Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

A defence mechanism of the body includes inflammation. It is a process through which the immune system identifies, rejects, and starts to repair foreign and damaging stimuli. In the world, chronic inflammatory disorders are the leading cause of death.

Materials and Methods

To obtain optimized pharmacophore, previously reported febuxostat-based anti-inflammatory amide derivatives series were subjected to pharmacophore hypothesis, ligand-based virtual screening, and 3D-QSAR studies in the present work using Schrodinger suite 2022-4. QuikProp module of Schrodinger was used for ADMET prediction, and HTVS, SP, and XP protocols of GLIDE modules were used for molecular docking on target protein (PDB ID:3LN1).

Results

Utilising 29 compounds, a five-point model of common pharmacophore hypotheses was created, having pIC ranging between 5.34 and 4.871. The top pharmacophore hypothesis AHHRR_1 model consists of one hydrogen bond acceptor, two hydrophobic groups and two ring substitution features. The hypothesis model AHHRR_1 underwent ligand-based virtual screening using the molecules from Asinex. Additionally, a 3D-QSAR study based on individual atoms was performed to assess their contributions to model development. The top QSAR model was chosen based on the values of R2 (0.9531) and Q2 (0.9424). Finally, four potential hits were obtained by molecular docking based on virtual screening.

Conclusion

The virtual screen compounds have shown similar docking interaction with amino acid residues as shown by standard diclofenac sodium drugs. Therefore, the findings in the present study can be explored in the development of potent anti-inflammatory agents.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638281229240226101906
2025-01-01
2025-01-24
Loading full text...

Full text loading...

References

  1. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  2. BarcelosI.P. TroxellR.M. GravesJ.S. Mitochondrial dysfunction and multiple sclerosis.Biology2019823710.3390/biology802003731083577
    [Google Scholar]
  3. BennettJ.M. ReevesG. BillmanG.E. SturmbergJ.P. Inflammation–Nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases.Front. Med.2018531610.3389/fmed.2018.0031630538987
    [Google Scholar]
  4. DeepakP. AxelradJ.E. AnanthakrishnanA.N. The role of the radiologist in determining disease severity in inflammatory bowel diseases.Gastrointest. Endosc. Clin. N. Am.201929344747010.1016/j.giec.2019.02.00631078247
    [Google Scholar]
  5. KaduševičiusE. Novel applications of NSAIDs: Insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy.Int. J. Mol. Sci.20212212663710.3390/ijms2212663734205719
    [Google Scholar]
  6. Van DurmeC.M. WechalekarM.D. BuchbinderR. SchlesingerN. Van Der HeijdeD. LandewéR.B. Non-steroidal anti-inflammatory drugs for acute gout.Cochrane Database of Systematic Reviews201220149CD01012010.1002/14651858.CD010120
    [Google Scholar]
  7. WangW. PangJ. HaE.H. ZhouM. LiZ. TianS. LiH. HuQ. Development of novel NLRP3-XOD dual inhibitors for the treatment of gout.Bioorg. Med. Chem. Lett.202030412694410.1016/j.bmcl.2019.12694431924495
    [Google Scholar]
  8. CoburnB.W. MikulsT.R. Treatment options for acute gout.Fed. Pract.2016331354030766136
    [Google Scholar]
  9. AlmeerR.S. HammadS.F. LehetaO.F. Abdel MoneimA.E. AminH.K. Anti-inflammatory and anti-hyperuricemic functions of two synthetic hybrid drugs with dual biological active sites.Int. J. Mol. Sci.20192022563510.3390/ijms2022563531718011
    [Google Scholar]
  10. CronsteinB.N. TerkeltaubR. The inflammatory process of gout and its treatment.Arthritis Res. Ther.20068S1S310.1186/ar190816820042
    [Google Scholar]
  11. RashadA.Y. KassabS.E. DaabeesH.G. MoneimA.A.E. RostomS.A.F. Febuxostat-based amides and some derived heterocycles targeting xanthine oxidase and COX inhibition. Synthesis, in vitro and in vivo biological evaluation, molecular modeling and in silico ADMET studies.Bioorg. Chem.202111310494810.1016/j.bioorg.2021.10494834052736
    [Google Scholar]
  12. RajeswariM. SanthiN. BhuvaneswariV. Pharmacophore and virtual screening of JAK3 inhibitors.Bioinformation201410315716310.6026/9732063001015724748756
    [Google Scholar]
  13. JanardhanS. JohnL. PrasanthiM. PoroikovV. Narahari SastryG. A QSAR and molecular modelling study towards new lead finding: Polypharmacological approach to Mycobacterium tuberculosis.SAR QSAR Environ. Res.2017281081583210.1080/1062936X.2017.139878229183232
    [Google Scholar]
  14. MohanA. RendineN. MohammedM.K.S. JeevaA. JiH.F. TalluriV.R. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 Mpro.Mol. Divers.20222631645166110.1007/s11030‑021‑10298‑034480682
    [Google Scholar]
  15. ShahU.A. DeokarH.S. KadamS.S. KulkarniV.M. Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors.Mol. Divers.201014355956810.1007/s11030‑009‑9183‑319669924
    [Google Scholar]
  16. ReleaseS. 2023-2: Maestro.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  17. MillsN. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM.J. Am. Chem. Soc.200612841136491365010.1021/ja0697875
    [Google Scholar]
  18. ReleaseS. 2023-2: LigPrep.New York, NYSchrödinger, LLC2021
    [Google Scholar]
  19. GuoJ. JanetJ.P. BauerM.R. NittingerE. GiblinK.A. PapadopoulosK. VoronovA. PatronovA. EngkvistO. MargreitterC. DockStream: A docking wrapper to enhance de novo molecular design.J. Cheminform.20211318910.1186/s13321‑021‑00563‑734789335
    [Google Scholar]
  20. DixonS.L. SmondyrevA.M. KnollE.H. RaoS.N. ShawD.E. FriesnerR.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results.J. Comput. Aided Mol. Des.20062010-1164767110.1007/s10822‑006‑9087‑617124629
    [Google Scholar]
  21. SeidelT. IbisG. BendixF. WolberG. Strategies for 3D pharmacophore-based virtual screening.Drug Discov. Today. Technol.201074e221e22810.1016/j.ddtec.2010.11.00424103798
    [Google Scholar]
  22. ReddyK.K. SinghS.K. DessalewN. TripathiS.K. SelvarajC. Pharmacophore modelling and atom-based 3D-QSAR studies on N -methyl pyrimidones as HIV-1 integrase inhibitors.J. Enzyme Inhib. Med. Chem.201227333934710.3109/14756366.2011.59080321699459
    [Google Scholar]
  23. AliA. AliA. WarsiM.H. RahmanM.A. AhsanM.J. AzamF. An insight into the structural requirements and pharmacophore identification of carbonic anhydrase inhibitors to combat oxidative stress at high altitudes: An in-silico approach.Curr. Issues Mol. Biol.20224431027104510.3390/cimb4403006835723291
    [Google Scholar]
  24. Pérez-RegidorL. ZariohM. OrtegaL. Martín-SantamaríaS. Virtual screening approaches towards the discovery of toll-like receptor modulators.Int. J. Mol. Sci.2016179150810.3390/ijms1709150827618029
    [Google Scholar]
  25. IbrahimI.M. ElfikyA.A. FathyM.M. MahmoudS.H. ElHefnawiM. Targeting SARS-CoV-2 endoribonuclease: A structure-based virtual screening supported by in vitro analysis.Sci. Rep.20221211333710.1038/s41598‑022‑17573‑635922447
    [Google Scholar]
  26. TripathiA.C. SonarP.K. RathoreR. SarafS.K. Structural insights into the molecular design of HER2 inhibitors.Open Pharm. Sci. J.20163116418110.2174/1874844901603010164
    [Google Scholar]
  27. CappelD. DixonS.L. ShermanW. DuanJ. Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling.J. Comput. Aided Mol. Des.201529216518210.1007/s10822‑014‑9813‑425408244
    [Google Scholar]
  28. Bouaziz-TerrachetS. TerrachetR. Taïri-KellouS. Receptor and ligand-based 3D-QSAR study on a series of nonsteroidal anti-inflammatory drugs.Med. Chem. Res.20132241529153710.1007/s00044‑012‑0174‑z
    [Google Scholar]
  29. PrabhuV.S. SinghS.K. Atom-based 3D-QSAR, induced fit docking, and molecular dynamics simulations study of thieno[2,3-b]pyridines negative allosteric modulators of mGluR5.J. Recept. Signal Transduct. Res.201838322523910.1080/10799893.2018.147654229806525
    [Google Scholar]
  30. ReleaseS. 2023-2: QikProp.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  31. Ntie-KangF. An in silico evaluation of the ADMET profile of the StreptomeDB database.Springerplus20132135310.1186/2193‑1801‑2‑35323961417
    [Google Scholar]
  32. ReleaseS. 2023-2: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2023; Impact, Schrödinger, LLC, New York, NY.New York, NYPrime, Schrödinger, LLC2023
    [Google Scholar]
  33. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  34. FaridR. DayT. FriesnerR.A. PearlsteinR.A. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies.Bioorg. Med. Chem.20061493160317310.1016/j.bmc.2005.12.03216413785
    [Google Scholar]
  35. KouassiA.R.K. GaniyouA. BeniéA. Guy-RichardK.M. NobelK.N.G. BohoussouV.K. CoulibalyK.W. Identification of potential C-kit protein kinase inhibitors associated with human liver cancer: Atom-based 3D-QSAR modeling, pharmacophores-based virtual screening and molecular docking studies.Am. J. Pharmacol. Sci.20219112910.12691/ajps‑9‑1‑1
    [Google Scholar]
  36. VilarS. FerinoG. PhatakS.S. BerkB. CavasottoC.N. CostanziS. Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models.J. Mol. Graph. Model.201129561462310.1016/j.jmgm.2010.11.00521146435
    [Google Scholar]
  37. TamilvananT. HopperW. High-throughput virtual screening and docking studies of matrix protein Vp40 of ebola virus.Bioinformation20139628629210.6026/9732063000928623559747
    [Google Scholar]
  38. VarpeB.D. JadhavS.B. ChataleB.C. MaliA.S. JadhavS.Y. KulkarniA.A. 3D-QSAR and pharmacophore modeling of 3,5-disubstituted indole derivatives as pim kinase inhibitors.Struct. Chem.20203151675169010.1007/s11224‑020‑01503‑1
    [Google Scholar]
  39. ChitreT.S. AsgaonkarK.D. PatilS.M. KumarS. KhedkarV.M. GarudD.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity.Comput. Biol. Chem.20176821121810.1016/j.compbiolchem.2017.03.01528411471
    [Google Scholar]
  40. SuryanarayananV. SudhaA. RajamanikandanS. VanajothiR. SrinivasanP. Atom-based 3D QSAR studies on novel N-β-d-xylosylindole derivatives as SGLT2 inhibitors.Med. Chem. Res.201322261562410.1007/s00044‑012‑0053‑7
    [Google Scholar]
  41. KakarlaP. InupakutikaM. DevireddyA.R. GundaS.K. WillmonT.M. RanjanaK.C. ShresthaU. RanaweeraI. HernandezA.J. BarrS. VarelaM.F. 3D-QSar and contour map analysis of tariquidar analogues as multidrug resistance protein-1 (mrp1) inhibitors.Int. J. Pharm. Sci. Res.20167255457210.13040/IJPSR.0975‑8232.7(2).554‑7226913287
    [Google Scholar]
  42. ZiębaA. LaitinenT. PatelJ.Z. PosoA. KaczorA.A. Docking-Based 3D-QSAR Studies for 1,3,4-oxadiazol-2-one Derivatives as FAAH Inhibitors.Int. J. Mol. Sci.20212211610810.3390/ijms2211610834204026
    [Google Scholar]
  43. DivyashriG. Krishna MurthyT.P. SundareshanS. KamathP. MurahariM. SaraswathyG.R. SadanandanB. In silico approach towards the identification of potential inhibitors from Curcuma amada Roxb against H. pylori : ADMET screening and molecular docking studies.Bioimpacts202011211912710.34172/bi.2021.1933842282
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638281229240226101906
Loading
/content/journals/cddt/10.2174/0115701638281229240226101906
Loading

Data & Media loading...

Supplements

Supplementary file () is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test