Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

A novel series of 1,3,4‒oxadiazole connected to derivatives of quinazolinone ( and ) was synthesized in the current investigation, and its anticancer and Topoisomerase‒II inhibitory activity was evaluated.

Objective

These findings inspired the design, synthesis, and biological analysis of these 1,3,4‒oxadiazole-quinazolinone analogues as antiproliferative Topo‒II inhibitors.

Methods

The novel compound structures were determined using mass spectrometry and spectral methods (IR, NMR: 1H & 13C). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colourimetric assay has been used to evaluate the anticancer efficacy of these drugs, and Autodock 4.2 provides a description of the docking results. For the more active members, additional biological tests, such as the Topo‒II inhibition experiment, were performed. These compounds' physicochemical and ADMET characteristics were examined in more detail.

Results

In the experiment for antiproliferative activity, compounds , and demonstrated encouraging cytotoxicity findings against HCT‒116 and HepG2 cancer cell lines, with IC values ranging from 3.85 to 19.43 μM. Compounds , , and were the most potent inhibitors of Topo II with IC values of 15.18, 17.55, and 12.59 μM, respectively. Additionally, the docked compound showed the strongest conventional hydrogen bonds among the residues Leu507(B), Asn508(B), Asn520(B), and Glu522(B) in the Human topoisomerase‒IIβ active site in the DNA complex (4G0U) when compared to the findings of docking experiments.

Conclusion

New findings have discovered the fact that fused 1,3,4‒oxadiazole bearing quinazolinone contributed great significance in the field of medicinal chemistry due to their diverse biological properties. Finally, the pharmacokinetic profile of all the synthesized derivatives was estimated using SwissADME, where some of the compounds followed Lipinski, Veber, Egan, and Muegge rules without deviation. The result of this activity advises that with a simple modification in structure, a potent anticancer agent can be generated with good efficacy.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638282655240402042126
2025-01-01
2024-11-01
Loading full text...

Full text loading...

References

  1. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533835010.1038/nrc260719377506
    [Google Scholar]
  2. RescifinaA. ZagniC. VarricaM.G. PistaràV. CorsaroA. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling.Eur. J. Med. Chem.2014749511510.1016/j.ejmech.2013.11.02924448420
    [Google Scholar]
  3. GodziebaM. CiesielskiS. Natural DNA intercalators as promising therapeutics for cancer and Infectious diseases.Curr. Cancer Drug Targets2020201193210.2174/156800961966619100711251631589125
    [Google Scholar]
  4. YokochiT. RobertsonK.D. Doxorubicin inhibits DNMT1, resulting in conditional apoptosis.Mol. Pharmacol.20046661415142010.1124/mol.104.00263415340041
    [Google Scholar]
  5. FergusonL.R. DennyW.A. Genotoxicity of non-covalent interactions: DNA intercalators.Mutat. Res.20076231-2142310.1016/j.mrfmmm.2007.03.01417498749
    [Google Scholar]
  6. WangJ.C. Cellular roles of DNA topoisomerases: A molecular perspective.Nat. Rev. Mol. Cell Biol.20023643044010.1038/nrm83112042765
    [Google Scholar]
  7. ShenkenbergT.D. Von HoffD.D. Mitoxantrone: A new anticancer drug with significant clinical activity.Ann. Intern. Med.19861051678110.7326/0003‑4819‑105‑1‑673521429
    [Google Scholar]
  8. ChilinA. MarzaroG. MarzanoC. ViaL.D. FerlinM.G. PastoriniG. GuiottoA. Synthesis and antitumor activity of novel amsacrine analogs: The critical role of the acridine moiety in determining their biological activity.Bioorg. Med. Chem.200917252352910.1016/j.bmc.2008.11.07219101158
    [Google Scholar]
  9. PujarG.V. MoshinA.S. Design, synthesis, and cytotoxicity evaluation of new 2,4-disubstituted quinazolines as potential anticancer agents.J. Appl. Pharm. Sci.20201083742
    [Google Scholar]
  10. AltamimiA.S. El-AzabA.S. AbdelhamidS.G. AlamriM.A. BayoumiA.H. AlqahtaniS.M. AlabbasA.B. AltharawiA.I. AlossaimiM.A. MohamedM.A. Synthesis, anticancer screening of some novel trimethoxy quinazolines and VEGFR2, EGFR tyrosine kinase inhibitors assay; molecular docking studies.Molecules20212610299210.3390/molecules2610299234069962
    [Google Scholar]
  11. JainN. PandeyV.K. An efficient synthesis of tetrazolo indolo quinazolines and their antiviral study.J. Chemist. Chem Sci20188469369810.29055/jccs/628
    [Google Scholar]
  12. WanZ. HuD. LiP. XieD. GanX. Synthesis, Antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety.Molecules2015207118611187410.3390/molecules20071186126132908
    [Google Scholar]
  13. LamT. HilgersM.T. CunninghamM.L. KwanB.P. NelsonK.J. Brown-DriverV. OngV. TrzossM. HoughG. ShawK.J. FinnJ. Structure-based design of new dihydrofolate reductase antibacterial agents: 7-(benzimidazol-1-yl)-2,4-diaminoquinazolines.J. Med. Chem.201457365166810.1021/jm401204g24428639
    [Google Scholar]
  14. JiangX. YangS. YanY. LinF. ZhangL. ZhaoW. ZhaoC. XuH. Design, synthesis, and insecticidal activity of 5,5-disubstituted 4,5-dihydropyrazolo [1,5-a]quinazolines as novel antagonists of GABA receptors.J. Agric. Food Chem.20206850150051501410.1021/acs.jafc.0c0246233269911
    [Google Scholar]
  15. NasrullayevAO ToshevaNA ElmuradovBZ EshmuratovaAA AzimovaSS Synthesis and in vitro investigation of insecticidal activity of some tricyclic quinazolines and their thioanalogues.J Basic appl Res201624470475
    [Google Scholar]
  16. AlafeefyA.M. KadiA.A. DeebA.O.A. TahirE.K.E.H. jaberA.N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives.Eur. J. Med. Chem.201045114947495210.1016/j.ejmech.2010.07.06720817329
    [Google Scholar]
  17. KrasovskaN. StavytskyiV. NosulenkoI. KarpenkoO. VoskoboinikO. KovalenkoS. Quinazoline-containing hydrazydes of dicarboxylic acids and products of their structural modification: A novel class of anti-inflammatory agents.Acta Chim. Slov.202168239540310.17344/acsi.2020.644034738126
    [Google Scholar]
  18. AlagarsamyV. ChitraK. SaravananG. SolomonV.R. SulthanaM.T. NarendharB. An overview of quinazolines: Pharmacological significance and recent developments.Eur. J. Med. Chem.201815162868510.1016/j.ejmech.2018.03.07629656203
    [Google Scholar]
  19. PalaskaE. ŞahinG. KelicenP. DurluN.T. AltinokG. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones.Farmaco200257210110710.1016/S0014‑827X(01)01176‑412164209
    [Google Scholar]
  20. AhsanM.J. SamyJ.G. KhalilullahH. NomaniM.S. SaraswatP. GaurR. SinghA. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents.Bioorg. Med. Chem. Lett.201121247246725010.1016/j.bmcl.2011.10.05722071303
    [Google Scholar]
  21. RaiL.K.M. LingannaN. Synthesis and evaluation of antimitotic activity of alkylated 2-amino-1,3,4-oxadiazole derivatives.Farmaco200055538939210.1016/S0014‑827X(00)00056‑210983285
    [Google Scholar]
  22. JoshiS.D. VagdeviH.M. VaidyaV.P. GadaginamathG.S. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents.Eur. J. Med. Chem.20084391989199610.1016/j.ejmech.2007.11.01618207286
    [Google Scholar]
  23. KotaiahY. HarikrishnaN. NagarajuK. RaoV.C. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives.Eur. J. Med. Chem.20125834034510.1016/j.ejmech.2012.10.00723149297
    [Google Scholar]
  24. MaddiV. IngaleN. PalkarM. RonadP. MamledesaiS. VishwanathswamyA.H.M. Synthesis and evaluation of anti-inflammatory and analgesic activity of 3-[(5-substituted-1,3,4-oxadiazol-2-yl-thio)acetyl]-2H-chromen-2-ones.Med. Chem. Res.201221162610.1007/s00044‑010‑9494‑z
    [Google Scholar]
  25. BondockS. AdelS. EtmanH.A. BadriaF.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles.Eur. J. Med. Chem.20124819219910.1016/j.ejmech.2011.12.01322204901
    [Google Scholar]
  26. TutoneM. PecoraroB. AlmericoA.M. Investigation on quantitative structure-activity relationships of 1,3,4-oxadiazole derivatives as potential telomerase inhibitors.Curr. Drug Discov. Technol.2020171798610.2174/157016381566618072411320830039762
    [Google Scholar]
  27. NaghibiH. SalariR. YousefiM. RezaiyanK.M. GhanbarzadehM.R. BordbarF.M.R. Herbal therapies for weight gain and metabolic abnormalities induced by atypical antipsychotics: A review article.Curr. Drug Discov. Technol.2023205e11042321566010.2174/157016382066623041111134337055899
    [Google Scholar]
  28. BiernackiK. DaśkoM. CiupakO. KubińskiK. RachonJ. DemkowiczS. Novel 1,2,4-oxadiazole derivatives in drug discovery.Pharmaceuticals202013611110.3390/ph1306011132485996
    [Google Scholar]
  29. DungaA.K. AllakaT.R. KethavarapuY. NechipadappuS.K. PothanaP. RavadaK. KashannaJ. Design, synthesis and biological evaluation of novel substituted indazole-1,2,3-triazolyl-1,3,4-oxadiazoles: Antimicrobial activity evaluation and docking study.Results Chem.2022410060510.1016/j.rechem.2022.100605
    [Google Scholar]
  30. GogisettiG. KannaU. SharmaV. AllakaR.T. TadiboinaR.B. Design, synthesis and bio-evaluation of novel chalcones bridged with 1,3,4-oxadiazole linkers: ADMET and docking analysis.Chem. Biodivers.20221912e20220068110.1002/cbdv.20220068136417552
    [Google Scholar]
  31. DengY. YinS. JingX. ZhengY. Design, synthesis, and antiviral activities evaluation of novel quinazoline derivatives containing sulfonamide moiety.Heterocycl. Commun.20232912022016010.1515/hc‑2022‑0160
    [Google Scholar]
  32. AllakaT.R. KummariB. PolkamN. KuntalaN. ChepuriK. AnireddyJ.S. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling.Mol. Divers.20222631581159610.1007/s11030‑021‑10287‑334341943
    [Google Scholar]
  33. Al-RashoodS.T. HamedA.R. HassanG.S. AlkahtaniH.M. AlmehiziaA.A. AlharbiA. Al-SaneaM.M. EldehnaW.M. Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity.J. Enzyme Inhib. Med. Chem.202035183183910.1080/14756366.2020.174328132208781
    [Google Scholar]
  34. ThabrewM.I. HughesR.D. McFarlaneI.G. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay.J. Pharm. Pharmacol.201149111132113510.1111/j.2042‑7158.1997.tb06055.x9401951
    [Google Scholar]
  35. IbrahimM.K. Abd-ElrahmanA.A. AyyadR.R.A. El-AdlK. MansourA.M. EissaI.H. Design and synthesis of some novel 2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)-N-(4-(substituted)phenyl)acetamide derivatives for biological evaluation as anticonvulsant agents.Bull. Fac. Pharm. Cairo Univ.201351110111110.1016/j.bfopcu.2012.11.003
    [Google Scholar]
  36. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  37. WuC.C. LiY.C. WangY.R. LiT.K. ChanN.L. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs.Nucleic Acids Res.20134122106301064010.1093/nar/gkt82824038465
    [Google Scholar]
  38. RaoV.G. AllakaT.R. GandlaM.K. NandaV.V.P.K. PindiS.R. VaddiP.R.R. BollikollaH.B. Synthesis, antimicrobial activity, and in silico studies of fluoroquinolones bearing 1,3,4-oxadiazolyl-triazole derivatives.J. Heterocycl. Chem.202360101666168310.1002/jhet.4700
    [Google Scholar]
  39. KhattabE.S.A.E.H. RagabA. FtouhA.M.A. ElhenawyA.A. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins.J. Biomol. Struct. Dyn.20224023132911330910.1080/07391102.2021.198903634647855
    [Google Scholar]
  40. BakchiB. KrishnaA.D. SreecharanE. GaneshV.B.J. NiharikaM. MaharshiS. PuttaguntaS.B. SigalapalliD.K. BhandareR.R. ShaikA.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective.J. Mol. Struct.2022125913271210.1016/j.molstruc.2022.132712
    [Google Scholar]
  41. HassanA.S. MorsyN.M. AboulthanaW.M. RagabA. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations.RSC Advances202313149281930310.1039/D3RA00297G36950709
    [Google Scholar]
  42. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  43. DainaA. ZoeteV. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638282655240402042126
Loading
/content/journals/cddt/10.2174/0115701638282655240402042126
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test