Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

A persistent long-standing, inflammatory skin condition that is brought on by a variety of factors is psoriasis. It is distinguished by itchy, scaly, reddish plaques, particularly on areas of the body that are frequently chafed, including the extensor sites of the limbs. Recent developments in molecular-targeted therapy that use biologics or small-molecule inhibitors can effectively cure even the worst psoriatic indications. The outstanding clinical outcomes of treatment help to clarify the disease's detrimental consequences on quality of life. Biomarkers that identify deep remission are essential for developing uniform treatment plans. Blood protein markers such as AMPs that are consistently quantifiable can be very helpful in routine clinical practice. The metabolic pathways involve biomarkers that can not only help diagnose psoriasis in a clinical setting but also indicate its severity based on the levels present in the body. Machine learning and AI have made a diagnosis of the expression of genes as biomarkers more accessible. In this article, biomarkers, as well as their key role in psoriasis, are discussed.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638278470240312075112
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ArmstrongA.W. MehtaM.D. SchuppC.W. GondoG.C. BellS.J. GriffithsC.E.M. Psoriasis prevalence in adults in the United States.JAMA Dermatol.2021157894094610.1001/jamadermatol.2021.200734190957
    [Google Scholar]
  2. MeaseP.J. GladmanD.D. PappK.A. KhraishiM.M. ThaçiD. BehrensF. NorthingtonR. FuimanJ. BananisE. BoggsR. AlvarezD. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics.J. Am. Acad. Dermatol.201369572973510.1016/j.jaad.2013.07.02323981683
    [Google Scholar]
  3. GriffithsC.E.M. BarkerJ.N.W.N. Pathogenesis and clinical features of psoriasis.Lancet2007370958326327110.1016/S0140‑6736(07)61128‑317658397
    [Google Scholar]
  4. YangE. BeckK. SanchezI. KooJ. LiaoW. The impact of genital psoriasis on quality of life: A systematic review.Psoriasis Targets Ther.20188414710.2147/PTT.S169389
    [Google Scholar]
  5. CaiazzoG. FabbrociniG. Di CaprioR. RaimondoA. ScalaE. BalatoN. BalatoA. Psoriasis, cardiovascular events, and biologics: Lights and shadows.Front. Immunol.20189166810.3389/fimmu.2018.0166830150978
    [Google Scholar]
  6. BoehnckeW.H. BoehnckeS. TobinA.M. KirbyB. The ‘psoriatic march’: A concept of how severe psoriasis may drive cardiovascular comorbidity.Exp. Dermatol.201120430330710.1111/j.1600‑0625.2011.01261.x21410760
    [Google Scholar]
  7. BoechatJ.L. Psoriatic march, skin inflammation and cardiovascular events – two plaques for one syndrome.Int. J. Cardiovasc. Sci.202033210911110.36660/ijcs.20200021
    [Google Scholar]
  8. TangL. YangX. LiangY. XieH. DaiZ. ZhengG. Transcription factor retinoid-related orphan receptor γt: A promising target for the treatment of psoriasis.Front. Immunol.20189121010.3389/fimmu.2018.0121029899748
    [Google Scholar]
  9. LaiY. GalloR.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense.Trends Immunol.200930313114110.1016/j.it.2008.12.00319217824
    [Google Scholar]
  10. OgawaE. SatoY. MinagawaA. OkuyamaR. Pathogenesis of psoriasis and development of treatment.J. Dermatol.201845326427210.1111/1346‑8138.1413929226422
    [Google Scholar]
  11. MorizaneS. GalloR.L. Antimicrobial peptides in the pathogenesis of psoriasis.J. Dermatol.201239322523010.1111/j.1346‑8138.2011.01483.x22352846
    [Google Scholar]
  12. TakahashiT. YamasakiK. Psoriasis and antimicrobial peptides.Int. J. Mol. Sci.20202118679110.3390/ijms2118679132947991
    [Google Scholar]
  13. ArakawaA. SiewertK. StöhrJ. BesgenP. KimS.M. RühlG. NickelJ. VollmerS. ThomasP. KrebsS. PinkertS. SpannaglM. HeldK. KammerbauerC. BeschR. DornmairK. PrinzJ.C. Melanocyte antigen triggers autoimmunity in human psoriasis.J. Exp. Med.2015212132203221210.1084/jem.2015109326621454
    [Google Scholar]
  14. NishimotoS. KotaniH. TsurutaS. ShimizuN. ItoM. ShichitaT. MoritaR. TakahashiH. AmagaiM. YoshimuraA. Th17 cells carrying TCR recognizing epidermal autoantigen induce psoriasis-like skin inflammation.J. Immunol.201319163065307210.4049/jimmunol.130034823956432
    [Google Scholar]
  15. KimT.G. KimD.S. KimH.P. LeeM.G. The pathophysiological role of dendritic cell subsets in psoriasis.BMB Rep.2014472606810.5483/BMBRep.2014.47.2.01424411465
    [Google Scholar]
  16. WangA. BaiY. Dendritic cells: The driver of psoriasis.J. Dermatol.202047210411310.1111/1346‑8138.1518431833093
    [Google Scholar]
  17. TakagiH. ArimuraK. UtoT. FukayaT. NakamuraT. ChoijookhuuN. HishikawaY. SatoK. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.Sci. Rep.2016612447710.1038/srep2447727075414
    [Google Scholar]
  18. KopfnagelV. WagenknechtS. HarderJ. HofmannK. KleineM. BuchA. SodeikB. WerfelT. RNase 7 strongly promotes TLR9-mediated DNA sensing by human plasmacytoid dendritic cells.J. Invest. Dermatol.2018138487288110.1016/j.jid.2017.09.05229157732
    [Google Scholar]
  19. VecellioM. HakeV.X. DavidsonC. CarenaM.C. WordsworthB.P. SelmiC. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis.Front. Immunol.20211159608610.3389/fimmu.2020.59608633574815
    [Google Scholar]
  20. SuzukiE. MellinsE.D. GershwinM.E. NestleF.O. AdamopoulosI.E. The IL-23/IL-17 axis in psoriatic arthritis.Autoimmun. Rev.2014134-549650210.1016/j.autrev.2014.01.05024424175
    [Google Scholar]
  21. FragoulisG.E. SiebertS. The role of IL-23 and the use of IL-23 inhibitors in psoriatic arthritis.Musculoskelet. Care202220S1S12S2110.1002/msc.169436069174
    [Google Scholar]
  22. KornT. BettelliE. OukkaM. KuchrooV.K. IL-17 and Th17 cells.Annu. Rev. Immunol.200927148551710.1146/annurev.immunol.021908.13271019132915
    [Google Scholar]
  23. KimJ. KruegerJ.G. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis.Annu. Rev. Med.201768125526910.1146/annurev‑med‑042915‑10390527686018
    [Google Scholar]
  24. HawkesJ.E. ChanT.C. KruegerJ.G. Psoriasis pathogenesis and the development of novel targeted immune therapies.J. Allergy Clin. Immunol.2017140364565310.1016/j.jaci.2017.07.00428887948
    [Google Scholar]
  25. HarperE.G. GuoC. RizzoH. LillisJ.V. KurtzS.E. SkorchevaI. PurdyD. FitchE. IordanovM. BlauveltA. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis.J. Invest. Dermatol.200912992175218310.1038/jid.2009.6519295614
    [Google Scholar]
  26. HeidenreichR. RöckenM. GhoreschiK. Angiogenesis drives psoriasis pathogenesis.Int. J. Exp. Pathol.200990323224810.1111/j.1365‑2613.2009.00669.x19563608
    [Google Scholar]
  27. KimH.R. KangS.Y. KimH.O. ParkC.W. ChungB.Y. Role of aryl hydrocarbon receptor activation and autophagy in psoriasis-related inflammation.Int. J. Mol. Sci.2020216219510.3390/ijms2106219532235789
    [Google Scholar]
  28. DenisonM.S. NagyS.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals.Annu. Rev. Pharmacol. Toxicol.200343130933410.1146/annurev.pharmtox.43.100901.13582812540743
    [Google Scholar]
  29. StockingerB. MeglioP.D. GialitakisM. DuarteJ.H. The aryl hydrocarbon receptor: Multitasking in the immune system.Annu. Rev. Immunol.201432140343210.1146/annurev‑immunol‑032713‑12024524655296
    [Google Scholar]
  30. FurueM. HachiyaH.A. TsujiG. Aryl hydrocarbon receptor in atopic dermatitis and psoriasis.Int. J. Mol. Sci.20192021542410.3390/ijms2021542431683543
    [Google Scholar]
  31. ZhuZ. ChenJ. LinY. ZhangC. LiW. QiaoH. FuM. DangE. WangG. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment.J. Invest. Dermatol.2020140612331243.e910.1016/j.jid.2019.11.02231899186
    [Google Scholar]
  32. AronsonJ.K. FernerR.E. Biomarkers—A general review.Curr. Protocols Pharmacol.201776123.1, 1710.1002/cpph.1928306150
    [Google Scholar]
  33. YilmazS.B. CicekN. CoskunM. YeginO. AlpsoyE. Serum and tissue levels of IL-17 in different clinical subtypes of psoriasis.Arch. Dermatol. Res.2012304646546910.1007/s00403‑012‑1229‑122426986
    [Google Scholar]
  34. KolbingerF. LoescheC. ValentinM.A. JiangX. ChengY. JarvisP. PetersT. CalonderC. BruinG. PolusF. AignerB. LeeD.M. BodenlenzM. SinnerF. PieberT.R. PatelD.D. β-Defensin 2 is a responsive biomarker of IL-17A–driven skin pathology in patients with psoriasis.J. Allergy Clin. Immunol.20171393923932.e810.1016/j.jaci.2016.06.03827502297
    [Google Scholar]
  35. GordonK.B. ArmstrongA.W. FoleyP. SongM. ShenY.K. LiS. Muñoz-ElíasE.J. BraniganP. LiuX. ReichK. Guselkumab efficacy after withdrawal is associated with suppression of serum IL-23-regulated IL-17 and IL-22 in psoriasis: VOYAGE 2 study.J. Invest. Dermatol.20191391224372446.e110.1016/j.jid.2019.05.01631207232
    [Google Scholar]
  36. KonradR.J. HiggsR.E. RodgersG.H. MingW. QianY.W. BiviN. MackJ.K. SiegelR.W. NickoloffB.J. Assessment and clinical relevance of serum IL-19 levels in psoriasis and atopic dermatitis using a sensitive and specific novel immunoassay.Sci. Rep.201991521110.1038/s41598‑019‑41609‑z30914699
    [Google Scholar]
  37. HonmaM. Minami-HoriM. TakahashiH. IizukaH. Podoplanin expression in wound and hyperproliferative psoriatic epidermis: Regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22.J. Dermatol. Sci.201265213414010.1016/j.jdermsci.2011.11.01122189341
    [Google Scholar]
  38. YasskyG.E. KruegerJ.G. Atopic dermatitis and psoriasis: Two different immune diseases or one spectrum?Curr. Opin. Immunol.201748687310.1016/j.coi.2017.08.00828869867
    [Google Scholar]
  39. ShimauchiT. HirakawaS. SuzukiT. YasumaA. MajimaY. TatsunoK. YagiH. ItoT. TokuraY. Serum interleukin-22 and vascular endothelial growth factor serve as sensitive biomarkers but not as predictors of therapeutic response to biologics in patients with psoriasis.J. Dermatol.2013401080581210.1111/1346‑8138.1224823915382
    [Google Scholar]
  40. WalshP.T. FallonP.G. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases.Ann. N. Y. Acad. Sci.201814171233410.1111/nyas.1328027783881
    [Google Scholar]
  41. FurueK. YamamuraK. TsujiG. MitomaC. UchiH. NakaharaT. NakaharaK.M. KadonoT. FurueM. Highlighting interleukin-36 signalling in plaque psoriasis and pustular psoriasis.Acta Derm. Venereol.201898151310.2340/00015555‑280828967976
    [Google Scholar]
  42. BuhlA.L. WenzelJ. Interleukin-36 in infectious and inflammatory skin diseases.Front. Immunol.201910116210.3389/fimmu.2019.0116231191535
    [Google Scholar]
  43. MadonnaS. GirolomoniG. DinarelloC.A. AlbanesiC. The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis.Int. J. Mol. Sci.20192013331810.3390/ijms2013331831284527
    [Google Scholar]
  44. D’ErmeA.M. Wilsmann-TheisD. WagenpfeilJ. HölzelM. SchmittF.S. SternbergS. WittmannM. PetersB. BosioA. BieberT. WenzelJ. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions.J. Invest. Dermatol.201513541025103210.1038/jid.2014.53225525775
    [Google Scholar]
  45. BraegelmannJ. D´ErmeA. AkmalS. MaierJ. BraegelmannC. WenzelJ. Interleukin-36γ (IL-1F9) identifies psoriasis among patients with erythroderma.Acta Derm. Venereol.201696338638710.2340/00015555‑226526524325
    [Google Scholar]
  46. RaychaudhuriS.P. JiangW-Y. FarberE.M. Cellular localization of fractalkine at sites of inflammation: antigen-presenting cells in psoriasis express high levels of fractalkine.Br. J. Dermatol.200114461105111310.1046/j.1365‑2133.2001.04219.x11422028
    [Google Scholar]
  47. FraticelliP. SironiM. BianchiG. D’AmbrosioD. AlbanesiC. StoppacciaroA. ChieppaM. AllavenaP. RucoL. GirolomoniG. SinigagliaF. VecchiA. MantovaniA. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses.J. Clin. Invest.200110791173118110.1172/JCI1151711342581
    [Google Scholar]
  48. SugayaM. NakamuraK. MitsuiH. TakekoshiT. SaekiH. TamakiK. Human keratinocytes express fractalkine/CX3CL1.J. Dermatol. Sci.200331317918710.1016/S0923‑1811(03)00031‑812727021
    [Google Scholar]
  49. HedrickM.N. LonsdorfA.S. HwangS.T. FarberJ.M. CCR6 as a possible therapeutic target in psoriasis.Expert Opin. Ther. Targets201014991192210.1517/14728222.2010.50471620629596
    [Google Scholar]
  50. CongjunJ. YanmeiZ. HuilingJ. ZhenY. ShuoL. Elevated local and serum CX3CL1(Fractalkine) expression and its association with disease severity in patients with psoriasis.Ann Clin Lab Sci2015455556561
    [Google Scholar]
  51. EchigoT. HasegawaM. ShimadaY. TakeharaK. SatoS. Expression of fractalkine and its receptor, CX3CR1, in atopic dermatitis: Possible contribution to skin inflammation.J. Allergy Clin. Immunol.2004113594094810.1016/j.jaci.2004.02.03015131578
    [Google Scholar]
  52. HughesC.E. NibbsR.J.B. A guide to chemokines and their receptors.FEBS J.2018285162944297110.1111/febs.1446629637711
    [Google Scholar]
  53. RottmanJ.B. SmithT.L. GanleyK.G. KikuchiT. KruegerJ.G. Potential role of the chemokine receptors CXCR3, CCR4, and the integrin alphaEbeta7 in the pathogenesis of psoriasis vulgaris.Lab. Invest.200181333534710.1038/labinvest.378024211310827
    [Google Scholar]
  54. ShibuyaT. HonmaM. IinumaS. IwasakiT. TakahashiH. YamamotoI.A. Alteration of serum thymus and activation-regulated chemokine level during biologic therapy for psoriasis: Possibility as a marker reflecting favorable response to anti-interleukin-17A agents.J. Dermatol.201845671071410.1111/1346‑8138.1430829655215
    [Google Scholar]
  55. ZijtregtopE.A.M. van der StrateI. BeishuizenA. ZwaanC.M. VermeulenH.M.A. BrandsmaA.M. WentrupM.F. Biology and clinical applicability of plasma thymus and activation-regulated chemokine (TARC) in classical hodgkin lymphoma.Cancers202113488410.3390/cancers1304088433672548
    [Google Scholar]
  56. OuchiN. ParkerJ.L. LugusJ.J. WalshK. Adipokines in inflammation and metabolic disease.Nat. Rev. Immunol.2011112859710.1038/nri292121252989
    [Google Scholar]
  57. CoimbraS CatarinoC. SilvaA.S. The triad psoriasis-obesity-adipokine profile.J Eur Acad Dermatol Venereol201630111876188510.1111/jdv.13701
    [Google Scholar]
  58. WongY. NakamizoS. TanK.J. KabashimaK. An update on the role of adipose tissues in psoriasis.Front. Immunol.201910150710.3389/fimmu.2019.0150731316526
    [Google Scholar]
  59. VersiniM. JeandelP.Y. RosenthalE. ShoenfeldY. Obesity in autoimmune diseases: Not a passive bystander.Autoimmun. Rev.2014139981100010.1016/j.autrev.2014.07.00125092612
    [Google Scholar]
  60. TakahashiH. TsujiH. HonmaM. YamamotoI.A. IizukaH. Increased plasma resistin and decreased omentin levels in Japanese patients with psoriasis.Arch. Dermatol. Res.2013305211311610.1007/s00403‑012‑1310‑923291856
    [Google Scholar]
  61. KyriakouA. PatsatsiA. SotiriadisD. GoulisD.G. Effects of treatment for psoriasis on circulating levels of leptin, adiponectin and resistin: A systematic review and meta-analysis.Br. J. Dermatol.2018179227328110.1111/bjd.1643729432655
    [Google Scholar]
  62. BaiF. ZhengW. DongY. WangJ. GarstkaM.A. LiR. AnJ. MaH. Serum levels of adipokines and cytokines in psoriasis patients: A systematic review and meta-analysis.Oncotarget2018911266127810.18632/oncotarget.2226029416693
    [Google Scholar]
  63. CoimbraS. OliveiraH. ReisF. BeloL. RochaS. QuintanilhaA. FigueiredoA. TeixeiraF. CastroE. Rocha-PereiraP. Santos-SilvaA. Circulating adipokine levels in Portuguese patients with psoriasis vulgaris according to body mass index, severity and therapy.J. Eur. Acad. Dermatol. Venereol.201024121386139410.1111/j.1468‑3083.2010.03647.x20337818
    [Google Scholar]
  64. BoehnckeS. SalgoR. GarbaravicieneJ. BeschmannH. HardtK. DiehlS. FichtlschererS. ThaçiD. BoehnckeW.H. Effective continuous systemic therapy of severe plaque-type psoriasis is accompanied by amelioration of biomarkers of cardiovascular risk: Results of a prospective longitudinal observational study.J. Eur. Acad. Dermatol. Venereol.201125101187119310.1111/j.1468‑3083.2010.03947.x21241371
    [Google Scholar]
  65. GerdesS. PinterA. BiermannM. PapavassilisC. ReinhardtM. Adiponectin levels in a large pooled plaque psoriasis study population.J. Dermatolog. Treat.202031553153410.1080/09546634.2019.162197931179792
    [Google Scholar]
  66. FalconerA. IkramM. BissettC.E. CerioR. QuinnA.G. AliR.S. Expression of the peptide antibiotics human β defensin-1 and human β defensin-2 in normal human skin.J. Invest. Dermatol.2001117110611110.1046/j.0022‑202x.2001.01401.x11442756
    [Google Scholar]
  67. ChiricozziA. YasskyG.E. FariñasS.M. NogralesK.E. TianS. CardinaleI. ChimentiS. KruegerJ.G. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis.J. Invest. Dermatol.2011131367768710.1038/jid.2010.34021085185
    [Google Scholar]
  68. GonzalezL.L. GarrieK. TurnerM.D. Role of S100 proteins in health and disease.Biochim. Biophys. Acta Mol. Cell Res.20201867611867710.1016/j.bbamcr.2020.11867732057918
    [Google Scholar]
  69. BüchauA.S. GalloR.L. Innate immunity and antimicrobial defense systems in psoriasis.Clin. Dermatol.200725661662410.1016/j.clindermatol.2007.08.01618021900
    [Google Scholar]
  70. D’AmicoF. SkarmoutsouE. GranataM. TrovatoC. RossiG.A. MazzarinoM.C. S100A7: A rAMPing up AMP molecule in psoriasis.Cytokine Growth Factor Rev.2016329710410.1016/j.cytogfr.2016.01.00226872860
    [Google Scholar]
  71. MaurelliM. GisondiP. DaneseE. GelatiM. PapagrigorakiA. GiglioM. LippiG. GirolomoniG. Psoriasin (S100A7) is increased in the serum of patients with moderate-to-severe psoriasis.Br. J. Dermatol.202018261502150310.1111/bjd.1880731853957
    [Google Scholar]
  72. WatanabeY. YamaguchiY. KomitsuN. OhtaS. AzumaY. IzuharaK. AiharaM. Elevation of serum squamous cell carcinoma antigen 2 in patients with psoriasis: associations with disease severity and response to the treatment.Br. J. Dermatol.201617461327133610.1111/bjd.1442626822223
    [Google Scholar]
  73. IizukaH. TakahashiH. HonmaM. YamamotoI.A. Unique keratinization process in psoriasis: Late differentiation markers are abolished because of the premature cell death.J. Dermatol.200431427127610.1111/j.1346‑8138.2004.tb00672.x15187321
    [Google Scholar]
  74. NakaneH. Ishida-YamamotoA. TakahashiH. IizukaH. Elafin, a secretory protein, is cross-linked into the cornified cell envelopes from the inside of psoriatic keratinocytes.J. Invest. Dermatol.20021191505510.1046/j.1523‑1747.2002.01803.x12164924
    [Google Scholar]
  75. NonomuraK. YamanishiK. YasunoH. NaraK. HiroseS. Up-regulation of elafin/SKALP gene expression in psoriatic epidermis.J. Invest. Dermatol.19941031889110.1111/1523‑1747.ep123918028027586
    [Google Scholar]
  76. SallenaveJ.M. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity.Am. J. Respir. Cell Mol. Biol.201042663564310.1165/rcmb.2010‑0095RT20395631
    [Google Scholar]
  77. KuijpersA.L. BergersM. SiegenthalerG. ZeeuwenP.L. Van de KerkhofP.C. SchalkwijkJ. Skin-derived antileukoproteinase (SKALP) and epidermal fatty acid-binding protein (E-FABP): Two novel markers of the psoriatic phenotype that respond differentially to topical steroid.Acta Derm. Venereol.1997771141910.2340/00015555770140199059669
    [Google Scholar]
  78. MadsenP. RasmussenH.H. LeffersH. HonoréB. CelisJ.E. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins.J. Invest. Dermatol.199299329930510.1111/1523‑1747.ep126166411512466
    [Google Scholar]
  79. OgawaE. OwadaY. IkawaS. AdachiY. EgawaT. NemotoK. SuzukiK. HishinumaT. KawashimaH. KondoH. MutoM. AibaS. OkuyamaR. Epidermal FABP (FABP5) regulates keratinocyte differentiation by 13(S)-HODE-mediated activation of the NF-κB signaling pathway.J. Invest. Dermatol.2011131360461210.1038/jid.2010.34221068754
    [Google Scholar]
  80. NakajimaH. SeradaS. FujimotoM. NakaT. SanoS. Leucine-rich α-2 glycoprotein is an innovative biomarker for psoriasis.J Dermatol Sci201786217017410.1016/j.jdermsci.2017.01.008
    [Google Scholar]
  81. DengY. LiG. ChangD. SuX. YKL-40 as a novel biomarker in cardio-metabolic disorders and inflammatory diseases.Clin. Chim. Acta2020511404610.1016/j.cca.2020.09.03533002471
    [Google Scholar]
  82. AlonsoA. JuliàA. VinaixaM. DomènechE. NebroF.A. CañeteJ.D. FerrándizC. TorneroJ. GisbertJ.P. NosP. CasbasA.G. PuigL. ÁlvaroG.I. TasendeP.J.A. BlancoR. RodríguezM.A. BeltranA. CorreigX. MarsalS. Urine metabolome profiling of immune-mediated inflammatory diseases.BMC Med.201614113310.1186/s12916‑016‑0681‑827609333
    [Google Scholar]
  83. MyśliwiecH. BaranA. Harasim-SymborE. MyśliwiecP. MilewskaA.J. ChabowskiA. FlisiakI. Serum fatty acid profile in psoriasis and its comorbidity.Arch. Dermatol. Res.2017309537138010.1007/s00403‑017‑1748‑x28585093
    [Google Scholar]
  84. YuN. PengC. ChenW. SunZ. ZhengJ. ZhangS. DingY. ShiY. Circulating metabolomic signature in generalized pustular psoriasis blunts monocyte hyperinflammation by triggering amino acid response.Front. Immunol.20211273951410.3389/fimmu.2021.73951434567002
    [Google Scholar]
  85. ShapiroJ. CohenN.A. ShalevV. UzanA. KorenO. MaharshakN. Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls.J. Dermatol.201946759560310.1111/1346‑8138.1493331141234
    [Google Scholar]
  86. LeN.Q.K. DoD.T. NguyenT.T.D. NguyenN.T.K. HungT.N.K. TrangN.T.T. Identification of gene expression signatures for psoriasis classification using machine learning techniques.Medicine in Omics2021110000110.1016/j.meomic.2020.100001
    [Google Scholar]
  87. YaoP. JiaY. KanX. ChenJ. XuJ. XuH. ShaoS. NiB. TangJ. Identification of ADAM23 as a potential signature for psoriasis using integrative machine-learning and experimental verification.Int. J. Gen. Med.2023166051606410.2147/IJGM.S441262
    [Google Scholar]
  88. KhashabaS.A. AttwaE. SaidN. AhmedS. KhattabF. Serum YKL-40 and IL 17 in psoriasis: Reliability as prognostic markers for disease severity and responsiveness to treatment.Dermatol. Ther.2021341e1460610.1111/dth.1460633249724
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638278470240312075112
Loading
/content/journals/cddt/10.2174/0115701638278470240312075112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test