Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, ., anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, immunomodulatory, ., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of essential oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, ., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018287719240214075810
2024-02-22
2025-05-02
Loading full text...

Full text loading...

References

  1. WińskaK. MączkaW. ŁyczkoJ. GrabarczykM. CzubaszekA. SzumnyA. Essential oils as antimicrobial agents—myth or real alternative?Molecules20192411213010.3390/molecules2411213031195752
    [Google Scholar]
  2. JohnsonS.A. RodriguezD. AllredK. A Systematic Review of Essential Oils and the Endocannabinoid System: A Connection Worthy of Further Exploration.Evid. Based Complement. Alternat. Med.2020202011310.1155/2020/803530132508955
    [Google Scholar]
  3. de GrootA.C. SchmidtE. Essential Oils, Part I: Introduction.Dermatitis : Contact, atopic, occupational, drug.2016394210.1097/DER.0000000000000175
    [Google Scholar]
  4. AbelanU.S. de OliveiraA.C. CacociÉ.S.P. MartinsT.E.A. GiaconV.M. VelascoM.V.R. LimaC.R.R.C. Potential use of essential oils in cosmetic and dermatological hair products: A review.J. Cosmet. Dermatol.20222141407141810.1111/jocd.1428634129742
    [Google Scholar]
  5. IrshadM. SubhaniM. AliS. HussainA. Biological importance of essential oils.Molecules2023253678
    [Google Scholar]
  6. Sharifi-RadJ. SuredaA. TenoreG. DagliaM. Sharifi-RadM. ValussiM. TundisR. Sharifi-RadM. LoizzoM. AdemiluyiA. Sharifi-RadR. AyatollahiS. IritiM. Biological activities of essential oils: From plant chemoecology to traditional healing systems.Molecules20172217010.3390/molecules2201007028045446
    [Google Scholar]
  7. ButnariuM. SaracI. Essential oils from plants.J. Biotechnol. Biomed. Sci.201814354310.14302/issn.2576‑6694.jbbs‑18‑2489
    [Google Scholar]
  8. Chávez-GonzálezM.L. Rodríguez-HerreraR. AguilarC.N. Chapter 11 - Essential oils: A natural alternative to combat antibiotics resistance.Kon, K., Rai, M. B. T.-A. R., Eds.; Academic Press2016227237
    [Google Scholar]
  9. PanikarS. ShobaG. ArunM. SahayarayanJ.J. Usha Raja NanthiniA. ChinnathambiA. AlharbiS.A. NasifO. KimH.J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties.J. Infect. Public Health202114560161010.1016/j.jiph.2020.12.03733848890
    [Google Scholar]
  10. BassoléI.H.N. JulianiH.R. Essential oils in combination and their antimicrobial properties.Molecules20121743989400610.3390/molecules1704398922469594
    [Google Scholar]
  11. ElshafieH.S. CameleI. An overview of the biological effects of some mediterranean essential oils on human health.BioMed Res. Int.2017201711410.1155/2017/926846829230418
    [Google Scholar]
  12. AliB. Al-WabelN.A. ShamsS. AhamadA. KhanS.A. AnwarF. Essential oils used in aromatherapy: A systemic review.Asian Pac. J. Trop. Biomed.201558601611https://doi.org/https://doi.org/10.1016/j.apjtb.2015.05.00710.1016/j.apjtb.2015.05.007
    [Google Scholar]
  13. PujariR. ReddyS. B. Essential oils in india -history and future prospects.2020
    [Google Scholar]
  14. BhardwajK. IslamM.T. JayasenaV. SharmaB. SharmaS. SharmaP. KučaK. BhardwajP. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas.Phytother. Res.202034112889291010.1002/ptr.673632515528
    [Google Scholar]
  15. EidR.K. EssaE.A. El MaghrabyG.M. Essential oils in niosomes for enhanced transdermal delivery of felodipine.Pharm. Dev. Technol.201924215716510.1080/10837450.2018.144130229441809
    [Google Scholar]
  16. BasakS. GuhaP. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system.J. Food Sci. Technol.201855124701471010.1007/s13197‑018‑3394‑530482966
    [Google Scholar]
  17. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  18. de MatosS.P. TeixeiraH.F. de LimaÁ.A.N. Veiga-JuniorV.F. KoesterL.S. Essential oils and isolated terpenes in nanosystems designed for topical administration: A review.Biomolecules20199413810.3390/biom904013830959802
    [Google Scholar]
  19. LaothaweerungsawatN. NeimkhumW. AnuchapreedaS. SirithunyalugJ. ChaiyanaW. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion.Int. J. Pharm.202057911905210.1016/j.ijpharm.2020.11905231982557
    [Google Scholar]
  20. CarboneC. Martins-GomesC. CaddeoC. SilvaA.M. MusumeciT. PignatelloR. PuglisiG. SoutoE.B. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles.Int. J. Pharm.2018548121722610.1016/j.ijpharm.2018.06.06429966744
    [Google Scholar]
  21. HermanA. HermanA.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review.J. Pharm. Pharmacol.201567447348510.1111/jphp.1233425557808
    [Google Scholar]
  22. FungT.K.H. LauB.W.M. NgaiS.P.C. TsangH.W.H. Therapeutic effect and mechanisms of essential oils in mood disorders: Interaction between the nervous and respiratory systems.Int. J. Mol. Sci.2021229484410.3390/ijms2209484434063646
    [Google Scholar]
  23. RassemH.H.A. NourA.H. YunusR. M. Techniques for extraction of essential oils from plants: A review.Aust. J. Basic Appl. Sci.20161016117127
    [Google Scholar]
  24. RautJ.S. KaruppayilS.M. A status review on the medicinal properties of essential oils.Ind. Crops Prod.20146225026410.1016/j.indcrop.2014.05.055
    [Google Scholar]
  25. AdwanG. AdwanK. Abu -ShanabB. DA.-S. JarrarN. Antibacterial activity of some plant extracts utilized in palestine in popular medicine.Turk. J. Biol.20042899102
    [Google Scholar]
  26. Baptista-SilvaS. BorgesS. RamosO.L. PintadoM. SarmentoB. The progress of essential oils as potential therapeutic agents: A review.J. Essent. Oil Res.202032427929510.1080/10412905.2020.1746698
    [Google Scholar]
  27. CiminoC. MaurelO.M. MusumeciT. BonaccorsoA. DragoF. SoutoE.M.B. PignatelloR. CarboneC. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems.Pharmaceutics202113332710.3390/pharmaceutics1303032733802570
    [Google Scholar]
  28. IntegrativeP.D.Q. C. T. E. B. Aromatherapy With Essential Oils (PDQ®).Available from: https://www.ncbi.nlm.nih.gov/books/NBK65874/
  29. BhavaniramyaS. VishnupriyaS. Al-AboodyM.S. VijayakumarR. BaskaranD. Role of essential oils in food safety: Antimicrobial and antioxidant applications.Grain Oil Sci. Technol2019224955
    [Google Scholar]
  30. ChoiJ.K. OhH.M. ParkJ.H. ChoiJ.H. SaK.H. KangY.M. ParkP.H. ShinT.Y. RhoM.C. KimS.H. Salvia plebeia extract inhibits the inflammatory response in human rheumatoid synovial fibroblasts and a murine model of arthritis.Phytomedicine201522341542210.1016/j.phymed.2015.01.00725837280
    [Google Scholar]
  31. MarrelliM. AmodeoV. PerriM.R. ConfortiF. StattiG. Essential oils and bioactive components against arthritis: A novel perspective on their therapeutic potential.Plants2020910125210.3390/plants910125232977657
    [Google Scholar]
  32. GhorbaniA. EsmaeilizadehM. Pharmacological properties of Salvia officinalis and its components.J. Tradit. Complement. Med.20177443344010.1016/j.jtcme.2016.12.01429034191
    [Google Scholar]
  33. WuY. ParkK.C. ChoiB.G. ParkJ.H. YoonK.S. The antibiofilm effect of Ginkgo biloba Extract Against Salmonella and Listeria isolates from poultry.Foodborne Pathog. Dis.201613522923810.1089/fpd.2015.207226954614
    [Google Scholar]
  34. ZhangN. LanW. WangQ. SunX. XieJ. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus.Aquac. Fish.20183416316910.1016/j.aaf.2018.05.005
    [Google Scholar]
  35. IslamM.N. ChoiJ. BaekK.H. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from ginkgo biloba L.Foodborne Pathog. Dis.2019161066167010.1089/fpd.2018.249631268372
    [Google Scholar]
  36. PatraJ. BaekK.H. Antibacterial activity and action mechanism of the essential oil from enteromorpha linza L. against foodborne pathogenic bacteria.Molecules201621338810.3390/molecules2103038827007365
    [Google Scholar]
  37. SeragM. DaadeerD. ElfayoumyR. Antibacterial potential of essential oils extracted from three medicinal plants against some foodborne bacteria.Catrina Int. J. Environ. Sci.2023281739110.21608/cat.2023.220193.1179
    [Google Scholar]
  38. CoxS.D. MannC.M. MarkhamJ.L. BellH.C. GustafsonJ.E. WarmingtonJ.R. WyllieS.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil).J. Appl. Microbiol.200088117017510.1046/j.1365‑2672.2000.00943.x10735256
    [Google Scholar]
  39. CarsonC.F. HammerK.A. RileyT.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties.Clin. Microbiol. Rev.2006191506210.1128/CMR.19.1.50‑62.200616418522
    [Google Scholar]
  40. YasirM. DuttaD. WillcoxM.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa.Sci. Rep.201991706310.1038/s41598‑019‑42440‑231068610
    [Google Scholar]
  41. Della PepaT. ElshafieH.S. CapassoR. De FeoV. CameleI. NazzaroF. ScognamiglioM.R. CaputoL. Antimicrobial and phytotoxic activity of origanum heracleoticum and O. majorana essential oils growing in cilento (Southern Italy).Molecules20192414257610.3390/molecules2414257631315175
    [Google Scholar]
  42. AmatoG. CaputoL. FrancolinoR. MartinoM. De FeoV. De MartinoL. Origanum heracleoticum essential oils: Chemical composition, phytotoxic and alpha-amylase inhibitory activities.Plants202312486610.3390/plants1204086636840214
    [Google Scholar]
  43. ZinnoP. GuantarioB. LombardiG. RanaldiG. FinamoreA. AllegraS. MammanoM.M. FascellaG. RaffoA. RoselliM. Chemical composition and biological activities of essential oils from origanum vulgare genotypes belonging to the carvacrol and thymol chemotypes.Plants2023126134410.3390/plants1206134436987032
    [Google Scholar]
  44. PichetteA. LaroucheP.L. LebrunM. LegaultJ. Composition and antibacterial activity of Abies balsamea essential oil.Phytother. Res.200620537137310.1002/ptr.186316619365
    [Google Scholar]
  45. CotéH. BoucherM.A. PichetteA. RogerB. LegaultJ. New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA.J. Ethnopharmacol.201619468468910.1016/j.jep.2016.10.03527769946
    [Google Scholar]
  46. LegaultJ. DahlW. DebitonE. PichetteA. MadelmontJ-C. Antitumor activity of balsam fir oil: production of reactive oxygen species induced by alpha-humulene as possible mechanism of action.Planta Med.200369540240710.1055/s‑2003‑3969512802719
    [Google Scholar]
  47. JoJ.R. ParkJ.S. ParkY.K. ChaeY.Z. LeeG.H. ParkG.Y. JangB.C. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells.Int. J. Oncol.20124041238124510.3892/ijo.2011.126322086183
    [Google Scholar]
  48. FelimbanR.I. TayebH.H. ChaudharyA.G. FelembanM.A. AlnadwiF.H. AliS.A. AlblowiJ.A. ALfayezE. BukharyD. AlissaM. QahlS.H. Utilization of a nanostructured lipid carrier encapsulating pitavastatin– Pinus densiflora oil for enhancing cytotoxicity against the gingival carcinoma HGF-1 cell line.Drug Deliv.2023301839610.1080/10717544.2022.215526936510636
    [Google Scholar]
  49. KochC. ReichlingJ. KehmR. SharafM.M. ZentgrafH. SchneeleJ. SchnitzlerP. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses.J. Pharm. Pharmacol.201060111545155010.1211/jpp.60.11.001718957177
    [Google Scholar]
  50. SchnitzlerP. KochC. ReichlingJ. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood.Antimicrob. Agents Chemother.20075151859186210.1128/AAC.00426‑0617353250
    [Google Scholar]
  51. Al-SaidM.S. TariqM. Al-YahyaM.A. RafatullahS. GinnawiO.T. AgeelA.M. Studies on Ruta chalepensis, an ancient medicinal herb still used in traditional medicine.J. Ethnopharmacol.199028330531210.1016/0378‑8741(90)90081‑42335958
    [Google Scholar]
  52. NaharL. El-SeediH.R. KhalifaS.A.M. MohammadhosseiniM. SarkerS.D. Ruta essential oils: Composition and bioactivities.Molecules20212616476610.3390/molecules2616476634443352
    [Google Scholar]
  53. BiswasD. DasS. MohantoS. MantryS. Extraction, modification, and characterization of natural polymers used in transdermal drug delivery system: An updated review.Asian J. Pharm. Clin. Res.2020137102010.22159/ajpcr.2020.v13i7.37756
    [Google Scholar]
  54. MahawerS.K. Himani AryaS. KumarR. PrakashO. Extractions methods and biological applications of essential oils.Essential Oils. de OliveiraM.S. de Aguiar AndradeE.H. RijekaIntechOpen202210.5772/intechopen.102955
    [Google Scholar]
  55. TisserandR. YoungR. 2 - Essential oil composition.Essential Oil Safety.2nd ed TisserandR. YoungR. St. LouisChurchill Livingstone201452210.1016/B978‑0‑443‑06241‑4.00002‑3
    [Google Scholar]
  56. KatekarV.P. RaoA.B. SardeshpandeV.R. A hydrodistillation-based essential oils extraction: A quest for the most effective and cleaner technology.Sustain. Chem. Pharm.20233610127010.1016/j.scp.2023.101270
    [Google Scholar]
  57. FagbemiK.O. AinaD.A. OlajuyigbeO.O. Soxhlet extraction versus hydrodistillation using the clevenger apparatus: A comparative study on the extraction of a volatile compound from tamarindus indica seeds.ScientificWorldJournal202120211810.1155/2021/596158634899085
    [Google Scholar]
  58. WillsC.A. CarriocC. Use of an RN-initiated protocol for recognition, management, and documentation of intradialytic hypotension in patients with end-stage kidney disease on in-center hemodialysis: A quality improvement project.Nephrol. Nurs. J.202249649550410.37526/1526‑744X.2022.49.6.49536645358
    [Google Scholar]
  59. BoutekedjiretC. BentaharF. BelabbesR. BessiereJ.M. Extraction of rosemary essential oil by steam distillation and hydrodistillation.Flavour Fragr. J2003186481484
    [Google Scholar]
  60. RezaeiK. HashemiN.B. SahraeeS. Use of hydrodistillation as a green technology to obtain essential oils from several medicinal plants belonging to lamiaceae (mint) family.Phytopharmaceuticals.John Wiley & Sons, Ltd2021597510.1002/9781119682059.ch3
    [Google Scholar]
  61. BagheriH. Abdul ManapM.Y.B. SolatiZ. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation.Talanta201412122022810.1016/j.talanta.2014.01.00724607131
    [Google Scholar]
  62. Al-KhayriJ.M. BanadkaA. NandhiniM. NagellaP. Al-MssallemM.Q. AlessaF.M. Essential oil from coriandrum sativum: A review on its phytochemistry and biological activity.Molecules202328269610.3390/molecules2802069636677754
    [Google Scholar]
  63. YeR. TianK. HuH. LiP. TianX. Extraction process optimization of essential oil from Mellissa officinalis L. using a new ultrasound-microwave hybrid-assisted Clevenger hydrodistillation.Ind. Crops Prod.202320311716510.1016/j.indcrop.2023.117165
    [Google Scholar]
  64. PengX. FengC. JiaA. GaoJ. ZhangR. Recovery of essential oils from the withered flowers of Magnolia soulangeana Soul.-Bod. by microwave-assisted hydrodistillation with uniform heating and its new application in the hypolipidemic field.Ind. Crops Prod.202320411735510.1016/j.indcrop.2023.117355
    [Google Scholar]
  65. BenmoussaH. BéchohraI. HeS. ElfallehW. ChawechR. Optimization of sonohydrodistillation and microwave assisted hydrodistillation by response surface methodology for extraction of essential oils from Cinnamomum cassia barks.Ind. Crops Prod.202319211599510.1016/j.indcrop.2022.115995
    [Google Scholar]
  66. MarčacN. BalbinoS. TonkovićP. MedvedA.M. CeglediE. DragovićS. Dragović-UzelacV. RepajićM. Hydrodistillation and steam distillation of fennel seeds essential oil: Parameter optimization and application of cryomilling pretreatment.Processes2023118235410.3390/pr11082354
    [Google Scholar]
  67. NourA.H. ModatherR.H. YunusR.M. ElnourA.A.M. IsmailN.A. Characterization of bioactive compounds in patchouli oil using microwave-assisted and traditional hydrodistillation methods.Ind. Crops Prod.202420811790110.1016/j.indcrop.2023.117901
    [Google Scholar]
  68. YadavA.A. ChikateS.S. VilatR.B. SuryawanshiM.A. KumbharG.B. Review on steam distillation: A promising technology for extraction of essential oil.Int. J. Adv. Eng. Res. Dev.201744667661
    [Google Scholar]
  69. MachadoC.A. OliveiraF.O. de AndradeM.A. HodelK.V.S. LepiksonH. MachadoB.A.S. Steam distillation for essential oil extraction: An evaluation of technological advances based on an analysis of patent documents.Sustainability20221412711910.3390/su14127119
    [Google Scholar]
  70. OkonkwoC.O. OhaeriO.C. Comparative study of steam distillation and soxhlet for the extraction of botanical oils.Asian J. Biol. Sci.2019131626910.3923/ajbs.2020.62.69
    [Google Scholar]
  71. NnA. A review on the extraction methods use in medicinal plants, principle, strength and limitation.Med. Aromat. Plants2015416
    [Google Scholar]
  72. StratakosA.C. KoidisA. Methods for extracting essential oils.Essential Oils in Food Preservation, Flavor and Safety.Chapter 4 PreedyV.R. San DiegoAcademic Press2016313810.1016/B978‑0‑12‑416641‑7.00004‑3
    [Google Scholar]
  73. AyubM.A. GoksenG. FatimaA. ZubairM. AbidM.A. StarowiczM. Comparison of conventional extraction techniques with superheated steam distillation on chemical characterization and biological activities of Syzygium aromaticum L. essential oil.Separations20231012710.3390/separations10010027
    [Google Scholar]
  74. AyubM.A. ChoobkarN. HanifM.A. AbbasM. AinQ.U. RiazM. GarmakhanyA.D. Chemical composition, antioxidant, and antimicrobial activities of P. roxburghii oleoresin essential oils extracted by steam distillation, superheated steam, and supercritical fluid CO 2 extraction.J. Food Sci.20238862425243810.1111/1750‑3841.1659737199441
    [Google Scholar]
  75. de AraujoJ. SilvestreW.P. PaulettiG.F. MunizL.A.R. Influence of the absolute pressure of the extraction system on the yield and composition of corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson leaf essential oil extracted by steam distillation.ChemEngineering2023746710.3390/chemengineering7040067
    [Google Scholar]
  76. VargasR.M.F. da SilvaG.F. LucasA.M. Finkler da SilvaC.G. JankL. BarretoF. CasselE. Investigation of essential oil and water-soluble extract obtained by steam distillation from Acacia mearnsii flowers.J. Essent. Oil Res.2023351718110.1080/10412905.2022.2115568
    [Google Scholar]
  77. HaniatiM. FajrinA.N.A. DeviandaP.A. WigunoA. TetrisyandaR. KuswandiK. The extraction of kaffir lime (Citrus Hystrix DC.) peel and leaf essential oil by using water distillation and steam distillation methods.AIP Conf. Proc.20232667104000610.1063/5.0112771
    [Google Scholar]
  78. OualdiI. DiassK. AziziS. DalliM. TouzaniR. GseyraN. YousfiE.B. Rosmarinus officinalis essential oils from Morocco: New advances on extraction, GC/MS analysis, and antioxidant activity.Nat. Prod. Res.202337122003200810.1080/14786419.2022.211156135959692
    [Google Scholar]
  79. CalvaJ. LudeñaC. BecN. LarroqueC. SalinasM. VidariG. ArmijosC. Constituents and selective BuChE inhibitory activity of the essential oil from hypericum aciculare kunth.Plants20231214262110.3390/plants1214262137514236
    [Google Scholar]
  80. ChenT. KongQ. KuangX. ZhouJ. WangH. ZhouL. YangH. FengS. DingC. Chemical composition of litsea pungens essential oil and its potential antioxidant and antimicrobial activities.Molecules20232819683510.3390/molecules2819683537836677
    [Google Scholar]
  81. MontesanoD. GalloM. 1.09 - Sustainable approaches for the extraction and characterization of phytochemicals from food matrices.Sustainable Food Science - A Comprehensive Approach. FerrantiP. OxfordElsevier202310311810.1016/B978‑0‑12‑823960‑5.00055‑X
    [Google Scholar]
  82. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x29692864
    [Google Scholar]
  83. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_1932801594
    [Google Scholar]
  84. AbedK.M. KurjiB.M. Abdul-MajeedB.A. Extraction and modelling of oil from & amp; lt; i & amp; gt; eucalyptus camadulensis by & amp; lt; / i & amp; gt; organic solvent.J. Mater. Sci. Chem. Eng.20150308354210.4236/msce.2015.38006
    [Google Scholar]
  85. FerdoshS. The extraction of bioactive agents from calophyllum inophyllum L., and their pharmacological properties.Sci. Pharm.2024921610.3390/scipharm92010006
    [Google Scholar]
  86. Velarde-SalcedoA.J. De León-RodríguezA. Calva-CruzO.J. Balderas-HernándezV.E. De Anda TorresS. la RosaA.P. Extraction of bioactive compounds from rubus idaeus waste by maceration and supercritical fluids extraction: The recovery of high added-value compounds.Int. J. Food Sci. \& Technol2023581158385854
    [Google Scholar]
  87. MendesL.A. VasconcelosL.C. FontesM.M.P. MartinsG.S. BergaminA.S. SilvaM.A. SilvaR.R.A. OliveiraT.V. SouzaV.G.L. FerreiraM.F.S. TeixeiraR.R. LopesR.P. Herbicide and cytogenotoxic activity of inclusion complexes of psidium gaudichaudianum leaf essential oil and β-caryophyllene on 2-hydroxypropyl-β-cyclodextrin.Molecules20232815590910.3390/molecules2815590937570879
    [Google Scholar]
  88. BelbahiA. DairiS. AounO. DahmouneF. KadriN. ReminiH. HadjadjM. CristolJ.P. MadaniK. Boulekbache-MakhloufL. Ultrasound assisted maceration with Pistachia lentiscus (lentisk) leaves to enhance the antioxidant activity and the oxidative stability of extra virgin olive oil.J. Food Meas. Charact.20231754715472610.1007/s11694‑023‑01997‑3
    [Google Scholar]
  89. Javani-SerajiS. Bazargani-GilaniB. AghajaniN. Influence of extraction techniques on the efficiency of pomegranate (Punica Granatum L.) peel extracts in oxidative stability of edible oils.Food Sci. \& Nutr.202311523442355
    [Google Scholar]
  90. RuthS. Advances in Flavours and Fragrances, from the Sensation to the SynthesisSynthesis K. A. D. Swift, Royal Society of ChemistryCambridge, UK2003187710.1002/ffj.1145
    [Google Scholar]
  91. FokialakisN. MelliouE. MagiatisP. HarvalaC. MitakuS. Composition of the steam volatiles of six euphorbia Spp. from greece.Flavour Fragr. J20031813942
    [Google Scholar]
  92. Mary Mawumenyo MamattahK. Kusiwaa AdomakoA. Nketia MensahC. BorquayeL.S. Chemical characterization, antioxidant, antimicrobial, and antibiofilm activities of essential oils of plumeria alba (forget-me-not).Biochem. Res. Int.2023202311010.1155/2023/104047836873255
    [Google Scholar]
  93. AlmeidaA. de O. da SilveiraJ.V.W. Production of carboxymethyl cellulose films incorporating rue (ruta graveolens) essential oil.Mater. Res2023261
    [Google Scholar]
  94. LoC.M. HanJ. WongE.S.W. Chemistry in aromatherapy – extraction and analysis of essential oils from plants of chamomilla recutita, cymbopogon nardus, jasminum officinale and pelargonium graveolens.Biomed. Pharmacol. J.20201331339135010.13005/bpj/2003
    [Google Scholar]
  95. OktavianawatiI. AnggrainiR. PratiwiA.D. WinataI.N.A. Comparative study of water volume and distillation time on cananga essential oil profiles resulted from hydrodistillation and steam-water distillation by cohobation method.AIP Conf. Proc.20222638106000310.1063/5.0104402
    [Google Scholar]
  96. DaoT.P. NgôQ. LeT. NgoH. ThaoP. TranT.T. NguyenN. HuynhP. Comparative study of mandarin (Citrus Reticulata Blanco) essential oil extracted by microwave-assisted hydrodistillation, microwave extraction and hydrodistillation methods from tien giang, vietnam.IOP Conf. Ser. Mater. Sci. Eng.202010.1088/1757‑899X/991/1/012129
    [Google Scholar]
  97. JokićS. MujićI. MujićA. SmajlovićA. Cold pressing of citrus peel for essential oil extraction.J. Essent. Oil-Bear. Plants2018211111
    [Google Scholar]
  98. KimJ. MarshallM.R. Comparison of extraction methods for mandarin essential oil.J. Food Sci. Technol.2018560839964003
    [Google Scholar]
  99. BoukhatemM.N. SudhaT. DarwishN.H.E. ChaderH. BelkadiA. RajabiM. HoucheA. BenkebailliF. OudjidaF. MousaS.A. A new eucalyptol-rich lavender (lavandula stoechas L.) essential oil: Emerging potential for therapy against inflammation and cancer.Molecules20202516367110.3390/molecules2516367132806608
    [Google Scholar]
  100. DinuM.V. GradinaruA.C. LazarM.M. DinuI.A. RaschipI.E. CiocarlanN. AprotosoaieA.C. Physically cross-linked chitosan/dextrin cryogels entrapping Thymus vulgaris essential oil with enhanced mechanical, antioxidant and antifungal properties.Int. J. Biol. Macromol.202118489890810.1016/j.ijbiomac.2021.06.06834157333
    [Google Scholar]
  101. Peralta-RuizY. Grande-TovarC.D. Navia PorrasD.P. Sinning-MangonezA. Delgado-OspinaJ. González-LocarnoM. Maza PauttY. Chaves-LópezC. Packham’s triumph pears (Pyrus communis L.) post-harvest treatment during cold storage based on chitosan and rue essential oil.Molecules202126372510.3390/molecules2603072533573272
    [Google Scholar]
  102. BarzegarH. Alizadeh BehbahaniB. MehrniaM.A. Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study.Food Sci. Biotechnol.202029571772810.1007/s10068‑019‑00715‑432419970
    [Google Scholar]
  103. NgamdokmaiN. ParachaT.U. WaranuchN. ChootipK. WisuitiprotW. SuphromN. InsumrongK. IngkaninanK. Effects of essential oils and some constituents from ingredients of anti-cellulite herbal compress on 3T3-L1 adipocytes and rat aortae.Pharmaceuticals202114325310.3390/ph1403025333799756
    [Google Scholar]
  104. NirmalaM.J. DuraiL. RaoK.A. NagarajanR. Ultrasonic nanoemulsification of cuminum cyminum essential oil and its applications in medicine.Int. J. Nanomedicine20201579580710.2147/IJN.S23089332103937
    [Google Scholar]
  105. TongX. LiX. AyazM. UllahF. SadiqA. OvaisM. ShahidM. KhayrullinM. HazratA. Neuroprotective studies on polygonum hydropiper L. essential oils using transgenic animal models.Front. Pharmacol.20211158006910.3389/fphar.2020.58006933584260
    [Google Scholar]
  106. BishtA. HemrajaniC. UpadhyayN. NidhiP. RoltaR. RathoreC. GuptaG. DuaK. ChellappanD.K. DevK. SourirajanA. AljabaliA.A.A. BakshiH.A. NegiP. TambuwalaM.M. Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne.Ther. Deliv.2022131132910.4155/tde‑2021‑005934842461
    [Google Scholar]
  107. AbdellatifF. AkramM. BegaaS. MessaoudiM. BenarfaA. EgbunaC. OuakouakH. HassaniA. SawickaB. ElbossatyW.F.M. Simal-GandaraJ. Minerals, essential oils, and biological properties of melissa officinalis L.Plants2021106106610.3390/plants1006106634073337
    [Google Scholar]
  108. Keskin ÇavdarH. Koçak YanıkD. GökU. GöğüşF. Optimization of microwave-assisted extraction of pomegranate (Punica granatum L.) seed oil and evaluation of its physicochemical and bioactive properties.Food Technol. Biotechnol.2017551869410.17113/ftb.55.01.17.463828559737
    [Google Scholar]
  109. HmamouchiM. AchakM. AlaouiT. Microwave-assisted extraction of essential oils from moroccan thyme: Kinetic modeling and composition profile.Ind. Crops Prod.201795480488
    [Google Scholar]
  110. MoradiS. FazlaliA. HamediH. Microwave-assisted hydro-distillation of essential oil from rosemary: Comparison with traditional distillation.Avicenna J. Med. Biotechnol.2018101222829296263
    [Google Scholar]
  111. DrinićZ. PljevljakušićD. ŽivkovićJ. BigovićD. ŠavikinK. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation.Food Bioprod. Process.202012015816510.1016/j.fbp.2020.01.011
    [Google Scholar]
  112. LiuZ. LiH. CuiG. WeiM. ZouZ. NiH. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method.Lebensm. Wiss. Technol.2021147111497https://doi.org/https://doi.org/10.1016/j.lwt.2021.11149710.1016/j.lwt.2021.111497
    [Google Scholar]
  113. TranQ.T. Vu ThiT.L. DoT.L. Pham ThiH.M. Hoang ThiB. ChuQ.T. Lai PhuongP.T. DoH.N. Hoang ThanH.T. Ta ThiT.T. LuuV.H. Mai DuongP.T. Thu PhungH.T. Optimization of microwave-assisted extraction process of callicarpa candicans (Burm. f.) hochr essential oil and its inhibitory properties against some bacteria and cancer cell lines.Processes20208217310.3390/pr8020173
    [Google Scholar]
  114. LiuZ. LiH. ZhuZ. HuangD. QiY. MaC. ZouZ. NiH. Cinnamomum camphora fruit peel as a source of essential oil extracted using the solvent-free microwave-assisted method compared with conventional hydrodistillation.Lebensm. Wiss. Technol.202215311254910.1016/j.lwt.2021.112549
    [Google Scholar]
  115. FioriniD. ScortichiniS. BonacucinaG. GrecoN.G. MazzaraE. PetrelliR. TorresiJ. MaggiF. CespiM. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design.Ind. Crops Prod.2020154112688https://doi.org/https://doi.org/10.1016/j.indcrop.2020.11268810.1016/j.indcrop.2020.112688
    [Google Scholar]
  116. PengX. YangX. GuH. YangL. GaoH. Essential oil extraction from fresh needles of Pinus pumila (Pall.) Regel using a solvent-free microwave-assisted methodology and an evaluation of acetylcholinesterase inhibition activity in vitro compared to that of its main components.Ind. Crops Prod.202116711354910.1016/j.indcrop.2021.113549
    [Google Scholar]
  117. FillyA. Fabiano-TixierA.S. LemassonY. ChematF. Supercritical fluid extraction of lavender essential oil: A comparison with conventional techniques.Lebensm. Wiss. Technol.201672538545
    [Google Scholar]
  118. YazdaniF. MafiM. FarhadiF. Tabar-HeidarK. AghapoorK. MohsenzadehF. DarabiH.R. Supercritical CO 2 extraction of essential oil from clove bud: Effect of operation conditions on the selective isolation of eugenol and eugenyl acetate.Z. Naturforsch. B. J. Chem. Sci.200560111197120110.1515/znb‑2005‑1113
    [Google Scholar]
  119. LiuH. LiY. TangX. Supercritical fluid extraction of essential oil from cananga odorata flowers: optimization and comparison with hydrodistillation.J. Food Sci. Technol.20195602779787
    [Google Scholar]
  120. ZhangX. LiJ. LiJ. WangH. Extraction of essential oil from cinnamomum camphora leaves using supercritical fluid extraction and steam distillation.J. Food Sci. Technol.2019560524052412
    [Google Scholar]
  121. RajputS. KaurS. PanesarP.S. ThakurA. Supercritical fluid extraction of essential oils from Citrus reticulata peels: Optimization and characterization studies.Biomass Convers. Biorefin.20231316146051461410.1007/s13399‑022‑02807‑4
    [Google Scholar]
  122. LeeJ.H. LeeY.Y. LeeJ. JangY.J. JangH.W. Chemical composition, antioxidant, and anti-inflammatory activity of essential oil from omija (Schisandra chinensis (Turcz.) Baill.) produced by supercritical fluid extraction using CO2.Foods2021107161910.3390/foods1007161934359489
    [Google Scholar]
  123. SohS.H. JainA. LeeL.Y. JayaramanS. Optimized extraction of patchouli essential oil from Pogostemon cablin Benth. with supercritical carbon dioxide.J. Appl. Res. Med. Aromat. Plants20201910027210.1016/j.jarmap.2020.100272
    [Google Scholar]
  124. SilvaS.G. de OliveiraM.S. CruzJ.N. da CostaW.A. da SilvaS.H.M. Barreto MaiaA.A. de SousaR.L. Carvalho JuniorR.N. de Aguiar AndradeE.H. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity.J. Supercrit. Fluids202116810506410.1016/j.supflu.2020.105064
    [Google Scholar]
  125. JiangH. ZhangM. QinL. WangD. YuF. LiangW. SongC. GranatoD. Chemical composition of a supercritical fluid (Sfe-CO2) extract from baeckea frutescens L. leaves and its bioactivity against two pathogenic fungi isolated from the tea plant (Camellia sinensis (L.) O. Kuntze).Plants202099111910.3390/plants909111932872535
    [Google Scholar]
  126. Abouhosseini TabariM. YoussefiM.R. In vitro and in vivo evaluations of Pelargonium roseum essential oil activity against Trichomonas gallinae. Avicenna J. Phytomed.20188213614229632844
    [Google Scholar]
  127. SandhuH.K. SinhaP. EmanuelN. KumarN. SamiR. KhojahE. Al-MushhinA.A.M. Effect of ultrasound-assisted pretreatment on extraction efficiency of essential oil and bioactive compounds from citrus waste by-products.Separations202181224410.3390/separations8120244
    [Google Scholar]
  128. KapadiaP. NewellA.S. CunninghamJ. RobertsM.R. HardyJ.G. Extraction of high-value chemicals from plants for technical and medical applications.Int. J. Mol. Sci.202223181033410.3390/ijms23181033436142238
    [Google Scholar]
  129. TabanelliG. MontanariC. BalestraF. GattaS.D. RocculiP. GardiniF. The Effect of ultrasound frequency and extraction time on the yield and quality of essential oils from melissa officinalis L.Food Res. Int.2019116153161
    [Google Scholar]
  130. ChenG. SunF. WangS. WangW. DongJ. GaoF. Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation.Chin. J. Chem. Eng.202136384610.1016/j.cjche.2020.08.007
    [Google Scholar]
  131. SnehaK. NarayanankuttyA. JobJ.T. OlatunjiO.J. AlfarhanA. FamurewaA.C. RameshV. Antimicrobial and larvicidal activities of different ocimum essential oils extracted by ultrasound-assisted hydrodistillation.Molecules2022275145610.3390/molecules2705145635268557
    [Google Scholar]
  132. HeydariM. RostamiO. MohammadiR. BanaviP. FarhoodiM. SarlakZ. RouhiM. Hydrodistillation ultrasound‐assisted green extraction of essential oil from bitter orange peel wastes: Optimization for quantitative, phenolic, and antioxidant properties.J. Food Process. Preserv.2021457e1558510.1111/jfpp.15585
    [Google Scholar]
  133. ChenF. LiuS. ZhaoZ. GaoW. MaY. WangX. YanS. LuoD. Leaves and Its Chemical Composition and Biological Activity Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity.Ind. Crops Prod.202014311190810.1016/j.indcrop.2019.111908
    [Google Scholar]
  134. KandhroA.A. MahesarS.A. SheraziS.T. Pressurized liquid extraction of essential oil from lippia graveolens.J. Anal. Sci. Technol.202011117
    [Google Scholar]
  135. RajasekharanP.E. ParkJ.Y. KimD.H. Pressurized liquid extraction of essential oil from fresh leaves of eucalyptus globulus.J. Essent. Oil-Bear. Plants2021244572580
    [Google Scholar]
  136. AbdolshahiA. ShahsavaniS. AlizadehO. A comparative study of essential oil extraction from satureja rechingeri using steam distillation, solvent extraction and headspace solid-phase microextraction.Anal. Bioanal. Chem. Res.20180502195202
    [Google Scholar]
  137. de la GuardiaM. Ruiz-OrtegaM.J. LópezM.Á. AyusoJ. Headspace solid-phase microextraction of essential oil from mentha suaveolens.Nat. Prod. Res.20203402234239
    [Google Scholar]
  138. WangS. LuY. LiY. YuM. Comparison of the extraction efficiency and aroma characteristics of lonicera japonica thunb. by steam distillation, headspace solid-phase microextraction, and supercritical CO2 extraction.J. Sep. Sci.202147713641374
    [Google Scholar]
  139. GavahianM. FarahnakyA. MajzoobiM. JavidniaK. SaharkhizM.J. MesbahiG. Ohmic-assisted hydrodistillation of essential oils from zataria multiflora boiss (Shirazi Thyme).Int. J. Food Sci. \& Technol2011461226192627
    [Google Scholar]
  140. TunçM.T. Kocaİ. Ohmic heating assisted hydrodistillation of clove essential oil.Ind. Crops Prod.201914111176310.1016/j.indcrop.2019.111763
    [Google Scholar]
  141. LiuM. WeiC. ChengL. YangJ. ChenF. Ohmic heating extraction of essential oil from cinnamomum cassia: Comparison with steam distillation and soxhlet extraction.J. Food Process. Preserv.20193111e14268
    [Google Scholar]
  142. ShuQ. DengS. LuoY. WangY. Comparison of essential oil extraction from flos chrysanthemi indici by ohmic heating extraction and steam distillation.J. Food Process. Preserv.2020445e14444
    [Google Scholar]
  143. WangJ. ZhangJ. ChenY. WangS. WangQ. Comparative analysis of schisandra chinensis essential oil extracted by ohmic heating and steam distillation.J. Essent. Oil-Bear. Plants2021242131142
    [Google Scholar]
  144. ManA. SantacroceL. IacobR. MareA. ManL. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study.Pathogens2019811510.3390/pathogens801001530696051
    [Google Scholar]
  145. NazzaroF. FratianniF. CoppolaR. FeoV.D. Essential oils and antifungal activity.Pharmaceuticals20171048610.3390/ph1004008629099084
    [Google Scholar]
  146. MiguelM.G. Antioxidant and anti-inflammatory activities of essential oils: A short review.Molecules201015129252928710.3390/molecules1512925221160452
    [Google Scholar]
  147. ChenX. ShangS. YanF. JiangH. ZhaoG. TianS. ChenR. ChenD. DangY. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress.Molecules20232811455910.3390/molecules2811455937299039
    [Google Scholar]
  148. KoulivandP.H. Khaleghi GhadiriM. GorjiA. Lavender and the nervous system.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/68130423573142
    [Google Scholar]
  149. SienkiewiczM. ŁysakowskaM. PastuszkaM. BieniasW. KowalczykE. The potential of use basil and rosemary essential oils as effective antibacterial agents.Molecules20131889334935110.3390/molecules1808933423921795
    [Google Scholar]
  150. JuergensU.R. DethlefsenU. SteinkampG. GillissenA. RepgesR. VetterH. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial.Respir. Med.200397325025610.1053/rmed.2003.143212645832
    [Google Scholar]
  151. HammerK.A. CarsonC.F. RileyT.V. Antimicrobial activity of essential oils and other plant extracts.J. Appl. Microbiol.199986698599010.1046/j.1365‑2672.1999.00780.x10438227
    [Google Scholar]
  152. SokovićM. VukojevićJ. MarinP. BrkićD. VajsV. Van GriensvenL. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities.Molecules200914123824910.3390/molecules1401023819136911
    [Google Scholar]
  153. ChaiebK. HajlaouiH. ZmantarT. Kahla-NakbiA.B. RouabhiaM. MahdouaniK. BakhroufA. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata ( Syzigium aromaticum L. Myrtaceae): A short review.Phytother. Res.200721650150610.1002/ptr.212417380552
    [Google Scholar]
  154. NostroA. BlancoA.R. CannatelliM.A. EneaV. FlaminiG. MorelliI. Sudano RoccaroA. AlonzoV. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol.FEMS Microbiol. Lett.2004230219119510.1016/S0378‑1097(03)00890‑514757239
    [Google Scholar]
  155. PrabuseenivasanS. JayakumarM. IgnacimuthuS. In vitro antibacterial activity of some plant essential oils.BMC Complement. Altern. Med.2006613910.1186/1472‑6882‑6‑3917134518
    [Google Scholar]
  156. Alves-SilvaJ.M. ZuzarteM. GirãoH. SalgueiroL. The role of essential oils and their main compounds in the management of cardiovascular disease risk factors.Molecules20212612350610.3390/molecules2612350634207498
    [Google Scholar]
  157. JavanmardiJ. StushnoffC. LockeE. VivancoJ.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions.Food Chem.200383454755010.1016/S0308‑8146(03)00151‑1
    [Google Scholar]
  158. GüllüceM. SökmenM. DafereraD. AǧarG. ÖzkanH. KartalN. PolissiouM. SökmenA. Şahi̇nF. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L.J. Agric. Food Chem.200351143958396510.1021/jf034030812822930
    [Google Scholar]
  159. WengC.J. YenG.C. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis.Clin. Exp. Metastasis201027536136910.1007/s10585‑010‑9334‑z20461449
    [Google Scholar]
  160. XiongY. YangY.M. WangY.T. ChenX.F. Chemical composition, antibacterial and antioxidant activities of essential oils from eucalyptus globulus and eucalyptus camaldulensis.Afr. J. Microbiol. Res.201261942424249
    [Google Scholar]
  161. HayouniE.A. ChraiefI. AbedrabbaM. BouixM. LeveauJ.Y. MohammedH. HamdiM. Tunisian salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat.Int. J. Food Microbiol.2008125324225110.1016/j.ijfoodmicro.2008.04.00518511141
    [Google Scholar]
  162. HussainA.I. AnwarF. Hussain SheraziS.T. PrzybylskiR. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.Food Chem.2008108398699510.1016/j.foodchem.2007.12.01026065762
    [Google Scholar]
  163. JayaprakashaG.K. SelviT. SakariahK.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts.Food Res. Int.200336211712210.1016/S0963‑9969(02)00116‑3
    [Google Scholar]
  164. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  165. SchnellO. TonnJ-C. Treatment of edema formation in oncology.Brain Edema.Chapter 24 BadautJ. PlesnilaN. San DiegoAcademic Press201747749510.1016/B978‑0‑12‑803196‑4.00024‑2
    [Google Scholar]
  166. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  167. BlowmanK. MagalhãesM. LemosM.F.L. CabralC. PiresI.M. Anticancer properties of essential oils and other natural products.Evid. Based Complement. Alternat. Med.2018201811210.1155/2018/314936229765461
    [Google Scholar]
  168. Sánchez-ContrerasA.K. Trejo-GonzálezA. Villanueva-CañongoC. Essential oils and their potential use for the treatment of cancer: A review of their anticancer properties.Front. Pharmacol.202011590764
    [Google Scholar]
  169. ShenC. WangY. ZhouL. LeiX. Inhibitory effects of lemongrass essential oil on breast cancer cell proliferation and invasion via ERK1/2 signaling pathway.Cancer Cell Int.201919267
    [Google Scholar]
  170. MarongiuB. PirasA. PorceddaS. TuveriE. Essential oils and immunity: Antimicrobial activity, anti-inflammatory activity, and modulation of the immune response.Front. Immunol.202112762
    [Google Scholar]
  171. AhmadI. MahmoodF. AliM. KhalidN. Immunomodulatory effects of oregano (Origanum Vulgare) essential oil in mice.Molecules20202513310110.3390/molecules2513310132646028
    [Google Scholar]
  172. HamidpourR. HamidpourS. HamidpourM. ShahlariM. Frankincense ( rǔ xiāng; boswellia species): From the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases.J. Tradit. Complement. Med.20133422122610.4103/2225‑4110.11972324716181
    [Google Scholar]
  173. BennyA. ThomasJ. Essential oils as treatment strategy for alzheimerʼs disease: Current and future perspectives.Planta Med.201985323924810.1055/a‑0758‑018830360002
    [Google Scholar]
  174. Abd RashedA. Abd RahmanA.Z. RathiD.N.G. Essential oils as a potential neuroprotective remedy for age-related neurodegenerative diseases: A review.Molecules2021264110710.3390/molecules2604110733669787
    [Google Scholar]
  175. Silva-CorreaC.R. Campos-ReynaJ.L. Villarreal-La TorreV.E. Calderón-PeñaA.A. Sagástegui-GuarnizW.A. Guerrero-EspinoL.M. González-SicchaA.D. Aspajo-VillalazC.L. González-BlasM.V. Cruzado-RazcoJ.L. Hilario-VargasJ. Potential neuroprotective activity of essential oils in memory and learning impairment.Pharmacogn. J.20211351312132210.5530/pj.2021.13.166
    [Google Scholar]
  176. Gupta ShankarE. GuptaS. Chamomile: A herbal medicine of the past with a bright future (Review).Mol. Med. Rep.20103689590110.3892/mmr.2010.37721132119
    [Google Scholar]
  177. SinghH.B. SrivastavaM. SinghA.B. SrivastavaA.K. Cinnamon bark oil, a potent fungitoxicant against fungi causing respiratory tract mycoses.Allergy1995501299599910.1111/j.1398‑9995.1995.tb02515.x8834832
    [Google Scholar]
  178. BachiegaT.F. de SousaJ.P.B. BastosJ.K. SforcinJ.M. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages.J. Pharm. Pharmacol.201264461061610.1111/j.2042‑7158.2011.01440.x22420667
    [Google Scholar]
  179. Al-YasiryA.R.M. KiczorowskaB. Frankincense – therapeutic properties.Postepy Hig. Med. Dosw.20167038039110.5604/17322693.120055327117114
    [Google Scholar]
  180. GrzannaR. LindmarkL. FrondozaC.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions.J. Med. Food20058212513210.1089/jmf.2005.8.12516117603
    [Google Scholar]
  181. MalloggiE. MenicucciD. CesariV. FrumentoS. GemignaniA. BertoliA. Lavender aromatherapy: A systematic review from essential oil quality and administration methods to cognitive enhancing effects.Appl. Psychol. Health Well-Being202214266369010.1111/aphw.1231034611999
    [Google Scholar]
  182. BastakiS.M. AdeghateE. AmirN. OjhaS. OzM. Menthol inhibits oxidative stress and inflammation in acetic acid-induced colitis in rat colonic mucosa.Am. J. Transl. Res.201810124210422230662664
    [Google Scholar]
  183. MagkoutaS. StathopoulosG.T. PsallidasI. PapapetropoulosA. KolisisF.N. RoussosC. LoutrariH. Protective effects of mastic oil from Pistacia lentiscus variation chia against experimental growth of lewis lung carcinoma.Nutr. Cancer200961564064810.1080/0163558090282564719838938
    [Google Scholar]
  184. SpyridopoulouK. FitsiouE. BouloukostaE. Tiptiri-KourpetiA. VamvakiasM. OreopoulouA. PapavassilopoulouE. PappaA. ChlichliaK. Extraction, chemical composition, and anticancer potential of Origanum onites L. Essential oil.Molecules20192414261210.3390/molecules2414261231323754
    [Google Scholar]
  185. KalioraA.C. KogiannouD.A.A. KefalasP. PapassideriI.S. KalogeropoulosN. Phenolic profiles and antioxidant and anticarcinogenic activities of Greek herbal infusions; Balancing delight and chemoprevention?Food Chem.201414223324110.1016/j.foodchem.2013.07.05624001836
    [Google Scholar]
  186. OüzekG. SchepetkinI.A. UtegenovaG.A. KirpotinaL.N. AndreiS.R. OüzekT. BaşerK.H.C. AbidkulovaK.T. KushnarenkoS.V. KhlebnikovA.I. DamronD.S. QuinnM.T. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.J. Leukoc. Biol.201710161361137110.1189/jlb.3A1216‑518RR28258152
    [Google Scholar]
  187. AbuhamdahS. AbuhamdahR. HowesM.J.R. Al-OlimatS. EnnaceurA. ChazotP.L. Pharmacological and neuroprotective profile of an essential oil derived from leaves of A loysia citrodora Palau.J. Pharm. Pharmacol.20156791306131510.1111/jphp.1242425877296
    [Google Scholar]
  188. RisalitiL. PiniG. AscrizziR. DonatoR. SaccoC. BergonziM.C. SalvaticiM.C. BiliaA.R. Artemisia annua essential oil extraction, characterization, and incorporation in nanoliposomes, smart drug delivery systems against Candida species.J. Drug Deliv. Sci. Technol.20205910184910.1016/j.jddst.2020.101849
    [Google Scholar]
  189. WaglewskaE. MisiaszekT. BazylińskaU. Nanoencapsulation of poorly soluble sea-buckthorn pulp oil in bile salt-origin vesicles: Physicochemical characterization and colloidal stability.Colloids Surf. A Physicochem. Eng. Asp.202264712911310.1016/j.colsurfa.2022.129113
    [Google Scholar]
  190. GilK.A. JerkovićI. MarijanovićZ. MancaM.L. CaddeoC. TuberosoC.I.G. Evaluation of an innovative sheep cheese with antioxidant activity enriched with different thyme essential oil lecithin liposomes.Lebensm. Wiss. Technol.202215411280810.1016/j.lwt.2021.112808
    [Google Scholar]
  191. MohantoS. AhmedM.G. BhuniaA. BhowmickM. Microwave Assisted Nanocomposite Loaded Cinnarizine for Improving Absorption in Gastrointestinal Tract.Current Trends in Drug Discovery, Development and Delivery (CTD4-2022)Murahari, M., Nalluri, B. N., Chakravarthi, G., Eds.; Royal Society of Chemistry202335810.1039/9781837671090‑00493
    [Google Scholar]
  192. AbdallahM.H. ElghamryH.A. KhalifaN.E. KhojaliW.M.A. KhafagyE.S. ShawkyS. El-HoranyH.E.S. El-HousinyS. Development and optimization of erythromycin loaded transethosomes cinnamon oil based emulgel for antimicrobial efficiency.Gels20239213710.3390/gels902013736826307
    [Google Scholar]
  193. NazariM. GhanbarzadehB. Samadi KafilH. ZeinaliM. HamishehkarH. Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model.Colloid Interface Sci. Commun.20193010017610.1016/j.colcom.2019.100176
    [Google Scholar]
  194. LohaniA. VermaA. HemaG. PathakK. Topical delivery of geranium/calendula essential oil-entrapped ethanolic lipid vesicular cream to combat skin aging.BioMed Res. Int.2021202111310.1155/2021/459375934552986
    [Google Scholar]
  195. CastangiaI. MancaM.L. CaddeoC. MaxiaA. MurgiaS. PonsR. DemurtasD. PandoD. FalconieriD. PerisJ.E. FaddaA.M. ManconiM. Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin.Colloids Surf. B Biointerfaces201513218519310.1016/j.colsurfb.2015.05.02526057243
    [Google Scholar]
  196. VilelaJ.M.V. MoghassemiS. DadashzadehA. DolmansM.M. AzevedoR.B. AmorimC.A. Safety of lavender oil-loaded niosomes for in vitro culture and biomedical applications.Nanomaterials20221212199910.3390/nano1212199935745338
    [Google Scholar]
  197. SinicoC. De LoguA. LaiF. ValentiD. ManconiM. LoyG. BonsignoreL. FaddaA.M. Essential Oil and in Vitro Antiviral Activity Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity.Eur. J. Pharm. Biopharm.200559116116810.1016/j.ejpb.2004.06.00515567314
    [Google Scholar]
  198. ManconiM. PetrettoG. D’hallewinG. EscribanoE. MiliaE. PinnaR. PalmieriA. FiroznezhadM. PerisJ.E. UsachI. FaddaA.M. CaddeoC. MancaM.L. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases.Colloids Surf. B Biointerfaces201817111512210.1016/j.colsurfb.2018.07.02130025373
    [Google Scholar]
  199. KalaiselviA. Aswin JenoJ.G. RoopanS.M. MadhumithaG. NakkeeranE. Chemical composition of clove bud oil and development of clove bud oil loaded niosomes against three larvae species.Int. Biodeterior. Biodegradation201913710210810.1016/j.ibiod.2018.12.004
    [Google Scholar]
  200. CristianoM.C. d’AvanzoN. MancusoA. TarsitanoM. BaroneA. TorellaD. PaolinoD. FrestaM. Ammonium glycyrrhizinate and bergamot essential oil co-loaded ultradeformable nanocarriers: An effective natural nanomedicine for in vivo anti-inflammatory topical therapies.Biomedicines2022105103910.3390/biomedicines1005103935625775
    [Google Scholar]
  201. BonaccorsoA. CiminoC. MannoD.E. TomaselloB. SerraA. MusumeciT. PuglisiG. PignatelloR. CarboneC. Essential oil-loaded NLC for potential intranasal administration.Pharmaceutics2021138116610.3390/pharmaceutics1308116634452126
    [Google Scholar]
  202. PalmasL. AroffuM. PetrettoG.L. Escribano-FerrerE. Díez-SalesO. UsachI. PerisJ.E. MarongiuF. GhavamM. FaisS. OrrùG. RachedR.A. MancaM.L. ManconiM. Entrapment of Citrus limon var. pompia essential oil or pure citral in liposomes tailored as mouthwash for the treatment of oral cavity diseases.Pharmaceuticals202013921610.3390/ph1309021632872140
    [Google Scholar]
  203. Rodenak-KladniewB. GambaroR. CisnerosJ.S. Huck-IriartC. PadulaG. CastroG.R. ChainC.Y. IslanG.A. Enhanced anticancer activity of encapsulated geraniol into biocompatible lipid nanoparticles against A549 human lung cancer cells.J. Drug Deliv. Sci. Technol.20238010415910.1016/j.jddst.2023.104159
    [Google Scholar]
  204. NajjariN. SariS. SaffariM. KelidariH. NokhodchiA. Formulation optimization and characterization of Pistacia atlantica Desf. essential oil-loaded nanostructured lipid carriers on the proliferation of human breast cancer cell line SKBR3 (in vitro studies).J. Herb. Med.20223610060010.1016/j.hermed.2022.100600
    [Google Scholar]
  205. MiastkowskaM. SikoraE. Kulawik-PióroA. KantykaT. BieleckaE. KałuckaU. KamińskaM. SzulcJ. Piasecka-ZelgaJ. ZelgaP. Staniszewska-ŚlęzakE. Bioactive Lavandula angustifolia essential oil-loaded nanoemulsion dressing for burn wound healing. In vitro and in vivo studies.Biomaterials Advances202314821336210.1016/j.bioadv.2023.21336236921462
    [Google Scholar]
  206. MunirA. MuhammadF. ZaheerY. AliM.A. IqbalM. RehmanM. MunirM.U. AkhtarB. WebsterT.J. SharifA. IhsanA. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model.J. Drug Deliv. Sci. Technol.20216610285410.1016/j.jddst.2021.102854
    [Google Scholar]
  207. Sadat KhademF. Es-HaghiA. Homayouni TabriziM. ShabestarianH. The loaded Ferula assa-foetida seed essential oil in Solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells.Mater. Technol.20223791120112810.1080/10667857.2021.1924436
    [Google Scholar]
  208. RadiM. AhmadiH. AmiriS. Effect of cinnamon essential oil-loaded nanostructured lipid carriers (NLC) against penicillium citrinum and penicillium expansum involved in tangerine decay.Food Bioprocess Technol.202215230631810.1007/s11947‑021‑02737‑5
    [Google Scholar]
  209. SaporitoF. SandriG. BonferoniM.C. RossiS. BoselliC. Icaro CornagliaA. MannucciB. GrisoliP. ViganiB. FerrariF. Essential oil-loaded lipid nanoparticles for wound healing.Int. J. Nanomedicine20171317518610.2147/IJN.S15252929343956
    [Google Scholar]
  210. CarboneC. TeixeiraM.C. SousaM.C. Martins-GomesC. SilvaA.M. SoutoE.M.B. MusumeciT. Clotrimazole-loaded mediterranean essential oils NLC: A synergic treatment of candida skin infections.Pharmaceutics201911523110.3390/pharmaceutics1105023131085997
    [Google Scholar]
  211. MontenegroL. PasquinucciL. ZappalàA. ChiechioS. TurnaturiR. ParentiC. Rosemary essential oil-loaded lipid nanoparticles: In vivo topical activity from gel vehicles.Pharmaceutics2017944810.3390/pharmaceutics904004829065483
    [Google Scholar]
  212. VieiraR. SeverinoP. NaloneL.A. SoutoS.B. SilvaA.M. LucariniM. DurazzoA. SantiniA. SoutoE.B. Sucupira oil-loaded nanostructured lipid carriers (NLC): Lipid screening, factorial design, release profile, and cytotoxicity.Molecules202025368510.3390/molecules2503068532041134
    [Google Scholar]
  213. BashiriS. GhanbarzadehB. AyasehA. DehghannyaJ. EhsaniA. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity.Lebensm. Wiss. Technol.202011910883610.1016/j.lwt.2019.108836
    [Google Scholar]
  214. SalemM.A. ManaaE.G. OsamaN. AborehabN.M. RagabM.F. HaggagY.A. IbrahimM.T. HamdanD.I. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway.Sci. Rep.2022121657810.1038/s41598‑022‑10494‑435449437
    [Google Scholar]
  215. SoutoE.B. SeverinoP. MarquesC. AndradeL.N. DurazzoA. LucariniM. AtanasovA.G. El MaimouniS. NovellinoE. SantiniA. Croton argyrophyllus kunth essential oil-loaded solid lipid nanoparticles: Evaluation of release profile, antioxidant activity and cytotoxicity in a neuroblastoma cell line.Sustainability20201218769710.3390/su12187697
    [Google Scholar]
  216. TabatabaeainS.F. KarimiE. HashemiM. Satureja khuzistanica essential oil-loaded solid lipid nanoparticles modified with chitosan-folate: Evaluation of encapsulation efficiency, cytotoxic and pro-apoptotic properties.Front Chem.20221090497310.3389/fchem.2022.90497335815210
    [Google Scholar]
  217. MostafaD.A. BayoumiF.S. TaherH.M. AbdelmonemB.H. EissaT.F. Antimicrobial potential of mentha spp. essential oils as raw and loaded solid lipid nanoparticles against dental caries.Res J Pharm Technol2020139441510.5958/0974‑360X.2020.00781.7
    [Google Scholar]
  218. AnsariM.J. RajendranR.R. MohantoS. AgarwalU. PandaK. DhotreK. ManneR. DeepakA. ZafarA. YasirM. PramanikS. Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art.Gels20228745410.3390/gels807045435877539
    [Google Scholar]
  219. KaboudiZ. PeighambardoustS.H. NourbakhshH. SoltanzadehM. Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles.Int. J. Biol. Macromol.202323712396310.1016/j.ijbiomac.2023.12396336906207
    [Google Scholar]
  220. CaiJ. YangD. WangQ. Preparation and characterization of chitosan nanoparticles loaded with Athyrium sinense essential oil with antibacterial properties against Pectobacterium carotovorum subsp. carotovorum.Ind. Crops Prod.202319511638210.1016/j.indcrop.2023.116382
    [Google Scholar]
  221. FroiioF. GinotL. PaolinoD. LebazN. BentaherA. FessiH. ElaissariA. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property.Polymers2019116101710.3390/polym1106101731181851
    [Google Scholar]
  222. López-MenesesA.K. Plascencia-JatomeaM. Lizardi-MendozaJ. Fernández-QuirozD. Rodríguez-FélixF. Mouriño-PérezR.R. Cortez-RochaM.O. Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties.Lebensm. Wiss. Technol.20189659760310.1016/j.lwt.2018.06.013
    [Google Scholar]
  223. VrouvakiI. KoutraE. KornarosM. AvgoustakisK. LamariF.N. HatziantoniouS. Polymeric nanoparticles of pistacia lentiscus var. chia essential oil for cutaneous applications.Pharmaceutics202012435310.3390/pharmaceutics1204035332295134
    [Google Scholar]
  224. YeginY. Perez-LewisK.L. ZhangM. AkbulutM. TaylorT.M. Development and characterization of geraniol-loaded polymeric nanoparticles with antimicrobial activity against foodborne bacterial pathogens.J. Food Eng.2016170647110.1016/j.jfoodeng.2015.09.017
    [Google Scholar]
  225. AlmeidaK.B. In vitro release and anti-herpetic activity of cymbopogon citratus volatile oil-loaded nanogel.Rev. Bras. Farmacogn201828449550210.1016/j.bjp.2018.05.007
    [Google Scholar]
  226. Álvarez-RománR. Lugo-EstradaL. Galindo-RodríguezS.A. Pérez-LópezL.A. de TorresN.W. Headspace–solid-phase microextraction gas chromatography method to quantify Thymus vulgaris essential oil in polymeric nanoparticles.Pharmacogn. Mag.2019156347310.4103/pm.pm_277_18
    [Google Scholar]
  227. BadriW. El AsbahaniA. MiladiK. BaraketA. AgustiG. NazariQ.A. ErrachidA. FessiH. ElaissariA. Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella Sativa L. essential oil for the topical treatment of inflammation.J. Drug Deliv. Sci. Technol.20184623424210.1016/j.jddst.2018.05.022
    [Google Scholar]
  228. AlmeidaK.B. RamosA.S. NunesJ.B.B. SilvaB.O. FerrazE.R.A. FernandesA.S. FelzenszwalbI. AmaralA.C.F. RoullinV.G. FalcãoD.Q. PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil.Colloids Surf. B Biointerfaces201918193594210.1016/j.colsurfb.2019.06.01031382343
    [Google Scholar]
  229. CorradoI. Di GirolamoR. Regalado-GonzálezC. PezzellaC. Polyhydroxyalkanoates-based nanoparticles as essential oil carriers.Polymers202214116610.3390/polym1401016635012189
    [Google Scholar]
  230. HadidiM. PouraminS. AdinepourF. HaghaniS. JafariS.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities.Carbohydr. Polym.202023611607510.1016/j.carbpol.2020.11607532172888
    [Google Scholar]
  231. JummesB. SganzerlaW.G. da RosaC.G. NoronhaC.M. NunesM.R. BertoldiF.C. BarretoP.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil.Biocatal. Agric. Biotechnol.20202310149910.1016/j.bcab.2020.101499
    [Google Scholar]
  232. SofiH.S. AkramT. TamboliA.H. MajeedA. ShabirN. SheikhF.A. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications.Int. J. Pharm.201956911859010.1016/j.ijpharm.2019.11859031381988
    [Google Scholar]
  233. SoltanzadehM. PeighambardoustS.H. GhanbarzadehB. MohammadiM. LorenzoJ.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties.Int. J. Biol. Macromol.20211921084109710.1016/j.ijbiomac.2021.10.07034673101
    [Google Scholar]
  234. AbdellatifM.M. ElakkadY.E. ElwakeelA.A. AllamR.M. MousaM.R. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment.Saudi Pharm. J.202129111238124910.1016/j.jsps.2021.10.00434819785
    [Google Scholar]
  235. KreutzT. CarneiroS.B. SoaresK.D. LimbergerR.P. ApelM.A. Veiga-JuniorV.F. KoesterL.S. Aniba canelilla (Kunth) Mez essential oil-loaded nanoemulsion: Improved stability of the main constituents and in vitro antichemotactic activity.Ind. Crops Prod.202117111394910.1016/j.indcrop.2021.113949
    [Google Scholar]
  236. El-NaggarM.E. AbdelgawadA.M. Abdel-SattarR. GibrielA.A. HemdanB.A. Potential antimicrobial and antibiofilm efficacy of essential oil nanoemulsion loaded polycaprolactone nanofibrous dermal patches.Eur. Polym. J.202318411178210.1016/j.eurpolymj.2022.111782
    [Google Scholar]
  237. RazackS.A. LeeY. ShinH. DuraiarasanS. ChunB.S. KangH.W. Cellulose nanofibrils reinforced chitosan-gelatin based hydrogel loaded with nanoemulsion of oregano essential oil for diabetic wound healing assisted by low level laser therapy.Int. J. Biol. Macromol.202322622023910.1016/j.ijbiomac.2022.12.00336509199
    [Google Scholar]
  238. Acevedo-FaniA. Salvia-TrujilloL. Rojas-GraüM.A. Martín-BellosoO. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties.Food Hydrocoll.20154716817710.1016/j.foodhyd.2015.01.032
    [Google Scholar]
  239. ShenY. NiZ.J. ThakurK. ZhangJ.G. HuF. WeiZ.J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film.Int. J. Biol. Macromol.202118152853910.1016/j.ijbiomac.2021.03.13333794240
    [Google Scholar]
  240. LiZ. CaiM. LiuY. SunP. Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity.Food Control20189431732310.1016/j.foodcont.2018.07.009
    [Google Scholar]
  241. DiniH. FallahA.A. BonyadianM. AbbasvaliM. SoleimaniM. Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage.Int. J. Biol. Macromol.20201641501150910.1016/j.ijbiomac.2020.07.21532750471
    [Google Scholar]
  242. UllahN. AminA. AlamoudiR.A. RasheedS.A. AlamoudiR.A. NawazA. RazaM. NawazT. IshtiaqS. AbbasS.S. Fabrication and optimization of essential-oil-loaded nanoemulsion using box–behnken design against staphylococos aureus and staphylococos epidermidis isolated from oral cavity.Pharmaceutics2022148164010.3390/pharmaceutics1408164036015266
    [Google Scholar]
  243. VolpeV. NascimentoD.S. InsaustiM. GrünhutM. Octyl p-methoxycinnamate loaded microemulsion based on Ocimum basilicum essential oil. Characterization and analytical studies for potential cosmetic applications.Colloids Surf. A Physicochem. Eng. Asp.201854628529210.1016/j.colsurfa.2018.02.070
    [Google Scholar]
  244. OkonogiS. ChaiyanaW. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique.Drug Discov. Ther.20126524925510.5582/ddt.2012.v6.5.24923229145
    [Google Scholar]
  245. KaradağA.E. Üstündağ OkurN. DemirciB. DemirciF. Essential Oil Encapsulated in New Microemulsion Formulations for Enhanced Antimicrobial Activity Rosmarinus officinalis L. essential oil encapsulated in new microemulsion formulations for enhanced antimicrobial activity.J. Surfactants Deterg.20222519510310.1002/jsde.12549
    [Google Scholar]
  246. GandhiJ. SutharD. PatelH. ShelatP. ParejiyaP. Development and characterization of microemulsion based topical gel of essential oil of clove (Syzygium aromaticum) for superficial fungal infections.Advances in Traditional Medicine202121351953410.1007/s13596‑020‑00462‑6
    [Google Scholar]
  247. ZhaoY. WangC. ChowA.H.L. RenK. GongT. ZhangZ. ZhengY. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies.Int. J. Pharm.20103831-217017710.1016/j.ijpharm.2009.08.03519732813
    [Google Scholar]
  248. EmerencianoD. P. BarachoB. B. D. MedeirosM. L. de RochaH. A. O. XavierF. H. VeigaV. F. da MacielM. A. M. Physicochemical characterizations and antioxidant property of copaiba oil loaded into SNEDDS systems.J. Braz. Chem. Soc.201930223424610.21577/0103‑5053.20180172
    [Google Scholar]
  249. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  250. TisserandR. YoungR. 13 - Essential oil profiles.Essential Oil Safety.2nd ed TisserandR. YoungR. St. LouisChurchill Livingstone201418748210.1016/B978‑0‑443‑06241‑4.00013‑8
    [Google Scholar]
  251. TisserandR. YoungR. 3 - Toxicity.Essential Oil Safety.2nd ed TisserandR. YoungR. St. LouisChurchill Livingstone20142338https://doi.org/https://doi.org/10.1016/B978-0-443-06241-4.00003-510.1016/B978‑0‑443‑06241‑4.00003‑5
    [Google Scholar]
  252. MortimerS. ReederM. Botanicals in dermatology: Essential oils, botanical allergens, and current regulatory practices.Dermat. contact, atopic, Occup. drug 201627631732410.1097/DER.0000000000000244
    [Google Scholar]
  253. NJ. H. NEELAMS. Composition of suspoemulsion formulation of anthelmintic drugs with essential oils for naso-pulmonary administration.2023Available from: https://lens.org/009-720-656-042-987
  254. TAHA.K. ELIEB. WERNERK. SOONHAMY. Essential oil emulsion nostril treatment composition.2022Available from: https://lens.org/050-494-645-970-845
  255. H.T. H. RAEDF. NOJODH. BINM. J. ADEELC. MAJEDF. FUADA. WALEEDR. Essential oil nanoemulsion and methods of use thereof.2022Available from: https://lens.org/152-501-978-856-304
  256. ROSSELLAR. HIROKAZUM. CHIZUKOW. KENGOH. SOHK. TAKAAKIK. Nanotechnology-based delivery system of bergamot essential oil, method of preparation of the system and uses thereof.2022Available from: https://lens.org/126-971-596-924-707
  257. TAHAK. ELIEB. WERNERK. SOONHAMY. Method for preparing liposomes containing an essential oil in an oil-in-water emulsion.2021Available from: https://lens.org/151-204-906-896-131
  258. MUDRIKAK. SHIVAKALYANIA. Pharmaceutical compositions and delivery systems for prevention and treatment of candidiasis.2020Available from: https://lens.org/167-015-536-026-419
  259. ALEXANDERM. Homeopathic composition comprising hypericum perforatum extract and essential oils for the treatment of neuropathic pain.2018Available from: https://lens.org/057-900-349-725-496
  260. XINGQIW. XIUZHENS. SHANSHANC. U. I. Compound chinese herbal medicine plant essential oil water-based aerosol.2017Available from: https://lens.org/187-365-948-138-762
  261. SilvaG.L.D. LuftC. LunardelliA. AmaralR.H. MeloD.A.D.S. DonadioM.F. NunesF.B. AzambujaM.S.D. SantanaJ.C. MoraesC.M.B. MelloR.O. CasselE. PereiraM.A.D.A. OliveiraJ.R.D. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil.An. Acad. Bras. Cienc.2015872 supplSuppl.1397140810.1590/0001‑376520152015005626247152
    [Google Scholar]
  262. SiddiquiM.Z. Boswellia serrata, a potential antiinflammatory agent: An overview.Indian J. Pharm. Sci.201173325526110.4103/0250‑474X.9350722457547
    [Google Scholar]
  263. RoyS. KhannaS. KrishnarajuA.V. SubbarajuG.V. YasminT. BagchiD. SenC.K. Regulation of vascular responses to inflammation: Inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to antiinflammatory Boswellia.Antioxid. Redox Signal.200683-465366010.1089/ars.2006.8.65316677108
    [Google Scholar]
  264. KushwahaV. BhowmickA. BeheraB.K. RayA.R. Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.Artif. Cells Blood Substit. Immobil. Biotechnol.199826215917210.3109/107311998091197749564434
    [Google Scholar]
  265. FaiyazuddinM. AkhtarN. AkhterJ. SuriS. ShakeelF. ShafiqS. MustafaG. Production, characterization, in vitro and ex vivo studies of babchi oil-encapsulated nanostructured solid lipid carriers produced by a hot aqueous titration method. Die Pharm. - An Int. J. Pharm. Sci.2010655
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018287719240214075810
Loading
/content/journals/cdd/10.2174/0115672018287719240214075810
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; anti-oxidant; drug delivery system; Essential oil; extraction; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test