS.K. KlippelA. KrausM. BobkovaE.V. DeshmukhS. XuZ. MuellerU. SzewczakA.A. PanB.S. RichonV. PollockR. Blume-JensenP. NorthrupA. AndersenJ.N. Genetic and pharmacological inhibition of PDK1 in cancer cells: Characterization of a selective allosteric kinase inhibitor.J. Biol. Chem.201128686433644810.1074/jbc.M110.15646321118801
    [Google Scholar]
  45. SchulzeJ.O. SaladinoG. BusschotsK. NeimanisS. SüßE. OdadzicD. ZeuzemS. HindieV. HerbrandA.K. LisaM.N. AlzariP.M. GervasioF.L. BiondiR.M. Bidirectional allosteric communication between the ATP-binding site and the regulatory PIF Pocket in PDK1 protein kinase.Cell Chem. Biol.201623101193120510.1016/j.chembiol.2016.06.01727693059
    [Google Scholar]
  46. LiuW. LiP. MeiY. Discovery of SBF1 as an allosteric inhibitor targeting the PIF-pocket of 3-phosphoinositide-dependent protein kinase-1.J. Mol. Model.201925718710.1007/s00894‑019‑4069‑531197600
    [Google Scholar]
  47. WenthurC.J. GentryP.R. MathewsT.P. LindsleyC.W. Drugs for allosteric sites on receptors.Annu. Rev. Pharmacol. Toxicol.201454116518410.1146/annurev‑pharmtox‑010611‑13452524111540
    [Google Scholar]
  48. NiD. SongK. ZhangJ. LuS. Molecular dynamics simulations and dynamic network analysis reveal the allosteric unbinding of monobody to H-Ras triggered by R135K mutation.Int. J. Mol. Sci.20171811224910.3390/ijms1811224929072601
    [Google Scholar]
  49. WylieA.A. SchoepferJ. JahnkeW. Cowan-JacobS.W. LooA. FuretP. MarzinzikA.L. PelleX. DonovanJ. ZhuW. BuonamiciS. HassanA.Q. LombardoF. IyerV. PalmerM. BerelliniG. DoddS. ThohanS. BitterH. BranfordS. RossD.M. HughesT.P. PetruzzelliL. VanasseK.G. WarmuthM. HofmannF. KeenN.J. SellersW.R. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1.Nature2017543764773373710.1038/nature2170228329763
    [Google Scholar]
  50. HossenM.J. KimS.C. YangS. KimH.G. JeongD. YiY.S. SungN.Y. LeeJ.O. KimJ.H. ChoJ.Y. PDK1 disruptors and modulators: A patent review.Expert Opin. Ther. Pat.201525551353710.1517/13543776.2015.101480125684022
    [Google Scholar]
  51. HindieV. StrobaA. ZhangH. Lopez-GarciaL.A. IdrissovaL. ZeuzemS. HirschbergD. SchaefferF. JørgensenT.J.D. EngelM. AlzariP.M. BiondiR.M. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1.Nat. Chem. Biol.200951075876410.1038/nchembio.20819718043
    [Google Scholar]
  52. PetersenM.C. ShulmanG.I. Mechanisms of Insulin Action and Insulin Resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.201730067154
    [Google Scholar]
  53. KnudsenJ.R. FritzenA.M. JamesD.E. JensenT.E. KleinertM. RichterE.A. Growth factor-dependent and -independent activation of mTORC2.Trends Endocrinol. Metab.2020311132410.1016/j.tem.2019.09.00531699566
    [Google Scholar]
  54. LyuH.W. LuoM. LiY.X. JiangH.P. YanJ.Z. TongS.Q. Overview on hypoglycemic active constituents of traditional Chinese medicine based on insulin receptor signaling pathway.Zhongguo Zhongyao Zazhi201944194158416431872693
    [Google Scholar]
  55. ChadtA. Al-HasaniH. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease.Pflugers Arch.202047291273129810.1007/s00424‑020‑02417‑x32591906
    [Google Scholar]
  56. WangC. DengY. YueY. ChenW. ZhangY. ShiG. WuZ. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway.Med. Sci. Monit.2018241241125010.12659/MSM.90901129491345
    [Google Scholar]
  57. BamoduO.A. ChangH.L. OngJ.R. LeeW.H. YehC.T. TsaiJ.T. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma.Cells20209374610.3390/cells903074632197467
    [Google Scholar]
  58. BiondiR.M. KielochA. CurrieR.A. DeakM. AlessiD.R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB.EMBO J.200120164380439010.1093/emboj/20.16.438011500365
    [Google Scholar]
  59. LiS. FengF. DengY. Resveratrol regulates glucose and lipid metabolism in diabetic rats by inhibition of PDK1/AKT phosphorylation and HIF-1α expression.Diabetes Metab. Syndr. Obes.2023161063107410.2147/DMSO.S40389337090841
    [Google Scholar]
  60. YamadaT. KatagiriH. AsanoT. TsuruM. InukaiK. OnoH. KodamaT. KikuchiM. OkaY. Role of PDK1 in insulin-signaling pathway for glucose metabolism in 3T3-L1 adipocytes.Am. J. Physiol. Endocrinol. Metab.20022826E1385E139410.1152/ajpendo.00486.200112006370
    [Google Scholar]
  61. PaulD.S. HarmonA.W. DevesaV. ThomasD.J. StýbloM. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid.Environ. Health Perspect.2007115573474210.1289/ehp.986717520061
    [Google Scholar]
  62. KimS. LeeE. JungJ. LeeJ.W. KimH.J. KimJ. YooH. LeeH.J. ChaeS.Y. JeonS.M. SonB.H. GongG. SharanS.K. ChangS. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer.Oncogene201837222982299110.1038/s41388‑018‑0124‑429527004
    [Google Scholar]
  63. ManneB.K. MünzerP. BadoliaR. Walker-AllgaierB. CampbellR.A. MiddletonE. WeyrichA.S. KunapuliS.P. BorstO. RondinaM.T. PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway.J. Thromb. Haemost.20181661211122510.1111/jth.1400529575487
    [Google Scholar]
  64. NavéB.T. Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation.Biochem J199934442743110.1042/bj3440427
    [Google Scholar]
  65. ObataA. KimuraT. ObataY. ShimodaM. KinoshitaT. KoharaK. OkauchiS. HirukawaH. KameiS. NakanishiS. MuneT. KakuK. KanetoH. Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice.Diabetologia20196271225123610.1007/s00125‑019‑4878‑131055616
    [Google Scholar]
  66. WatanabeS. MatsumotoT. OdaM. YamadaK. TakagiJ. TaguchiK. KobayashiT. Insulin augments serotonin-induced contraction via activation of the IR/PI3K/PDK1 pathway in the rat carotid artery.Pflugers Arch.2016468466767710.1007/s00424‑015‑1759‑426577585
    [Google Scholar]
  67. SharmaS. SinghM. SharmaP.L. Beneficial effect of insulin in hyperhomocysteinemia and diabetes mellitus-induced vascular endothelium dysfunction: role of phosphoinositide dependent kinase and protein kinase B.Mol. Cell. Biochem.20113481-2213210.1007/s11010‑010‑0633‑021069435
    [Google Scholar]
  68. AcciliD. ArdenK.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation.Cell2004117442142610.1016/S0092‑8674(04)00452‑015137936
    [Google Scholar]
  69. LiuJ. XieX. YanD. WangY. YuanH. CaiY. LuoJ. XuA. HuangY. CheungC.W. IrwinM.G. XiaZ. Up‐regulation of FoxO1 contributes to adverse vascular remodelling in type 1 diabetic rats.J. Cell. Mol. Med.20202423137271373810.1111/jcmm.1593533108705
    [Google Scholar]
  70. KawanoY. NakaeJ. WatanabeN. FujisakaS. IskandarK. SekiokaR. HayashiY. TobeK. KasugaM. NodaT. YoshimuraA. OnoderaM. ItohH. Loss of Pdk1-Foxo1 signaling in myeloid cells predisposes to adipose tissue inflammation and insulin resistance.Diabetes20126181935194810.2337/db11‑077022586579
    [Google Scholar]
  71. SpiegelmanB.M. FlierJ.S. Obesity and the regulation of energy balance.Cell2001104453154310.1016/S0092‑8674(01)00240‑911239410
    [Google Scholar]
  72. KadowakiT. YamauchiT. KubotaN. HaraK. UekiK. TobeK. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.J. Clin. Invest.200611671784179210.1172/JCI2912616823476
    [Google Scholar]
  73. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature0548517167474
    [Google Scholar]
  74. Mothe-SatneyI. FillouxC. AmgharH. PonsC. BourlierV. GalitzkyJ. GrimaldiP.A. FéralC.C. BouloumiéA. Van ObberghenE. NeelsJ.G. Adipocytes secrete leukotrienes: Contribution to obesity-associated inflammation and insulin resistance in mice.Diabetes20126192311231910.2337/db11‑145522688342
    [Google Scholar]
  75. JoK. LeeS.E. LeeS.W. HwangJ.K. Prunus yedoensis Matsum. stimulates glucose uptake in L6 rat skeletal muscle cells by activating AMP-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways.Nat. Prod. Res.201226171610161510.1080/14786419.2011.57413321809954
    [Google Scholar]
  76. AierkenA. LiB. LiuP. ChengX. KouZ. TanN. ZhangM. YuS. ShenQ. DuX. EnkhbaatarB.B. ZhangJ. ZhangR. WuX. WangR. HeX. LiN. PengS. JiaW. WangC. HuaJ. Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway.Stem Cell Res. Ther.202213116410.1186/s13287‑022‑02832‑035414044
    [Google Scholar]
  77. MoraA. DaviesA.M. BertrandL. SharifI. BudasG.R. JovanovićS. MoutonV. KahnC.R. LucocqJ.M. GrayG.A. JovanovićA. AlessiD.R. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia.EMBO J.200322184666467610.1093/emboj/cdg46912970179
    [Google Scholar]
  78. MoraA. LipinaC. TroncheF. SutherlandC. AlessiD.R. Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure.Biochem. J.2005385363964810.1042/BJ2004178215554902
    [Google Scholar]
  79. OkamotoY. OgawaW. NishizawaA. InoueH. TeshigawaraK. KinoshitaS. MatsukiY. WatanabeE. HiramatsuR. SakaueH. NodaT. KasugaM. Restoration of glucokinase expression in the liver normalizes postprandial glucose disposal in mice with hepatic deficiency of PDK1.Diabetes20075641000100910.2337/db06‑132217267763
    [Google Scholar]
  80. HashimotoN. KidoY. UchidaT. AsaharaS. ShigeyamaY. MatsudaT. TakedaA. TsuchihashiD. NishizawaA. OgawaW. FujimotoY. OkamuraH. ArdenK.C. HerreraP.L. NodaT. KasugaM. Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass.Nat. Genet.200638558959310.1038/ng177416642023
    [Google Scholar]
  81. El OuaamariA. BaroukhN. MartensG.A. LebrunP. PipeleersD. van ObberghenE. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells.Diabetes200857102708271710.2337/db07‑161418591395
    [Google Scholar]
  82. HosokawaY. HosookaT. ImamoriM. YamaguchiK. ItohY. OgawaW. Adipose tissue insulin resistance exacerbates liver inflammation and fibrosis in a diet-induced NASH model.Hepatol. Commun.202376e016110.1097/HC9.000000000000016137219877
    [Google Scholar]
  83. BayascasJ.R. WullschlegerS. SakamotoK. García-MartínezJ.M. ClacherC. KomanderD. van AaltenD.M.F. BoiniK.M. LangF. LipinaC. LogieL. SutherlandC. ChudekJ.A. van DiepenJ.A. VosholP.J. LucocqJ.M. AlessiD.R. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance.Mol. Cell. Biol.200828103258327210.1128/MCB.02032‑0718347057
    [Google Scholar]
  84. BayascasJ.R. SakamotoK. ArmitL. ArthurJ.S.C. AlessiD.R. Evaluation of approaches to generation of tissue-specific knock-in mice.J. Biol. Chem.200628139287722878110.1074/jbc.M60678920016887794
    [Google Scholar]
  85. EngelM. HindieV. Lopez-GarciaL.A. StrobaA. SchaefferF. AdrianI. ImigJ. IdrissovaL. NastainczykW. ZeuzemS. AlzariP.M. HartmannR.W. PiiperA. BiondiR.M. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds.EMBO J.200625235469548010.1038/sj.emboj.760141617110931
    [Google Scholar]
  86. UmS.H. FrigerioF. WatanabeM. PicardF. JoaquinM. StickerM. FumagalliS. AllegriniP.R. KozmaS.C. AuwerxJ. ThomasG. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity.Nature2004431700520020510.1038/nature0286615306821
    [Google Scholar]
  87. QuerfurthH. MarshallJ. ParangK. Rioult-PedottiM.S. TiwariR. KwonB. ReisingerS. LeeH.K. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro.PLoS One2022171e026169610.1371/journal.pone.026169635061720
    [Google Scholar]
  88. WangN. FuJ. LiZ. JiangN. ChenY. PengJ. The landscape of PDK1 in breast cancer.Cancers202214381110.3390/cancers1403081135159078
    [Google Scholar]
  89. VasudevanK.M. BarbieD.A. DaviesM.A. RabinovskyR. McNearC.J. KimJ.J. HennessyB.T. TsengH. PochanardP. KimS.Y. DunnI.F. SchinzelA.C. SandyP. HoerschS. ShengQ. GuptaP.B. BoehmJ.S. ReilingJ.H. SilverS. LuY. Stemke-HaleK. DuttaB. JoyC. SahinA.A. Gonzalez-AnguloA.M. LluchA. RamehL.E. JacksT. RootD.E. LanderE.S. MillsG.B. HahnW.C. SellersW.R. GarrawayL.A. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer.Cancer Cell2009161213210.1016/j.ccr.2009.04.01219573809
    [Google Scholar]
  90. ScortegagnaM. LauE. ZhangT. FengY. SeredukC. YinH. DeS.K. MeethK. PlattJ.T. LangdonC.G. HalabanR. PellecchiaM. DaviesM.A. BrownK. SternD.F. BosenbergM. RonaiZ.A. PDK1 and SGK3 contribute to the growth of braf-mutant melanomas and are potential therapeutic targets.Cancer Res.20157571399141210.1158/0008‑5472.CAN‑14‑278525712345
    [Google Scholar]
  91. ArsenicR. Immunohistochemical analysis of PDK1 expression in breast cancer.Diagn. Pathol.2014918210.1186/1746‑1596‑9‑8224739482
    [Google Scholar]
  92. Armando GagliardiP. di BlasioL. OrsoF. SeanoG. SessaR. TavernaD. BussolinoF. PrimoL. 3-phosphoinositide-dependent kinase 1 controls breast tumor growth in a kinase-dependent but Akt-independent manner.Neoplasia2012148719IN1910.1593/neo.1285622952425
    [Google Scholar]
  93. EserS. ReiffN. MesserM. SeidlerB. GottschalkK. DoblerM. HieberM. ArbeiterA. KleinS. KongB. MichalskiC.W. SchlitterA.M. EspositoI. KindA.J. RadL. SchniekeA.E. BaccariniM. AlessiD.R. RadR. SchmidR.M. SchneiderG. SaurD. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer.Cancer Cell201323340642010.1016/j.ccr.2013.01.02323453624
    [Google Scholar]
  94. YuJ. ChenK.S. LiY.N. YangJ. ZhaoL. Silencing of PDK1 gene expression by RNA interference suppresses growth of esophageal cancer.Asian Pac. J. Cancer Prev.20121384147415110.7314/APJCP.2012.13.8.414723098536
    [Google Scholar]
  95. FinlayD.K. SinclairL.V. FeijooC. WaughC.M. HagenbeekT.J. SpitsH. CantrellD.A. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes.J. Exp. Med.2009206112441245410.1084/jem.2009021919808258
    [Google Scholar]
  96. ScortegagnaM. RullerC. FengY. LazovaR. KlugerH. LiJ-L. DeS.K. RickertR. PellecchiaM. BosenbergM. RonaiZ.A. Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of BrafV600E:Pten–/– melanoma.Oncogene201433344330433910.1038/onc.2013.38324037523
    [Google Scholar]
  97. MedinaJ.R. Selective 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitors: Dissecting the function and pharmacology of PDK1.J. Med. Chem.20135672726273710.1021/jm400022723448267
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998278669240226061329
Loading
/content/journals/cdr/10.2174/0115733998278669240226061329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test