Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Insects are the most numerous and diverse collection of organisms on earth. Around the world, human societies have utilised insects and the materials derived from them as medical resources. These arthropods use chemistry, like all other species. According to their survival needs, they make adaptations, including protecting themselves from infection as well as predation, being able to connect with a social life, and carrying out generations with survivability in the environment. The main focus of the study of chemical ecology is the abundance of chemical compounds found in arthropods that are used for these ecological adaptations. This thorough analysis summarises the huge potential for finding new natural compounds with medical benefits from the Arthropods. Insects and their derivatives have a wide range of uses, and their “raw products” have made significant strides in a wide range of industries, including pharmaceuticals, tissue engineering, dentistry, plant and agricultural science, veterinary medicine, cosmetics, and cosmeceuticals, food, and nutraceuticals, among others. Bioactive components derived from insects are emerging as potential therapeutic sources that are beneficial against a variety of disorders. Insects, which have a huge variety of species, are an intriguing and potential source of low molecular biologically active natural compounds that are either produced by the insect itself or by accompanying microbes. The present review work collated the updates of insect-derived compounds, the use of insects worldwide, and drug discovery potential of insect derivatives.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638294753240422134722
2024-04-30
2025-03-14
Loading full text...

Full text loading...

References

  1. Costa-NetoE.M. The use of insects in folk medicine in the state of bahia, northeastern brazil, with notes on insects reported elsewhere in brazilian folk medicine.Hum. Ecol. Interdiscip. J.200230224526310.1023/A:1015696830997
    [Google Scholar]
  2. WeissH.B. Entomological medicaments of the past.J. N.Y. Entomol. Soc.194755155168
    [Google Scholar]
  3. ZimianD YonghuaZ XiwuG Medicinal insects in China.Ecol. Food. Nutrit.1997363-420922010.1080/03670244.1997.9991516
    [Google Scholar]
  4. ShermanR.A. HallM.J.R. ThomasS. Medicinal maggots: An ancient remedy for some contemporary afflictions.Annu. Rev. Entomol.2000451558110.1146/annurev.ento.45.1.5510761570
    [Google Scholar]
  5. EvansH.E. Life on a Little Known Planet: A Biologist’s View of Insects and their World.New YorkThe Lyons Press1993
    [Google Scholar]
  6. YiH.Y. ChowdhuryM. HuangY.D. YuX.Q. Insect antimicrobial peptides and their applications.Appl. Microbiol. Biotechnol.201498135807582210.1007/s00253‑014‑5792‑624811407
    [Google Scholar]
  7. KingG.F. Venoms as a platform for human drugs: Translating toxins into therapeutics.Expert Opin. Biol. Ther.201111111469148410.1517/14712598.2011.62194021939428
    [Google Scholar]
  8. CardéR.T. HaynesK.F. Structure of the pheromone communication channel in moths.Adv Insect Chem Ecol.2004828333210.1017/CBO9780511542664.009
    [Google Scholar]
  9. LeeS. BaekJ. YoonK. Differential properties of venom peptides and proteins in solitary vs. social hunting wasps.Toxins2016823210.3390/toxins802003226805885
    [Google Scholar]
  10. FahmyL. AliY.M. SeillyD. McCoyR. OwensR.M. PipanM. ChristieG. GrantA.J. An attacin antimicrobial peptide, Hill_BB_C10074, from Hermetia illucens with anti-Pseudomonas aeruginosa activity.BMC Microbiol.202323137810.1186/s12866‑023‑03131‑138036998
    [Google Scholar]
  11. BiganehH. KabiriM. ZeynalpourfattahiY. BrancalhãoR. KarimiM. ArdekaniM.R. RahimiR. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities.Heliyon202289e1049610.1016/j.heliyon.2022.e10496
    [Google Scholar]
  12. JonesT.H. VoegtleH.L. MirasH.M. WeatherfordR.G. SpandeT.F. GarraffoH.M. DalyJ.W. DavidsonD.W. SnellingR.R. Venom chemistry of the antMyrmicaria melanogaster from Brunei.J. Nat. Prod.200770216016810.1021/np068034t17243727
    [Google Scholar]
  13. SakuraiT. NamikiS. KanzakiR. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori.Front. Physiol.2014512510.3389/fphys.2014.0012524744736
    [Google Scholar]
  14. Newton Kar Yeasmin Zahan HossainT.J. KarN. ZahanY. OlarewajuB.A. Evaluation of cellulolytic endo-1,4-b-d-glucanase activity in the digestive fluid of adult phytophagous beetle hoplasoma unicolor.Trop. Life Sci. Res.2021323536810.21315/tlsr2021.32.3.435656371
    [Google Scholar]
  15. AhnM.Y. HanJ.W. HwangJ.S. YunE.Y. LeeB.M. Anti-inflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus (a type of cricket, insect) on adjuvant-treated chronic arthritis rat model.J. Toxicol. Environ. Health A20147722-241332134510.1080/15287394.2014.95159125343284
    [Google Scholar]
  16. Costa-NetoE.M. Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources.An Acad Bras Cienc.20057713343
    [Google Scholar]
  17. BulmerR. Review of navaho indian ethnoentomology, by Leland C. Wymanand Flora L. Bailey.Am. Anthropol.1965671564156610.1525/aa.1965.67.6.02a00330
    [Google Scholar]
  18. WeissH.B. Author and General subject indices to volume 51-60.J. N.Y. Entomol. Soc.194654166
    [Google Scholar]
  19. BaileyA. BodenC. SiberryJ. Initiation rituals.Taboo (Season 2, Episode 1).USANational Geographic Channel2007
    [Google Scholar]
  20. ClarkV.C. RaxworthyC.J. RakotomalalaV. SierwaldP. FisherB.L. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics.Proc. Natl. Acad. Sci.200510233116171162210.1073/pnas.050350210216087888
    [Google Scholar]
  21. DalyJ.W. SpandeT.F. GarraffoH.M. Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds.J. Nat. Prod.200568101556157510.1021/np058056016252926
    [Google Scholar]
  22. SpandeT.F. JainP. GarraffoH.M. PannellL.K. YehH.J.C. DalyJ.W. FukumotoS. ImamuraK. TokuyamaT. TorresJ.A. SnellingR.R. JonesT.H. Occurrence and significance of decahydroquinolines from dendrobatid poison frogs and a myrmicine ant: use of 1H and 13C NMR in their conformational analysis.J. Nat. Prod.199962152110.1021/np980298v9917275
    [Google Scholar]
  23. ButenandtA. BeckmannR. HeckerE. Uber densexual-lockstoff des seidenspinners Bombyx mori. Reinderstellung und Konstitution.Physiol Chem.1961324718310.1515/bchm2.1961.324.1.71
    [Google Scholar]
  24. TrowellS. Drugs from Bugs: The promise of pharmaceutical entomology.Futurist2003371719
    [Google Scholar]
  25. SlocinskaM. MarciniakP. RosinskiG. Insects antiviral and anticancer peptides: New leads for the future?Protein Pept. Lett.200815657858510.2174/09298660878496691218680452
    [Google Scholar]
  26. BuletP. StöcklinR. Insect antimicrobial peptides: Structures, properties and gene regulation.Protein Pept. Lett.200512131110.2174/092986605340601115638797
    [Google Scholar]
  27. Albiol MatanicV.C. CastillaV. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus.Int. J. Antimicrob. Agents200423438238910.1016/j.ijantimicag.2003.07.02215081088
    [Google Scholar]
  28. LaurentP. BraekmanJC. DalozeD e. Insect Chemical defense.Top Curr Chem.2005240167230
    [Google Scholar]
  29. MoraesM.C.B. ParejaM. LaumannR.A. BorgesM. The chemical volatiles (Semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae).Neotrop. Entomol.200837548950510.1590/S1519‑566X200800050000119061033
    [Google Scholar]
  30. EisnerT. For love of insects.Cambridge, MABelknap Press of Harvard University Press2003116
    [Google Scholar]
  31. FoxJ. SerranoS. Approaching the golden age of natural product pharmaceuticals from venom libraries: An overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications.Curr. Pharm. Des.200713282927293410.2174/13816120778202373917979737
    [Google Scholar]
  32. LodishH.F. Molecular cell biology.4th edNew YorkW. H. Freeman2000
    [Google Scholar]
  33. OldfieldM.L. The value of conserving genetic resources.Washington, D.CU.S. Department of the Interior, National Park Service1984
    [Google Scholar]
  34. MoedL. ShwayderT.A. ChangM.W. Cantharidin Revisited.Arch. Dermatol.2001137101357136010.1001/archderm.137.10.135711594862
    [Google Scholar]
  35. EstradaG. VillegasE. CorzoG. Spider venoms: A rich source of acylpolyamines and peptides as new leads for CNS drugs.Nat. Prod. Rep.200724114516110.1039/B603083C17268611
    [Google Scholar]
  36. SchroederF.C. TaggiA.E. GronquistM. MalikR.U. GrantJ.B. EisnerT. MeinwaldJ. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species.Proc. Natl. Acad. Sci.200810538142831428710.1073/pnas.080684010518794518
    [Google Scholar]
  37. OlsenC.A. MellorI.R. WellendorphP. UsherwoodP.N.R. WittM. FranzykH. JaroszewskiJ.W. Tuning wasp toxin structure for nicotinic receptor antagonism: cyclohexylalanine-containing analogues as potent and voltage-dependent blockers.ChemMedChem20061330330510.1002/cmdc.20050006716892364
    [Google Scholar]
  38. NakanishiK. Seok-KiC. HwangD. Structure-Binding relation of philanthotoxins from nicotinic acetylcholine receptor binding assay.Pure Appl. Chem.19946667167810.1351/pac199466040671
    [Google Scholar]
  39. EldefrawiA.T. EldefrawiM.E. KonnoK. MansourN.A. NakanishiK. OltzE. UsherwoodP.N. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom.Proc. Natl. Acad. Sci.198885134910491310.1073/pnas.85.13.49102838850
    [Google Scholar]
  40. SzolajskaE. PoznanskiJ. FerberM.L. MichalikJ. GoutE. FenderP. BaillyI. DubletB. ChroboczekJ. Poneratoxin, a neurotoxin from ant venom.Eur. J. Biochem.2004271112127213610.1111/j.1432‑1033.2004.04128.x15153103
    [Google Scholar]
  41. EfemS.E.E. IwaraC.I. IwaraC.I. The antimicrobial spectrum of honey and its clinical significance.Infection199220422722910.1007/BF020330651521889
    [Google Scholar]
  42. KoruO. ToksoyF. AcikelC.H. TuncaY.M. BaysallarM. Uskudar GucluA. AkcaE. Ozkok TuyluA. SorkunK. TanyukselM. SalihB. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens.Anaerobe2007133-414014510.1016/j.anaerobe.2007.02.00117475517
    [Google Scholar]
  43. AertsA.M. FrançoisI.E.J.A. CammueB.P.A. ThevissenK. The mode of antifungal action of plant, insect and human defensins.Cell. Mol. Life Sci.200865132069207910.1007/s00018‑008‑8035‑018360739
    [Google Scholar]
  44. WadeD. AndreuD. MitchellS.A. SilveiraA.M.V. BomanA. BomanH.G. MerrifieldR.B. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin.Int. J. Pept. Protein Res.199240542943610.1111/j.1399‑3011.1992.tb00321.x1483838
    [Google Scholar]
  45. SteinerH. HultmarkD. EngströmÅ. BennichH. BomanH.G. Sequence and specificity of two antibacterial proteins involved in insect immunity.Nature1981292582024624810.1038/292246a07019715
    [Google Scholar]
  46. BomanH.G. Innate immunity and the normal microflora.Immunol. Rev.2000173151610.1034/j.1600‑065X.2000.917301.x10719663
    [Google Scholar]
  47. BomanH.G. FayeI. GudmundssonG.H. LeeJ.Y. LidholmD.A. Cell‐free immunity in Cecropia.Eur. J. Biochem.19912011233110.1111/j.1432‑1033.1991.tb16252.x1915368
    [Google Scholar]
  48. BomanH.G. HultmarkD. Cell-free immunity in insects.Annu. Rev. Microbiol.198741110312610.1146/annurev.mi.41.100187.0005353318666
    [Google Scholar]
  49. EsserA.F. BartholomewR.M. JensenF.C. Müller-EberhardH.J. Disassembly of viral membranes by complement independent of channel formation.Proc. Natl. Acad. Sci.197976115843584710.1073/pnas.76.11.584393283
    [Google Scholar]
  50. ChernyshS. KimS.I. BekkerG. PleskachV.A. FilatovaN.A. AnikinV.B. PlatonovV.G. BuletP. Antiviral and antitumor peptides from insects.Proc. Natl. Acad. Sci.20029920126281263210.1073/pnas.19230189912235362
    [Google Scholar]
  51. RyuM.J. AnikinV. HongS.H. JeonH. YuY.G. YuM.H. ChernyshS. LeeC. Activation of NF-κB by alloferon through down-regulation of antioxidant proteins and IκBα.Mol. Cell. Biochem.20083131-29110210.1007/s11010‑008‑9746‑018363038
    [Google Scholar]
  52. HwangBB ChangMH LeeJH The edible insect Gryllus bimaculatus protects against gut-derived inflammatory responses and liver damage in mice after acute alcohol exposure.Nutrients.201911111
    [Google Scholar]
  53. XuM.Z. LeeW.S. HanJ.M. OhH.W. ParkD.S. TianG.R. JeongT.S. ParkH.Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae.Bioorg. Med. Chem.200614237826783410.1016/j.bmc.2006.07.06316919462
    [Google Scholar]
  54. SantosR.C.V. LunardelliA. CaberlonE. BastosC.M.A. NunesF.B. PiresM.G.S. BiolchiV. PaulE.L. VieiraF.B.C. Resende do Carmo AquinoA. CorseuilE. Rodrigues de OliveiraJ. Anti-inflammatory and immunomodulatory effects of Ulomoides dermestoides on induced pleurisy in rats and lymphoproliferation in vitro.Inflammation201033317317910.1007/s10753‑009‑9171‑x20020191
    [Google Scholar]
  55. KimY.I. ChoiK.H. KimS.R. GooT.W. ParkS.W. Bombyx mori hemocyte extract has anti-inflammatory effects on human phorbol myristate acetate-differentiated THP-1 cells via TLR4-mediated suppression of the NF-κB signaling pathway.Mol. Med. Rep.20171644001400710.3892/mmr.2017.708728765923
    [Google Scholar]
  56. WeiL. HuangC. YangH. LiM. YangJ. QiaoX. MuL. XiongF. WuJ. XuW. A potent anti-inflammatory peptide from the salivary glands of horsefly.Parasit. Vectors20158155610.1186/s13071‑015‑1149‑y26496724
    [Google Scholar]
  57. WuJ. MuL. ZhuangL. HanY. LiuT. LiJ. YangY. YangH. WeiL. A cecropin-like antimicrobial peptide with anti-inflammatory activity from the black fly salivary glands.Parasit. Vectors20158156110.1186/s13071‑015‑1176‑826497304
    [Google Scholar]
  58. EbaidH. Al-KhalifaM. IsaA.M. GadoaS. Bioactivity of Samsum ant (Pachycondyla sennaarensis) venom against lipopolysaccharides through antioxidant and upregulation of Akt1 signaling in rats.Lipids Health Dis.20121119310.1186/1476‑511X‑11‑9322824368
    [Google Scholar]
  59. HamiltonKD BrooksPR OgbourneSM Natural products isolated from Tetragonula carbonaria cerumen modulate free radical-scavenging and 5-lipoxygenase activities in vitro.BMC Complement Altern Med.2017171-8232
    [Google Scholar]
  60. NipateS.S. HuraliP.B. GhaisasM.M. Evaluation of anti-inflammatory, anti-nociceptive, and anti-arthritic activities of Indian Apis dorsata bee venom in experimental animals: Biochemical, histological, and radiological assessment.Immunopharmacol. Immunotoxicol.201537217118410.3109/08923973.2015.100999625689950
    [Google Scholar]
  61. DanneelsE.L. GerloS. HeyninckK. Van CraenenbroeckK. De BosscherK. HaegemanG. de GraafD.C. How the venom from the ectoparasitoid Wasp Nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines.PLoS One201495e9682510.1371/journal.pone.0096825
    [Google Scholar]
  62. SabaE. ShafeeqT. IrfanM. LeeY.Y. KwonH.W. SeoM.G. ParkS.J. LeeK.Y. RheeM.H. Anti-inflammatory activity of crude venom isolated from parasitoid wasp, Bracon hebetor say.Mediators Inflamm.2017201711110.1155/2017/697819429213193
    [Google Scholar]
  63. LuoS.L. HuangX.J. WangY. JiangR.W. WangL. BaiL.L. PengQ.L. SongC.L. ZhangD.M. YeW.C. Isocoumarins from American cockroach (Periplaneta americana) and their cytotoxic activities.Fitoterapia20149511512010.1016/j.fitote.2014.03.00424631766
    [Google Scholar]
  64. JiangH.L. LuoX.H. WangX.Z. YangJ.L. YaoX.J. CrewsP. ValerioteF.A. WuQ.X. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker.Fitoterapia20128371275128010.1016/j.fitote.2012.06.00522735600
    [Google Scholar]
  65. WangF. WuN. WeiJ. LiuJ. ZhaoJ. JiA. LinX. A novel protein from Eupolyphaga sinensis inhibits adhesion, migration, and invasion of human lung cancer A549 cells.Biochem. Cell Biol.201391424425110.1139/bcb‑2013‑000223859019
    [Google Scholar]
  66. ZhuH.J. YanY.M. TuZ.C. LuoJ.F. LiangR. YangT.H. ChengY.X. WangS.M. Compounds from Polyphaga plancyi and their inhibitory activities against JAK3 and DDR1 kinases.Fitoterapia201611416316710.1016/j.fitote.2016.09.00527642041
    [Google Scholar]
  67. PettitG.R. MengY. HeraldD.L. KnightJ.C. DayJ.F. Antineoplastic agents. 553. The Texas grasshopper Brachystola magna. J. Nat. Prod.20056881256125810.1021/np040236716124772
    [Google Scholar]
  68. TanJ. TianY. CaiR. YiT. JinD. GuoJ. Antiproliferative and proapoptotic effects of a protein component purified from Aspongopus chinensis Dallas on cancer cells in vitro and in vivo.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/893479430719067
    [Google Scholar]
  69. HsiaT.C. YuC.C. HsuS.C. TangN.Y. LuH.F. HuangY.P. WuS.H. LinJ.G. ChungJ.G. Cantharidin induces apoptosis of H460 human lung cancer cells through mitochondria-dependent pathways.Int. J. Oncol.201445124525410.3892/ijo.2014.242824818581
    [Google Scholar]
  70. HsiaoY.P. TsaiC.H. WuP.P. HsuS.C. LiuH.C. HuangY.P. YangJ.H. ChungJ.G. Cantharidin induces G2/M phase arrest by inhibition of Cdc25c and Cyclin A and triggers apoptosis through reactive oxygen species and the mitochondria-dependent pathways of A375.S2 human melanoma cells.Int. J. Oncol.20144562393240210.3892/ijo.2014.268925340978
    [Google Scholar]
  71. ChenY.J. ShiehC.J. TsaiT.H. KuoC.D. HoL.T. LiuT.Y. LiaoH.F. Inhibitory effect of norcantharidin, a derivative compound from blister beetles, on tumor invasion and metastasis in CT26 colorectal adenocarcinoma cells.Anticancer Drugs200516329329910.1097/00001813‑200503000‑0000815711181
    [Google Scholar]
  72. LeeJ.Y. ChungT.W. ChoiH.J. LeeC.H. EunJ.S. HanY.T. ChoiJ.Y. KimS.Y. HanC.W. JeongH.S. HaK.T. A novel cantharidin analog N-Benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR.Biochem. Biophys. Res. Commun.2014447237137710.1016/j.bbrc.2014.04.03524735540
    [Google Scholar]
  73. VermaA.K. PrasadS.B. Bioactive component, cantharidin from Mylabris cichorii and its antitumor activity against Ehrlich ascites carcinoma.Cell Biol. Toxicol.201228313314710.1007/s10565‑011‑9206‑622402807
    [Google Scholar]
  74. McCormickJ. CarrelJ. Cantharidin Biosynthesis and Function in Meloid Beetles.Pheromone Biochemistry. PrestwichG. BlomquistG. Orlando, FLAcademic Press Inc.198720735010.1016/B978‑0‑12‑564485‑3.50015‑4
    [Google Scholar]
  75. FietzO. DettnerK. GörlsH. KlemmK. BolandW. (R)-(+)-palasonin, a cantharidin-related plant toxin, also occurs in insect hemolymph and tissues.J. Chem. Ecol.20022871315132710.1023/A:101956151704012199498
    [Google Scholar]
  76. DettnerK. PetersW. Lehrbuch der Entomologie.2ndHeidelbergSpektrum2003613633
    [Google Scholar]
  77. MebsD PogodaW SchneiderM Insekten und Mikroorganismen. In: DettnerK PetersW Lehrbuch der Entomologie, 2 Aufl. SpektrumHeidelberg2009613633
    [Google Scholar]
  78. NikbakhtzadehM.R. EbramihiB. Detection of cantharidin-related compounds in Mylabris impressa (Coleoptera: Meloidae).J. Venom. Anim. Toxins Incl. Trop. Dis.20071331610.1590/S1678‑91992007000300011
    [Google Scholar]
  79. NikbakhtzadehM.R. DettnerK. BolandW. GädeG. DötterlS. Intraspecific transfer of cantharidin within selected members of the family Meloidae (Insecta: Coleoptera).J. Insect Physiol.200753989089910.1016/j.jinsphys.2007.02.01217493632
    [Google Scholar]
  80. GuhaP.K. PoiR. BhattacharyyaA. An Imide from the Pods of Butea monosperma. Phytochemistry199029201710.1016/0031‑9422(90)85059‑O
    [Google Scholar]
  81. LiuX.H. BlazsekI. ComissoM. LegrasS. MarionS. QuittetP. AnjoA. WangG.S. MissetJ.L. Effects of norcantharidin, a protein phosphatase type-2A inhibitor, on the growth of normal and malignant haemopoietic cells.Eur. J. Cancer199531695396310.1016/0959‑8049(95)00050‑X7646929
    [Google Scholar]
  82. MatsuzawaM. GrazianoM.J. CasidaJ.E. Endothal and cantharidin analogs: Relation of structure to herbicidal activity and mammalian toxicity.J. Agric. Food Chem.198735582382910.1021/jf00077a045
    [Google Scholar]
  83. DuttaP. SahuR.K. DeyT. LahkarM.D. MannaP. KalitaJ. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer.Chem. Biol. Interact.201931310882410.1016/j.cbi.2019.10882431542397
    [Google Scholar]
  84. LiY.M. CasidaJ.E. Cantharidin-binding protein: identification as protein phosphatase 2A.Proc. Natl. Acad. Sci.19928924118671187010.1073/pnas.89.24.118671334551
    [Google Scholar]
  85. GrazianoMJ PessahIN MatsuzawaM Partial characterization of specific cantharidin binding sites in mouse tissues.Mol Pharmaco.198833706712
    [Google Scholar]
  86. DumbacherJ.P. WakoA. DerricksonS.R. SamuelsonA. SpandeT.F. DalyJ.W. Melyrid beetles ( Choresine ): A putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds.Proc. Natl. Acad. Sci.200410145158571586010.1073/pnas.040719710115520388
    [Google Scholar]
  87. DalyJ.W. GarraffoH.M. SpandeT.F. Alkaloids from Amphibian Skins.Alkaloids: Chemical & Biological Perspectives. PelletierS.W. New York, NYPergamon1999115910.1016/S0735‑8210(99)80024‑7
    [Google Scholar]
  88. EisnerT. EisnerM. SieglerM. Secret weapons.2nd edCambridge, MABelknap Press2005
    [Google Scholar]
  89. BlumM.S. Chemical defences of arthropods.New YorkAcademic Press1981
    [Google Scholar]
  90. DettnerK. Chemical defense and toxins of lower terrestrial and freshwater animals.Comprehensive Natural Products II Chemistry and Biology. ManderL. LuiH.W. OxfordElsevier2010Vol. 438741010.1016/B978‑008045382‑8.00100‑3
    [Google Scholar]
  91. FranckeW. DettnerK. Chemical signalling in Beetles.Topics in Current Chemistry 240.HeidelbergSpringer200585166
    [Google Scholar]
  92. MorganE.D. Biosynthesis in Insects.Cambridge, MARoyal Society of Chemistry200410.1039/9781847550262
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638294753240422134722
Loading
/content/journals/cddt/10.2174/0115701638294753240422134722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test