Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Leishmaniasis, a debilitating disease caused by protozoan parasites of the genus Leishmania and transmitted by the bite of a female sandfly, continues to present significant challenges despite ongoing research and collaboration in vaccine development. The intricate interaction between the parasite’s life cycle stages and the host’s immunological response, namely the promastigote and amastigote forms, adds complexity to vaccine design. The quest for a potent vaccine against Leishmaniasis demands a comprehensive understanding of the immune mechanisms that confer long-lasting protection, which necessitates extensive research efforts. In this pursuit, innovative approaches such as reverse vaccinology and computer-aided design offer promising avenues for unraveling the intricacies of host-pathogen interactions and identifying effective vaccine candidates. However, numerous obstacles, including limited treatment options, the need for sustained antigenic presence, and the prevalence of co-infections, particularly with HIV, impede progress. Nevertheless, through persistent research endeavours and collaborative initiatives, the goal of developing a highly efficacious vaccine against Leishmaniasis can be achieved, offering hope through the latest Omics data development with immunoinformatics approaches for effective vaccine design for the prevention of this disease.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638291767240513113400
2024-05-24
2025-03-15
Loading full text...

Full text loading...

References

  1. AbdellahiL. IrajiF. MahmoudabadiA. HejaziS.H. Vaccination in Leishmaniasis: A review article.Iran. Biomed. J.202226113510.52547/ibj.26.1.3534952558
    [Google Scholar]
  2. MannS. FrascaK. ScherrerS. Henao-MartínezA.F. NewmanS. RamananP. SuarezJ.A. A review of Leishmaniasis: Current knowledge and future directions.Curr. Trop. Med. Rep.20218212113210.1007/s40475‑021‑00232‑733747716
    [Google Scholar]
  3. KedzierskiL. Leishmaniasis vaccine: Where are we today?J. Glob. Infect. Dis.20102217718510.4103/0974‑777X.6288120606974
    [Google Scholar]
  4. SrivastavaS. ShankarP. MishraJ. SinghS. Possibilities and challenges for developing a successful vaccine for leishmaniasis.Parasit. Vectors20169127710.1186/s13071‑016‑1553‑y27175732
    [Google Scholar]
  5. MohebaliM. NadimA. KhamesipourA. An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines.Acta Trop.201920010517310.1016/j.actatropica.2019.10517331525323
    [Google Scholar]
  6. TripathiP. SinghV. NaikS. Immune response to leishmania: Paradox rather than paradigm.FEMS Immunol. Med. Microbiol.200751222924210.1111/j.1574‑695X.2007.00311.x17714488
    [Google Scholar]
  7. HandmanE. Leishmaniasis: Current status of vaccine development.Clin Microbiol Rev.20011422294310.1128/CMR.14.2.229‑243.2001
    [Google Scholar]
  8. Lauletta LindosoJ.A. Alves CunhaM. QueirozI. Valente MoreiraC.H. Leishmaniasis–HIV coinfection: Current challenges.HIV AIDS (Auckl.)2016814715610.2147/HIV.S9378927785103
    [Google Scholar]
  9. MadusankaR.K. SilvaH. KarunaweeraN.D. Treatment of Cutaneous Leishmaniasis and insights into species-specific responses: A narrative review.Infect. Dis. Ther.202211269571110.1007/s40121‑022‑00602‑235192172
    [Google Scholar]
  10. AaraN. KhandelwalK. BumbR.A. Clinco-epidemiologic study of cutaneous leishmaniasis in Bikaner, Rajasthan, India.Am J Trop Med Hyg.2013891111510.4269/ajtmh.12‑0558
    [Google Scholar]
  11. St GeorgeS. BishopJ.V. TitusR.G. SelitrennikoffC.P. Novel compounds active against Leishmania major.Antimicrob. Agents Chemother.200650247447910.1128/AAC.50.2.474‑479.200616436699
    [Google Scholar]
  12. LunaE.J.A. CamposS.R.S.L.D.C. Vaccine development against neglected tropical diseases.Cad Saude Publica.202036Suppl 2e00215720
    [Google Scholar]
  13. De BritoR.C.F. CardosoJ.M.D.O. ReisL.E.S. VieiraJ.F. MathiasF.A.S. RoattB.M. Aguiar-SoaresR.D.D.O. RuizJ.C. ResendeD.M. ReisA.B. Peptide vaccines for Leishmaniasis.Front. Immunol.20189104310.3389/fimmu.2018.0104329868006
    [Google Scholar]
  14. Costa-da-SilvaA.C. NascimentoD.O. FerreiraJ.R.M. Guimarães-PintoK. Freire-de-LimaL. MorrotA. Decote-RicardoD. FilardyA.A. Freire-de-LimaC.G. Immune responses in Leishmaniasis: An overview.Trop. Med. Infect. Dis.2022745410.3390/tropicalmed704005435448829
    [Google Scholar]
  15. de OliveiraC.I. NascimentoI.P. BarralA. SotoM. Barral-NettoM. Challenges and perspectives in vaccination against leishmaniasis.Parasitol. Int.200958431932410.1016/j.parint.2009.07.01319698801
    [Google Scholar]
  16. ModabberF. Leishmaniasis vaccines: Past, present and future.Int. J. Antimicrob. Agents201036Suppl. 1S58S6110.1016/j.ijantimicag.2010.06.02420801000
    [Google Scholar]
  17. NadimA. JavadianE. Tahvildar-BidruniG. GhorbaniM. Effectiveness of leishmanization in the control of cutaneous leishmaniasis.Bull. Soc. Pathol. Exot.19837643773836354498
    [Google Scholar]
  18. SukumaranB. MadhubalaR. Leishmaniasis: Current status of vaccine development.Curr. Mol. Med.20044666767910.2174/156652404336020315357215
    [Google Scholar]
  19. OliA.N. ObialorW.O. IfeanyichukwuM.O. OdimegwuD.C. OkoyehJ.N. EmechebeG.O. AdejumoS.A. IbeanuG.C. Immunoinformatics and vaccine development: An overview.Immuno Targets Ther.20209133010.2147/ITT.S24106432161726
    [Google Scholar]
  20. CroftS.L. SundarS. FairlambA.H. Drug resistance in leishmaniasis.Clin. Microbiol. Rev.200619111112610.1128/CMR.19.1.111‑126.200616418526
    [Google Scholar]
  21. PandeyS.C. KumarA. SamantM. Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis.Parasite Immunol.2020429e1273210.1111/pim.1273232418227
    [Google Scholar]
  22. SinghO.P. SundarS. Visceral leishmaniasis elimination in India: Progress and the road ahead.Expert Rev. Anti Infect. Ther.202220111381138810.1080/14787210.2022.212635236111688
    [Google Scholar]
  23. KedzierskiL. SakthianandeswarenA. CurtisJ. AndrewsP. JunkP. KedzierskaK. Leishmaniasis: Current treatment and prospects for new drugs and vaccines.Curr. Med. Chem.200916559961410.2174/09298670978745848919199925
    [Google Scholar]
  24. DincR. Leishmania vaccines: The current situation with its promising aspect for the future.Korean J. Parasitol.202260637939110.3347/kjp.2022.60.6.37936588414
    [Google Scholar]
  25. LageD.P. ValeD.L. LinharesF.P. FreitasC.S. MachadoA.S. CardosoJ.M.O. de OliveiraD. GalvaniN.C. de OliveiraM.P. Oliveira-da-SilvaJ.A. RamosF.F. TavaresG.S.V. LudolfF. BandeiraR.S. PereiraI.A.G. Chávez-FumagalliM.A. RoattB.M. Machado-de-ÁvilaR.A. ChristodoulidesM. CoelhoE.A.F. MartinsV.T. A Recombinant chimeric protein-based vaccine containing t-cell epitopes from amastigote proteins and combined with distinct adjuvants, induces immunogenicity and protection against Leishmania infantum infection.Vaccines (Basel)2022107114610.3390/vaccines1007114635891310
    [Google Scholar]
  26. BhattacharjeeM. BanerjeeM. MukherjeeA. In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach.J. Mol. Model.20232949910.1007/s00894‑023‑05503‑w36928431
    [Google Scholar]
  27. NoazinS. ModabberF. KhamesipourA. SmithP.G. MoultonL.H. NasseriK. SharifiI. KhalilE.A.G. IvanD.V.B. AntunesC.M.F. KienyM.P. TannerM. First generation leishmaniasis vaccines: A review of field efficacy trials.Vaccine20082965246759-67
    [Google Scholar]
  28. ColerR.N. GotoY. BogatzkiL. RamanV. ReedS.G. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells.Infect. Immun.20077594648465410.1128/IAI.00394‑0717606603
    [Google Scholar]
  29. Regina-SilvaS. FeresA.M.L.T. França-SilvaJ.C. DiasE.S. MichalskyÉ.M. de AndradeH.M. CoelhoE.A.F. RibeiroG.M. FernandesA.P. Machado-CoelhoG.L.L. Field randomized trial to evaluate the efficacy of the Leish-Tec ® vaccine against canine visceral leishmaniasis in an endemic area of Brazil.Vaccine201634192233223910.1016/j.vaccine.2016.03.01926997002
    [Google Scholar]
  30. YounisB. M. OsmanM. KhalilE. A. G. SantoroF. FuriniS. WigginsR. KedingA. CarraroM. MusaA. E. A. AbdarahamanM. A. A. MandefieldL. BlandM. AebischerT. GabeR. LaytonA. M. LaceyC. J. N. KayeP. M. MusaA. M. Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan.Mol Ther.20212972366237710.1016/j.ymthe.2021.03.020
    [Google Scholar]
  31. Salehi-SanganiG. MohebaliM. JajarmiV. KhamesipourA. BandehpourM. MahmoudiM. Zahedi-ZavaramH. Immunization against Leishmania major infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens.Iran. J. Basic Med. Sci.201922121493150132133069
    [Google Scholar]
  32. Pacheco-FernandezT. VolpedoG. GannavaramS. BhattacharyaP. DeyR. SatoskarA. MatlashewskiG. NakhasiH.L. Revival of Leishmanization and Leishmanin.Front. Cell. Infect. Microbiol.20211163980110.3389/fcimb.2021.63980133816344
    [Google Scholar]
  33. VolpedoG. BhattacharyaP. GannavaramS. Pacheco-FernandezT. OljuskinT. DeyR. SatoskarA.R. NakhasiH.L. The history of live attenuated Centrin Gene-Deleted Leishmania vaccine candidates.Pathogens202211443110.3390/pathogens1104043135456106
    [Google Scholar]
  34. MasignaniV. RappuoliR. PizzaM. Reverse vaccinology: A genome-based approach for vaccine development.Expert Opin. Biol. Ther.20022889590510.1517/14712598.2.8.89512517268
    [Google Scholar]
  35. BrownJ. PirrungM. McCueL.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool.Bioinformatics201733193137313910.1093/bioinformatics/btx37328605449
    [Google Scholar]
  36. ZhaoT. CaiY. JiangY. HeX. WeiY. YuY. TianX. Vaccine adjuvants: Mechanisms and platforms.Signal Transduct. Target. Ther.20238128310.1038/s41392‑023‑01557‑737468460
    [Google Scholar]
  37. AimanS. AhmadA. KhanA.A. AlanaziA.M. SamadA. AliS.L. LiC. RenZ. KhanA. KhattakS. Vaccinomics-based next-generation multi-epitope chimeric vaccine models prediction against Leishmania tropica - a hierarchical subtractive proteomics and immunoinformatics approach.Front. Immunol.202314125961210.3389/fimmu.2023.125961237781384
    [Google Scholar]
  38. LypaczewskiP. MatlashewskiG. Leishmania donovani hybridisation and introgression in nature: a comparative genomic investigation.Lancet Microbe202126e250e25810.1016/S2666‑5247(21)00028‑835544170
    [Google Scholar]
  39. YadavS. PrakashJ. ShuklaH. DasK.C. TripathiT. DubeyV.K. Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite.Pathog. Glob. Health2020114847148110.1080/20477724.2020.184297633161887
    [Google Scholar]
  40. XuC. LiHB. FlavellR.A. A special collection of reviews on frontiers in immunology.Cell Res.2020301082782810.1038/s41422‑020‑00403‑7
    [Google Scholar]
  41. GuptaG. OghumuS. SatoskarA.R. Mechanisms of immune evasion in leishmaniasis.Adv. Appl. Microbiol.20138215518410.1016/B978‑0‑12‑407679‑2.00005‑323415155
    [Google Scholar]
  42. LundegaardC. LundO. BuusS. NielsenM. Major histocompatibility complex class I binding predictions as a tool in epitope discovery.Immunology2010130330931810.1111/j.1365‑2567.2010.03300.x20518827
    [Google Scholar]
  43. SchulerM.M. NastkeM.D. StevanovićS. SYFPEITHI: Database for searching and T-cell epitope prediction.Methods Mol. Biol.2007409759310.1007/978‑1‑60327‑118‑9_518449993
    [Google Scholar]
  44. MichalikM. DjahanshiriB. LeoJ.C. LinkeD. Reverse vaccinology: The pathway from genomes and epitope predictions to tailored recombinant vaccines.Methods Mol. Biol.201614038710610.1007/978‑1‑4939‑3387‑7_427076126
    [Google Scholar]
  45. RoyK. NaskarK. GhoshM. RoyS. Class II MHC/peptide interaction in Leishmania donovani infection: implications in vaccine design.J. Immunol.2014192125873588010.4049/jimmunol.130297024850723
    [Google Scholar]
  46. YaoC. DonelsonJ.E. WilsonM.E. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function.Mol. Biochem. Parasitol.2003132111610.1016/S0166‑6851(03)00211‑114563532
    [Google Scholar]
  47. MeyerC.U. ZeppF. Principles in immunology for the design and development of vaccines.Methods Mol. Biol.20222410275610.1007/978‑1‑0716‑1884‑4_234914041
    [Google Scholar]
  48. DikhitM.R. DasS. MahanteshV. The potential HLA Class I-restricted epitopes derived from LeIF and TSA of Leishmania donovani evoke anti-leishmania CD8+ T lymphocyte response.Sci Rep.2018814175
    [Google Scholar]
  49. KimutaiR. MusaA.M. NjorogeS. OmolloR. AlvesF. HailuA. KhalilE.A.G. DiroE. SoipeiP. MusaB. SalmanK. RitmeijerK. ChappuisF. RashidJ. MohammedR. JamenehA. MakonnenE. OloboJ. OkelloL. SagakiP. StrubN. EllisS. AlvarJ. BalasegaramM. AlirolE. WasunnaM. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of Visceral Leishmaniasis in Eastern Africa: Results from a Pharmacovigilance Programme.Clin. Drug Investig.201737325927210.1007/s40261‑016‑0481‑028066878
    [Google Scholar]
  50. SundarS. ChakravartyJ. An update on pharmacotherapy for leishmaniasis.Expert Opin. Pharmacother.201516223725210.1517/14656566.2015.97385025346016
    [Google Scholar]
  51. RameshV. DixitK.K. SharmaN. SinghR. SalotraP. Assessing the efficacy and safety of Liposomal Amphotericin B and Miltefosine in combination for treatment of Post Kala-Azar Dermal Leishmaniasis.J. Infect. Dis.2020221460861710.1093/infdis/jiz48631854451
    [Google Scholar]
  52. PradhanS. SchwartzR.A. PatilA. GrabbeS. GoldustM. Treatment options for leishmaniasis.Clin. Exp. Dermatol.202247351652110.1111/ced.1491934480806
    [Google Scholar]
  53. MusaA.M. MbuiJ. MohammedR. OloboJ. RitmeijerK. AlcobaG. Muthoni OuattaraG. EgondiT. NakanwagiP. OmolloT. WasunnaM. VerrestL. DorloT.P.C. Musa YounisB. NourA. Taha Ahmed ElmukashfiE. Ismail Omer HarounA. KhalilE.A.G. NjengaS. FikreH. MekonnenT. MershaD. SisayK. SagakiP. AlvarJ. SolomosA. AlvesF. Paromomycin and Miltefosine combination as an alternative to treat patients with Visceral Leishmaniasis in Eastern Africa: A randomized, controlled, multicountry trial.Clin. Infect. Dis.2023763e1177e118510.1093/cid/ciac64336164254
    [Google Scholar]
  54. SeifertK. MundayJ. SyedaT. CroftS.L. In vitro interactions between sitamaquine and amphotericin B, sodium stibogluconate, miltefosine, paromomycin and pentamidine against Leishmania donovani.J. Antimicrob. Chemother.201166485085410.1093/jac/dkq54221393188
    [Google Scholar]
  55. SundarS. ChakravartyJ. Liposomal amphotericin B and leishmaniasis: Dose and response.J. Glob. Infect. Dis.20102215916610.4103/0974‑777X.6288620606972
    [Google Scholar]
  56. MurrayH.W. HariprashadJ. Activity of oral atovaquone alone and in combination with antimony in experimental visceral leishmaniasis.Antimicrob. Agents Chemother.199640358658710.1128/AAC.40.3.5868851575
    [Google Scholar]
  57. HerwaldtB.L. BermanJ.D. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies.Am. J. Trop. Med. Hyg.199246329630610.4269/ajtmh.1992.46.2961313656
    [Google Scholar]
  58. AlborziA. PouladfarG. AttarA. FalahiF. JafarpourZ. KarimiA. KadivarM.R. Effectiveness of short-course Meglumine Antimoniate (Glucantime ® ) for treatment of Visceral Leishmaniasis: A 13-Year, multistage, non-inferiority study in Iran.Am. J. Trop. Med. Hyg.201796118218910.4269/ajtmh.16‑034527879460
    [Google Scholar]
  59. SundarS. OlliaroP.L. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management.Ther. Clin. Risk Manag.20073573374018472998
    [Google Scholar]
  60. PokharelP. GhimireR. LamichhaneP. Efficacy and safety of Paromomycin for Visceral Leishmaniasis: A systematic review.J. Trop. Med.202120211910.1155/2021/862903934349806
    [Google Scholar]
  61. PiccicaM. LagiF. BartoloniA. ZammarchiL. Efficacy and safety of pentamidine isethionate for tegumentary and visceral human leishmaniasis: A systematic review.J. Travel Med.2021286taab06510.1093/jtm/taab06533890115
    [Google Scholar]
  62. Lai A FatE.J.S.K. VredeM.A. SoetosenojoR.M. Lai A FatR.F.M. LaiA. FatR.F. Pentamidine, the drug of choice for the treatment of cutaneous leishmaniasis in Surinam.Int. J. Dermatol.2002411179680010.1046/j.1365‑4362.2002.01633.x12453009
    [Google Scholar]
  63. KocharD. K. AseriS. SharmaB. V. BumbR. A. MehtaR. D. PurohitS. K. The role of rifampicin in the management of cutaneous leishmaniasis.QJM2000931173377710.1093/qjmed/93.11.733
    [Google Scholar]
  64. EbbersM. HemmerC.J. Müller-HilkeB. ReisingerE.C. Immunotherapy and vaccination against infectious diseases.Wien. Klin. Wochenschr.202113313-1471472010.1007/s00508‑020‑01746‑233326055
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638291767240513113400
Loading
/content/journals/cddt/10.2174/0115701638291767240513113400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test