Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

The objective of the study was to design and synthesize a series of N-(6-substi- tuted-1, 3-benzothiazole-2-yl)-2-{[6-(3-substitutedphenyl)-5-cyano-2-sulfanylpyrimidine-4-yl)]amino}acetamide derivatives BPD (1-15) that contains key pharmacophores required for anticonvulsant action.

Methods

The titled compounds (BPD 1-15) were synthesized by reacting 2-substituted-N-(6-chlorobenzo[d]thiazol-2-yl)acetamide with 4-amino-6-(4-substituted phenyl)-2-mercapto pyrimidine 5-carbonitrile in the presence of potassium carbonate and dry acetone. The synthesized compounds BPD (1-15) were assessed by the maximum electric shock (MES) test and the subcutaneous pentylenetetrazol (scPTZ) test in mice. The neurotoxicity test was performed by the rotarod test. A molecular docking study of title compounds with a sodium channel receptor (PDB ID: 1BYY) was carried out using the SP Docking protocol of the Glide module of the Maestro. Pharmacophore modeling was used to qualitatively identify the chemical characteristics for ligand binding and their spatial configurations in the 3D space of the active site.

Results

Among the studied compounds, BPD-15 and BPD-5 compounds showed significant action in both the MES and scPTZ models, with no neurotoxicity. BPD-15 & BPD-5 were relatively safe in acute toxicity testing. Compounds BPD-15 and BPD-5 showed good dock scores of -6.434 and -6.191, respectively.

Conclusion

Thus, the compounds BPD-15 and BPD-5 have shown a considerable affinity towards the sodium channel as compared to the standard drug Riluzole. Compound BPD-14 showed good drug compatibility, and compounds BPD-1, BPD-2, BPD-11, BPD-12, BPD-13, BPD-14, BPD-15 showed good ADME values.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638299019240418055933
2024-05-07
2025-03-15
Loading full text...

Full text loading...

References

  1. SaravananG. AlagarsamyV. PrakashC.R. Design, synthesis and anticonvulsant activities of novel 1-(substituted/unsubstituted benzylidene)-4-(4-(6,8-dibromo-2-(methyl/phenyl)-4-oxoquinazolin-3(4H)-yl)phenyl) semicarbazide derivatives.Bioorg. Med. Chem. Lett.20122293072307810.1016/j.bmcl.2012.03.06822487180
    [Google Scholar]
  2. Seyma SevincliZ. BildiriciN. CetinA. BildiriciI. GABA–AT inhibitors: Design, synthesis, pharmacological characterization, molecular docking and ADMET studies.ChemistrySelect2023835e20230268310.1002/slct.202302683
    [Google Scholar]
  3. SadaranganiI.R. BhatiaS. AmaranteD. LengyelI. StephaniR.A. Synthesis, resolution and anticonvulsant activity of chiral N-1′-ethyl,N-3′-(1-phenylethyl)-(R,S)-2′H,3H,5′H-spiro-(2-benzofuran-1,4′-imidazolidine)-2′,3,5′-trione diastereomers.Bioorg. Med. Chem. Lett.20122272507250910.1016/j.bmcl.2012.02.00522401865
    [Google Scholar]
  4. KamińskiK. ObniskaJ. WiklikB. AtamanyukD. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs.Eur. J. Med. Chem.20114694634464110.1016/j.ejmech.2011.07.04321840629
    [Google Scholar]
  5. PorterR.J. CereghinoJ.J. GladdingG.D. HessieB. j. KupferbergH.J. ScovilleB. WhiteB.G. Antiepileptic drug development program.Cleve Clin J Med.19845129330510.3949/ccjm.51.2.293
    [Google Scholar]
  6. KeS. WeiY. YangZ. WangK. LiangY. ShiL. Novel cycloalkylthiophene–imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation.Bioorg. Med. Chem. Lett.201323185131513410.1016/j.bmcl.2013.07.02323920438
    [Google Scholar]
  7. CetinA. DonmezA. DalarA. BildiriciI. Amino acid and dicyclohexylurea linked pyrazole analogues: Synthesis, in silico and in vitro studies.ChemistrySelect202386e20220492610.1002/slct.202204926
    [Google Scholar]
  8. CetinA. DonmezA. DalarA. BildiriciI. Tetra-substituted pyrazole analogues: Synthesis, molecular docking, ADMET prediction, antioxidant and pancreatic lipase inhibitory activities.Med. Chem. Res.202332118920410.1007/s00044‑022‑03005‑7
    [Google Scholar]
  9. AsatiV. SahuN.K. RathoreA. SahuS. KohliD.V. Synthesis, characterization and antimicrobial evaluation of some 1,3-benzothiazole-2-yl-hydrazone derivatives.Arab. J. Chem.20158449549910.1016/j.arabjc.2011.01.036
    [Google Scholar]
  10. SeverB. AltıntopM.D. ÖzdemirA. TabancaN. EstepA.S. BecnelJ.J. BloomquistJ.R. Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents.Open Chem.201917128829410.1515/chem‑2019‑0027
    [Google Scholar]
  11. HarroucheK. RenardJ.F. BouiderN. de TullioP. GoffinE. LebrunP. FauryG. PirotteB. KheliliS. Synthesis, characterization and biological evaluation of benzothiazoles and tetrahydrobenzothiazoles bearing urea or thiourea moieties as vasorelaxants and inhibitors of the insulin releasing process.Eur. J. Med. Chem.201611535236010.1016/j.ejmech.2016.03.02827031211
    [Google Scholar]
  12. KaleA. KakdeR. PawarS. ThombareR. Recent development in substituted benzothiazole as an anticonvulsant agent.Mini Rev. Med. Chem.20212181017102410.2174/138955752166620122214523633355052
    [Google Scholar]
  13. GollapalliM. TahaM. JavidM. T. AlmandilN. B. RahimF. WadoodA. MosaddikA. IbrahimM. AlqahtaniM. A. BamaroufY. A. Bioorganic chemistry, synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor.Bioorg Chem.201985334810.1016/j.bioorg.2018.12.021
    [Google Scholar]
  14. KumarG. SinghN.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives.Bioorg. Chem.202110710460810.1016/j.bioorg.2020.10460833465668
    [Google Scholar]
  15. Al-SaneaM.M. HamdiA. MohamedA.A.B. El-ShafeyH.W. MoustafaM. ElgazarA.A. EldehnaW.M. Ur RahmanH. ParambiD.G.T. ElbargisyR.M. SelimS. BukhariS.N.A. Magdy HendawyO. TawfikS.S. New benzothiazole hybrids as potential VEGFR-2 inhibitors: design, synthesis, anticancer evaluation, and in silico study.J. Enzyme Inhib. Med. Chem.2023381216603610.1080/14756366.2023.216603636691927
    [Google Scholar]
  16. HaiderK. ShrivastavaN. PathakA. DewanganP.R. YahyaS. Shahar YarM. Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents.Results in Chemistry2022410025810.1016/j.rechem.2021.100258
    [Google Scholar]
  17. AlmehmadiM. A. AljuhaniA. AlraqaS. Y. AliI. RezkiN. AouadM. R. HagarM. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1, 2, 3-triazole conjugates.J. Mol. Struct.2021122512914810.1016/j.molstruc.2020.129148
    [Google Scholar]
  18. PathakN. RathiE. KumarN. KiniS.G. RaoC.M. A review on anticancer potentials of benzothiazole derivatives.Mini Rev. Med. Chem.2020201122310.2174/138955751966619061715321331288719
    [Google Scholar]
  19. AzzamR.A. ElboshiH.A. ElgemeieG.H. Synthesis, physicochemical properties and molecular docking of new benzothiazole derivatives as antimicrobial agents targeting DHPS enzyme.Antibiotics20221112179910.3390/antibiotics1112179936551457
    [Google Scholar]
  20. SinghR. SindhuJ. DeviM. KumarA. KumarR. HussainK. KumarP. Solid-supported materials-based synthesis of 2-substituted benzothiazoles: Recent developments and sanguine future.ChemistrySelect20216256388644910.1002/slct.202101368
    [Google Scholar]
  21. JimonetP. AudiauF. BarreauM. BlanchardJ.C. BoireauA. BourY. ColénoM.A. DobleA. DoerflingerG. Do HuuC. DonatM.H. DuchesneJ.M. GanilP. GuérémyC. HonoréE. JustB. KerphiriqueR. GontierS. HubertP. LaduronP.M. Le BlevecJ. MeunierM. MiquetJ.M. NemecekC. PasquetM. PiotO. PrattJ. RataudJ. ReibaudM. StutzmannJ.M. MignaniS. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines.J. Med. Chem.199942152828284310.1021/jm980202u10425092
    [Google Scholar]
  22. PatelR.V. KumariP. RajaniD.P. ChikhaliaK.H. Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents.Med. Chem. Res.201322119521010.1007/s00044‑012‑0026‑x
    [Google Scholar]
  23. PatilD.R. One step synthesis of 6-amino-5-cyano-4-phenyl-2-mercapto pyrimidine using phosphorus pentoxide.Open. Catalys. J.201031838610.2174/1876214X01003010083
    [Google Scholar]
  24. SiddiquiN. AlamM.S. SahuM. NaimM.J. YarM.S. AlamO. Design, synthesis, anticonvulsant evaluation and docking study of 2-[(6-substituted benzo[ d ]thiazol-2-ylcarbamoyl)methyl]-1-(4-substituted phenyl)isothioureas.Bioorg. Chem.20177123024310.1016/j.bioorg.2017.02.00928238402
    [Google Scholar]
  25. BhutadaP. MundhadaY. BansodK. DixitP. UmatheS. MundhadaD. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice.Epilepsy Behav.201018320721010.1016/j.yebeh.2010.03.00720638957
    [Google Scholar]
  26. ŁączkowskiK.Z. SałatK. MisiuraK. PodkowaA. MalikowskaN. Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures.J. Enzyme Inhib. Med. Chem.20163161576158210.3109/14756366.2016.115817227052195
    [Google Scholar]
  27. ConleyJ.D. KohnH. Functionalized DL-amino acid derivatives. Potent new agents for the treatment of epilepsy.J. Med. Chem.198730356757410.1021/jm00386a0213820228
    [Google Scholar]
  28. DunhamN.W. MiyaT.S. A note on a simple apparatus for detecting neurological deficit in rats and mice**College of Pharmacy, University of Nebraska, Lincoln 8.J. Am. Pharm. Assoc.195746320820910.1002/jps.303046032213502156
    [Google Scholar]
  29. LitchfieldJ.T.Jr WilcoxonF. A simplified method of evaluating dose-effect experiments.J. Pharmacol. Exp. Ther.19499629911318152921
    [Google Scholar]
  30. HalgrenT.A. MurphyR.B. FriesnerR.A. BeardH.S. FryeL.L. PollardW.T. BanksJ.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s15027866
    [Google Scholar]
  31. EvansD.A. DomanT.N. ThornerD.A. BodkinM.J. 3D QSAR methods: Phase and catalyst compared.J. Chem. Inf. Model.20074731248125710.1021/ci700008217477520
    [Google Scholar]
  32. ZhongH. TranL.M. StangJ.L. Induced-fit docking studies of the active and inactive states of protein tyrosine kinases.J. Mol. Graph. Model.200928433634610.1016/j.jmgm.2009.08.01219767223
    [Google Scholar]
  33. DevS. DhaneshwaS. Identification of potent virtual leads as topoisomerase-II inhibitors using pharmacophore modeling, molecular docking, and ADME studies.Int. J. Pharm. Sci. Res.2013482939295410.13040/IJPSR.0975‑8232.4(8).2939‑54
    [Google Scholar]
  34. SharmaV. KumarH. WakodeS. Pharmacophore generation and atom based 3D-QSAR of quinoline derivatives as selective phosphodiesterase 4B inhibitors.RSC Adv.2016679758057581910.1039/C6RA11210B
    [Google Scholar]
  35. PanY. WangY. BryantS.H. Pharmacophore and 3D-QSAR characterization of 6-arylquinazolin-4-amines as Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitors.J. Chem. Inf. Model.201353493894710.1021/ci300625c23496085
    [Google Scholar]
  36. DixonS.L. SmondyrevA.M. RaoS.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching.Chem. Biol. Drug Des.200667537037210.1111/j.1747‑0285.2006.00384.x16784462
    [Google Scholar]
  37. Dhanachandra SinghK. KarthikeyanM. KirubakaranP. NagamaniS. Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors.J. Mol. Graph. Model.20113018619710.1016/j.jmgm.2011.07.00421831680
    [Google Scholar]
  38. KandakatlaN. RamakrishnanG. KarthikeyanJ. ChekkaraR. Pharmacophore modeling, atom-based 3D-QSAR and docking studies of chalcone derivatives as tubulin inhibitors.Orient. J. Chem.20143031083109810.13005/ojc/300320
    [Google Scholar]
  39. VistoliG. PedrettiA. TestaB. Assessing drug-likeness – what are we missing?Drug Discov. Today2008137-828529410.1016/j.drudis.2007.11.00718405840
    [Google Scholar]
  40. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  41. ErtlP. RohdeB. SelzerP. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.J. Med. Chem.200043203714371710.1021/jm000942e11020286
    [Google Scholar]
  42. LiuD.C. ZhangH.J. JinC.M. QuanZ.S. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents.Molecules201621316410.3390/molecules2103016426938519
    [Google Scholar]
  43. MalikS. BahareR.S. KhanS.A. Design, synthesis and anticonvulsant evaluation of N-(benzo[d]thiazol-2-ylcarbamoyl)-2-methyl-4-oxoquinazoline-3(4H)-carbothioamide derivatives: A hybrid pharmacophore approach.Eur. J. Med. Chem.20136711310.1016/j.ejmech.2013.06.02623831504
    [Google Scholar]
  44. PandeyaS.N. YogeeswariP. StablesJ.P. Synthesis and anticonvulsant activity of 4-bromophenyl substituted aryl semicarbazones.Eur. J. Med. Chem.2000351087988610.1016/S0223‑5234(00)01169‑711121613
    [Google Scholar]
  45. IbrahimM.K. AdlE.K. KarmalawyA.A.A. Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl-3-substituted-quinazolin-4(3H)-ones.Bull. Fac. Pharm. Cairo Univ.201553210111610.1016/j.bfopcu.2015.05.001
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638299019240418055933
Loading
/content/journals/cddt/10.2174/0115701638299019240418055933
Loading

Data & Media loading...

Supplements

ARRIVE checklist and Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test