Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Malaria is still a major endemic disease transmitted in humans infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018291253240115012327
2024-01-23
2025-04-30
Loading full text...

Full text loading...

References

  1. CowmanA.F. HealerJ. MarapanaD. MarshK. Malaria: Biology and disease.Cell2016167361062410.1016/j.cell.2016.07.05527768886
    [Google Scholar]
  2. ArisueN. HashimotoT. Phylogeny and evolution of apicoplasts and apicomplexan parasites.Parasitol. Int.201564325425910.1016/j.parint.2014.10.00525451217
    [Google Scholar]
  3. LyazzatG. GermaineC. BorislavD.D. FranzH. Transyears competing with the seasons in tropical malaria incidence.Current Topics in Malaria.IntechOpen2016
    [Google Scholar]
  4. HeusslerV. SpielmannT. FrischknechtF. GilbergerT. Plasmodium.Molecular Parasitology.Springer2016
    [Google Scholar]
  5. DeshmukhR. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach.J. Mol. Graph. Model.202312210849710.1016/j.jmgm.2023.10849737149980
    [Google Scholar]
  6. ZekarL. SharmanT. Plasmodium Falciparum Malaria.StatPearls.Treasure Island (FL)StatPearls2023
    [Google Scholar]
  7. SinghB. DaneshvarC. Human infections and detection of Plasmodium knowlesi.Clin. Microbiol. Rev.201326216518410.1128/CMR.00079‑1223554413
    [Google Scholar]
  8. DianN.D. RahimM.A.F.A. ChanS. IdrisZ.M. Non-human primate malaria infections: A review on the epidemiology in malaysia.Int. J. Environ. Res. Public Health20221913788810.3390/ijerph1913788835805545
    [Google Scholar]
  9. World Health OrganizationWorld Malaria report 2023.2023Available from:https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  10. Santos-VegaM. BoumaM.J. KohliV. PascualM. Population density, climate variables and poverty synergistically structure spatial risk in urban malaria in India.PLoS Negl. Trop. Dis.20161012e000515510.1371/journal.pntd.000515527906962
    [Google Scholar]
  11. NatamaH.M. Rovira-VallbonaE. SoméM.A. ZangoS.H. SorghoH. GuetensP. Coulibaly-TraoréM. ValeaI. MensP.F. SchalligH.D.F.H. KestensL. TintoH. Rosanas-UrgellA. Malaria incidence and prevalence during the first year of life in Nanoro, Burkina Faso: A birth-cohort study.Malar. J.201817116310.1186/s12936‑018‑2315‑429650007
    [Google Scholar]
  12. SchofieldL. GrauG.E. Immunological processes in malaria pathogenesis.Nat. Rev. Immunol.20055972273510.1038/nri168616138104
    [Google Scholar]
  13. Guasch-GirbauA. Fernàndez-BusquetsX. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies.Pharmaceutics20211312218910.3390/pharmaceutics1312218934959470
    [Google Scholar]
  14. GhoshD. StumhoferJ.S. The spleen: “Epicenter” in malaria infection and immunity.J. Leukoc. Biol.2021110475376910.1002/JLB.4RI1020‑713R33464668
    [Google Scholar]
  15. FerrerM. Martin-JaularL. De NizM. KhanS.M. JanseC.J. CalvoM. HeusslerV. del PortilloH.A. Imaging of the spleen in malaria.Parasitol. Int.201463119520510.1016/j.parint.2013.08.01423999413
    [Google Scholar]
  16. ChoraÂ.F. MarquesS. GonçalvesJ.L. LimaP. Gomes da CostaD. Fernandez-RuizD. MarreirosM.I. RuivoP. CarvalhoT. RibeiroR.M. SerreK. HeathW.R. Silva-SantosB. TateA.T. MotaM.M. Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis.Immunity2023563592605.e810.1016/j.immuni.2023.01.03136804959
    [Google Scholar]
  17. HaldarK. MohandasN. Malaria, erythrocytic infection, and anemia.Hematology (Am. Soc. Hematol. Educ. Program)200920091879310.1182/asheducation‑2009.1.8720008186
    [Google Scholar]
  18. MilnerD.Jr FactorR. WhittenR. CarrR.A. KamizaS. PinkusG. MolyneuxM. TaylorT. Pulmonary pathology in pediatric cerebral malaria.Hum. Pathol.201344122719272610.1016/j.humpath.2013.07.01824074535
    [Google Scholar]
  19. GriffinJ.T. HollingsworthT.D. OkellL.C. ChurcherT.S. WhiteM. HinsleyW. BousemaT. DrakeleyC.J. FergusonN.M. BasáñezM.G. GhaniA.C. Reducing Plasmodium falciparum malaria transmission in Africa: A model-based evaluation of intervention strategies.PLoS Med.201078e100032410.1371/journal.pmed.100032420711482
    [Google Scholar]
  20. JohnC.B. AndréB.B.W. GiovanniB. Newer approaches for malaria vector control and challenges of outdoor transmission.Towards Malaria Elimination.IntechOpen2018
    [Google Scholar]
  21. SchwartzE. Prophylaxis of malaria.Mediterr. J. Hematol. Infect. Dis.201241e201204510.4084/mjhid.2012.04522811794
    [Google Scholar]
  22. JhaS. DeshmukhR. TrivediV. Approaches and molecular tools for targeted drug delivery in malaria infected red blood cells.Combination Drug Delivery Approach as an Effective Therapy for Various Diseases. KesharwaniP. Academic Press202214917210.1016/B978‑0‑323‑85873‑1.00014‑9
    [Google Scholar]
  23. WhiteN.J. Antimalarial drug resistance.J. Clin. Invest.200411381084109210.1172/JCI2168215085184
    [Google Scholar]
  24. HydeJ.E. Drug‐resistant malaria - An insight.FEBS J.2007274184688469810.1111/j.1742‑4658.2007.05999.x17824955
    [Google Scholar]
  25. CapelaR. MoreiraR. LopesF. An overview of drug resistance in protozoal diseases.Int. J. Mol. Sci.20192022574810.3390/ijms2022574831731801
    [Google Scholar]
  26. FerreiraP.E. HolmgrenG. VeigaM.I. UhlénP. KanekoA. GilJ.P. PfMDR1: Mechanisms of transport modulation by functional polymorphisms.PLoS One201169e2387510.1371/journal.pone.002387521912647
    [Google Scholar]
  27. NdiayeD. DailyJ.P. SarrO. NdirO. GayeO. MboupS. WirthD.F. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in Senegal.Trop. Med. Int. Health200510111176117910.1111/j.1365‑3156.2005.01506.x16262743
    [Google Scholar]
  28. BlascoB. LeroyD. FidockD.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic.Nat. Med.201723891792810.1038/nm.438128777791
    [Google Scholar]
  29. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  30. NanjwadeB.K. IdrisN.F. ChilkawarR.N. SrichanaT. ShafioulA.S.M. InternationalsO. Nanotechnology based virosomal drug delivery systems.J. Nanotechnol. Mater. Sci.20141119
    [Google Scholar]
  31. GittaB. KilianN. Diagnosis of malaria parasites plasmodium spp. in endemic areas: Current strategies for an ancient disease.BioEssays2020421190013810.1002/bies.20190013831830324
    [Google Scholar]
  32. RagavanK.V. KumarS. SwarajS. NeethirajanS. Advances in biosensors and optical assays for diagnosis and detection of malaria.Biosens. Bioelectron.201810518821010.1016/j.bios.2018.01.03729412944
    [Google Scholar]
  33. KoepfliC. RobinsonL.J. RarauP. SalibM. SambaleN. WampflerR. BetuelaI. NuitragoolW. BarryA.E. SibaP. FelgerI. MuellerI. Blood-stage parasitaemia and age determine plasmodium falciparum and P. vivax gametocytaemia in papua new guinea.PLoS One2015105e012674710.1371/journal.pone.012674725996916
    [Google Scholar]
  34. HembenA. AshleyJ. TothillI. Development of an immunosensor for PfHRP 2 as a biomarker for malaria detection.Biosensors2017742810.3390/bios703002828718841
    [Google Scholar]
  35. de Souza CastilhoM. LaubeT. YamanakaH. AlegretS. PividoriM.I. Magneto immunoassays for Plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles.Anal. Chem.201183145570557710.1021/ac200573s21619038
    [Google Scholar]
  36. JepsenM.P.G. RöserD. ChristiansenM. LarsenS.O. CavanaghD.R. DhanasarnsombutK. BygbjergI. DodooD. RemarqueE.J. DziegielM. JepsenS. MordmüllerB. TheisenM. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure.J. Immunol. Methods20123841-2627010.1016/j.jim.2012.07.00922835432
    [Google Scholar]
  37. KimJ. LimD.H. MihnD.C. NamJ. JangW.S. LimC.S. Clinical usefulness of labchip real-time PCR using lab-on-a-chip technology for diagnosing malaria.Korean J. Parasitol.2021591778210.3347/kjp.2021.59.1.7733684990
    [Google Scholar]
  38. UrbánP. Fernàndez-BusquetsX. Nanomedicine against malaria.Curr. Med. Chem.201421560562910.2174/0929867311320666029224164202
    [Google Scholar]
  39. HuikkoK. KostiainenR. KotiahoT. Introduction to micro-analytical systems: Bioanalytical and pharmaceutical applications.Eur. J. Pharm. Sci.200320214917110.1016/S0928‑0987(03)00147‑714550882
    [Google Scholar]
  40. MohammadiL. PalK. BilalM. RahdarA. FytianosG. KyzasG.Z. Green nanoparticles to treat patients with Malaria disease: An overview.J. Mol. Struct.2021122912985710.1016/j.molstruc.2020.129857
    [Google Scholar]
  41. SharmaM.K. RaoV.K. AgarwalG.S. RaiG.P. GopalanN. PrakashS. SharmaS.K. VijayaraghavanR. Highly sensitive amperometric immunosensor for detection of Plasmodium falciparum histidine-rich protein 2 in serum of humans with malaria: Comparison with a commercial kit.J. Clin. Microbiol.200846113759376510.1128/JCM.01022‑0818799699
    [Google Scholar]
  42. ObisesanO.R. AdekunleA.S. OyekunleJ.A.O. SabuT. NkambuleT.T.I. MambaB.B. Development of electrochemical nanosensor for the detection of malaria parasite in clinical samples.Front Chem.201978910.3389/fchem.2019.0008930859097
    [Google Scholar]
  43. GikunooE. AberaA. WoldesenbetE. A novel carbon nanofibers grown on glass microballoons immunosensor: A tool for early diagnosis of malaria.Sensors2014148146861469910.3390/s14081468625120159
    [Google Scholar]
  44. Brince PaulK. KumarS. TripathyS. VanjariS.R.K. SinghV. SinghS.G. A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria.Biosens. Bioelectron.201680394610.1016/j.bios.2016.01.03626803412
    [Google Scholar]
  45. NoahN.M. NdangiliP.M. Current trends of nanobiosensors for point-of-care diagnostics.J. Anal. Methods Chem.2019201911610.1155/2019/217971831886019
    [Google Scholar]
  46. ZhouW. GaoX. LiuD. ChenX. Gold nanoparticles for in vitro diagnostics.Chem. Rev.201511519105751063610.1021/acs.chemrev.5b0010026114396
    [Google Scholar]
  47. Ahmad NajibM. SelvamK. KhalidM.F. OzsozM. AziahI. Quantum dot-based lateral flow immunoassay as point-of-care testing for infectious diseases: A narrative review of its principle and performance.Diagnostics2022129215810.3390/diagnostics1209215836140559
    [Google Scholar]
  48. Sena-TorralbaA. Álvarez-DidukR. ParoloC. PiperA. MerkoçiA. Toward next generation lateral flow assays: Integration of nanomaterials.Chem. Rev.202212218148811491010.1021/acs.chemrev.1c0101236067039
    [Google Scholar]
  49. AkoniyonO.P. AdewumiT.S. MaharajL. OyegokeO.O. RouxA. AdelekeM.A. MaharajR. OkpekuM. Whole genome sequencing contributions and challenges in disease reduction focused on malaria.Biology202211458710.3390/biology1104058735453786
    [Google Scholar]
  50. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.01015491807
    [Google Scholar]
  51. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  52. SarmaN. PatouillardE. CibulskisR.E. ArcandJ.L. The economic burden of malaria: Revisiting the evidence.Am. J. Trop. Med. Hyg.201910161405141510.4269/ajtmh.19‑038631628735
    [Google Scholar]
  53. RaiM. IngleA.P. ParalikarP. GuptaI. MediciS. SantosC.A. Recent advances in use of silver nanoparticles as antimalarial agents.Int. J. Pharm.20175261-225427010.1016/j.ijpharm.2017.04.04228450172
    [Google Scholar]
  54. VauthierC. CouvreurP. Nanomedicines: A new approach for the treatment of serious diseases.J. Biomed. Nanotechnol.20073322323410.1166/jbn.2007.038
    [Google Scholar]
  55. DevalapallyH. ChakilamA. AmijiM.M. Role of nanotechnology in pharmaceutical product development.J. Pharm. Sci.200796102547256510.1002/jps.2087517688284
    [Google Scholar]
  56. WongJ. BruggerA. KhareA. ChaubalM. PapadopoulosP. RabinowB. KippJ. NingJ. Suspensions for intravenous (IV) injection: A review of development, preclinical and clinical aspects.Adv. Drug Deliv. Rev.200860893995410.1016/j.addr.2007.11.00818343527
    [Google Scholar]
  57. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.01016303268
    [Google Scholar]
  58. MosqueiraV.C.F. LoiseauP.M. BoriesC. LegrandP. DevissaguetJ.P. BarrattG. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice.Antimicrob. Agents Chemother.20044841222122810.1128/AAC.48.4.1222‑1228.200415047523
    [Google Scholar]
  59. KayserO. KiderlenA.F. Delivery strategies for antiparasitics.Expert Opin. Investig. Drugs200312219720710.1517/13543784.12.2.19712556214
    [Google Scholar]
  60. DateA. JoshiM. PatravaleV. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles.Adv. Drug Deliv. Rev.200759650552110.1016/j.addr.2007.04.00917574295
    [Google Scholar]
  61. RahmanK. KhanS.U. FahadS. ChangM.X. AbbasA. KhanW.U. RahmanL. HaqZ.U. NabiG. KhanD. Nano-biotechnology: A new approach to treat and prevent malaria.Int. J. Nanomedicine2019141401141010.2147/IJN.S19069230863068
    [Google Scholar]
  62. UmeyorC. KenechukwuF. UronnachiE. Salome AmarachiC. AchuamJ. AttamaA. Recent advances in particulate anti-malarial drug delivery systems: A review.Int. J. Drug Deliv.20135114
    [Google Scholar]
  63. PepaM. MartoraF. FinamoreE. VitielloM. GaldieroM. FranciG. Role of nanoparticles in treatment of human parasites.Nanotechnology Applied To Pharmaceutical Technology.Springer2017307333
    [Google Scholar]
  64. PetkarK.C. ChavhanS.S. Agatonovik-KustrinS. SawantK.K. Nanostructured materials in drug and gene delivery: A review of the state of the art.Crit. Rev. Ther. Drug Carrier Syst.201128210116410.1615/CritRevTherDrugCarrierSyst.v28.i2.1021663574
    [Google Scholar]
  65. NajerA. PalivanC.G. BeckH.P. MeierW. Challenges in malaria management and a glimpse at some nanotechnological approaches.Adv. Exp. Med. Biol.2018105210311210.1007/978‑981‑10‑7572‑8_929785484
    [Google Scholar]
  66. AkbariM. MoradR. MaazaM. Effect of silver nanoparticle size on interaction with artemisinin: First principle study.Results. Surf. Interf.20231110010410.1016/j.rsurfi.2023.100104
    [Google Scholar]
  67. KannanD. YadavN. AhmadS. NamdevP. BhattacharjeeS. LochabB. SinghS. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite.EBioMedicine20194526127710.1016/j.ebiom.2019.06.02631255656
    [Google Scholar]
  68. ArmstrongM. WangL. RistrophK. TianC. YangJ. MaL. PanmaiS. ZhangD. NagapudiK. Prud’hommeR.K. Formulation and scale-up of fast-dissolving lumefantrine nanoparticles for oral malaria therapy.J. Pharm. Sci.202311282267227510.1016/j.xphs.2023.04.00337030438
    [Google Scholar]
  69. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  70. RawatM. SinghD. SarafS. SarafS. Nanocarriers: Promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.179016946487
    [Google Scholar]
  71. MemvangaP.B. NkangaC.I. Liposomes for malaria management: The evolution from 1980 to 2020.Malar. J.202120132710.1186/s12936‑021‑03858‑034315484
    [Google Scholar]
  72. WernsdorferW.H. The development and spread of drug-resistant malaria.Parasitol. Today199171129730310.1016/0169‑4758(91)90262‑M15463395
    [Google Scholar]
  73. VasirJ. ReddyM. LabhasetwarV. Nanosystems in drug targeting: Opportunities and challenges.Curr. Nanosci.200511476410.2174/1573413052953110
    [Google Scholar]
  74. de CassanS.C. ShakriA.R. LlewellynD. EliasS.C. ChoJ.S. GoodmanA.L. JinJ. DouglasA.D. SuwanaruskR. NostenF.H. RéniaL. RussellB. ChitnisC.E. DraperS.J. Preclinical assessment of viral vectored and protein vaccines targeting the duffy-binding protein region II of Plasmodium vivax.Front. Immunol.2015634810.3389/fimmu.2015.0034826217340
    [Google Scholar]
  75. DruilheP. BarnwellJ.W. Pre-erythrocytic stage malaria vaccines: Time for a change in path.Curr. Opin. Microbiol.200710437137810.1016/j.mib.2007.07.00917709281
    [Google Scholar]
  76. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  77. BaruahU.K. GowthamarajanK. VankaR. KarriV.V.S.R. SelvarajK. JojoG.M. Malaria treatment using novel nano-based drug delivery systems.J. Drug Target.201725756758110.1080/1061186X.2017.129164528166440
    [Google Scholar]
  78. WeinerG.J. LiuH.M. WooldridgeJ.E. DahleC.E. KriegA.M. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization.Proc. Natl. Acad. Sci.19979420108331083710.1073/pnas.94.20.108339380720
    [Google Scholar]
  79. IsacchiB. BergonziM.C. GraziosoM. RigheschiC. PietrettiA. SeveriniC. BiliaA.R. Artemisinin and artemisinin plus curcumin liposomal formulations: Enhanced antimalarial efficacy against Plasmodium berghei-infected mice.Eur. J. Pharm. Biopharm.201280352853410.1016/j.ejpb.2011.11.01522142592
    [Google Scholar]
  80. ChimanukaB. GabriëlsM. DetaevernierM.R. Plaizier-VercammenJ.A. Preparation of β-artemether liposomes, their HPLC-UV evaluation and relevance for clearing recrudescent parasitaemia in Plasmodium chabaudi malaria-infected mice.J. Pharm. Biomed. Anal.2002281132210.1016/S0731‑7085(01)00611‑211861104
    [Google Scholar]
  81. VankaR. KuppusamyG. Praveen KumarS. BaruahU.K. KarriV.V.S.R. PandeyV. BabuP.P. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers.J. Microencapsul.201835212113610.1080/02652048.2018.144191529448884
    [Google Scholar]
  82. PostmaN.S. CrommelinD.J. ElingW.M. ZuidemaJ. Treatment with liposome-bound recombinant human tumor necrosis factor-alpha suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice.J. Pharmacol. Exp. Ther.199928811141209862761
    [Google Scholar]
  83. RajendranV. RohraS. RazaM. HasanG.M. DuttS. GhoshP.C. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of plasmodium falciparum in culture and P. berghei infection in murine malaria.Antimicrob. Agents Chemother.20166031304131810.1128/AAC.01796‑1526666937
    [Google Scholar]
  84. AdityaN.P. ChimoteG. GunalanK. BanerjeeR. PatankarS. MadhusudhanB. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice.Exp. Parasitol.2012131329229910.1016/j.exppara.2012.04.01022561991
    [Google Scholar]
  85. GujjariL. KalaniH. PindiproluS.K. ArakareddyB.P. YadagiriG. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria.Parasite Epidemiol. Control202217e0024410.1016/j.parepi.2022.e0024435243049
    [Google Scholar]
  86. IsmailM. LingL. DuY. YaoC. LiX. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria.Biomaterials2018163768710.1016/j.biomaterials.2018.02.02629454237
    [Google Scholar]
  87. RainaN. GoyalA. PillaiC.R. RathG. Development and characterization of artemether loaded solid lipid nanoparticles.Indian J. Pharmaceut. Educ. Res.201347123128
    [Google Scholar]
  88. MartinsS. Costa-LimaS. CarneiroT. Cordeiro-da-SilvaA. SoutoE.B. FerreiraD.C. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway.Int. J. Pharm.20124301-221622710.1016/j.ijpharm.2012.03.03222465548
    [Google Scholar]
  89. OmwoyoW.N. MelaririP. GathirwaJ.W. OlooF. MahangaG.M. KalomboL. OgutuB. SwaiH. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles.Nanomedicine201612380180910.1016/j.nano.2015.11.01726724538
    [Google Scholar]
  90. MugaJ.O. GathirwaJ.W. TukululaM. JuraW.G.Z.O. In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles.Malar. J.201817113310.1186/s12936‑018‑2302‑929606144
    [Google Scholar]
  91. AttamaA.A. KenechukwuF.C. OnuigboE.B. NnamaniP.O. ObitteN. FinkeJ.H. PretorS. Müller-GoymannC.C. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials - artemether and lumefantrine: Evaluation of cellular uptake and antimalarial activity.Eur. J. Nanomed.20168312913810.1515/ejnm‑2016‑0009
    [Google Scholar]
  92. GuptaY. JainA. JainS.K. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain.J. Pharm. Pharmacol.201059793594010.1211/jpp.59.7.000417637187
    [Google Scholar]
  93. TakaleN.R. AjiA. JaneK. DeshmukhP.R. PendharkarV.V. KhadeR.R. GhuleB.V. InamdarN.N. KotagaleN.R. Lumefantrine solid dispersions with piperine for the enhancement of solubility, bioavailability and anti-parasite activity.Int. J. Pharm.202262812235410.1016/j.ijpharm.2022.12235436341917
    [Google Scholar]
  94. BaruahU.K. GowthamarajanK. RavisankarV. KarriV.V.S.R. SimhadriP.K. SinghV. Optimisation of chloroquine phosphate loaded nanostructured lipid carriers using Box–Behnken design and its antimalarial efficacy.J. Drug Target.201826757659110.1080/1061186X.2017.139067129057679
    [Google Scholar]
  95. PrabhuP. SuryavanshiS. PathakS. PatraA. SharmaS. PatravaleV. Nanostructured lipid carriers of artemether-lumefantrine combination for intravenous therapy of cerebral malaria.Int. J. Pharm.20165131-250451710.1016/j.ijpharm.2016.09.00827596113
    [Google Scholar]
  96. PuttappaN. KumarR.S. KuppusamyG. RadhakrishnanA. Nano-facilitated drug delivery strategies in the treatment of plasmodium infection.Acta Trop.201919510311410.1016/j.actatropica.2019.04.02031039335
    [Google Scholar]
  97. KaurR. GorkiV. SinghG. KaurR. KatareO.P. NirmalanN. SinghB. Intranasal delivery of polymer-anchored lipid nanoconstructs of artemether-lumefantrine in Plasmodium berghei ANKA murine model.J. Drug Deliv. Sci. Technol.20216110211410.1016/j.jddst.2020.102114
    [Google Scholar]
  98. TiwariS. ShenoyD. AmijiM. Nanoemulsion formulations for improved oral delivery of poorly soluble drugs.TechConn. Briefs2006475478
    [Google Scholar]
  99. SinghK.K. VingkarS.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine.Int. J. Pharm.20083471-213614310.1016/j.ijpharm.2007.06.03517709216
    [Google Scholar]
  100. MohsinaK GulfishaS GuptaMK GurdeepS Development and evaluation of nanoemulsion of primaquine for prevention of relapsing malaria.Curr. Res. Pharmaceut. Sci.202094
    [Google Scholar]
  101. LaxmiM. BhardwajA. MehtaS. MehtaA. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether.Artif. Cells Nanomed. Biotechnol.201543533434410.3109/21691401.2014.88701824641773
    [Google Scholar]
  102. JarominA. ParapiniS. BasilicoN. Zaremba-CzogallaM. LewińskaA. ZagórskaA. WalczakM. TyliszczakB. GrzeszczakA. ŁukaszewiczM. KaczmarekŁ. GubernatorJ. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioact. Mater.2021641163117410.1016/j.bioactmat.2020.10.00433134609
    [Google Scholar]
  103. WahaneA. WaghmodeA. KapphahnA. DhuriK. GuptaA. BahalR. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy.Molecules20202512286610.3390/molecules2512286632580326
    [Google Scholar]
  104. UrbánP. Valle-DelgadoJ.J. MauroN. MarquesJ. ManfrediA. RottmannM. RanucciE. FerrutiP. Fernàndez-BusquetsX. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium.J. Control. Release2014177849510.1016/j.jconrel.2013.12.03224412735
    [Google Scholar]
  105. Martí Coma-CrosE. LancelotA. San AnselmoM. Neves Borgheti-CardosoL. Valle-DelgadoJ.J. SerranoJ.L. Fernàndez-BusquetsX. SierraT. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery.Biomater. Sci.2019741661167410.1039/C8BM01600C30741274
    [Google Scholar]
  106. TripathyS. DasS. DashS.K. MahapatraS.K. ChattopadhyayS. MajumdarS. RoyS. A prospective strategy to restore the tissue damage in malaria infection: Approach with chitosan-trypolyphosphate conjugated nanochloroquine in Swiss mice.Eur. J. Pharmacol.2014737112110.1016/j.ejphar.2014.04.03024836985
    [Google Scholar]
  107. StevensD.M. CristR.M. SternS.T. Nanomedicine reformulation of chloroquine and hydroxychloroquine.Molecules202026117510.3390/molecules2601017533396545
    [Google Scholar]
  108. da SilvaA.F.C. BenchimolJ.L. Malaria and quinine resistance: A medical and scientific issue between Brazil and Germany (1907-19).Med. Hist.201458112610.1017/mdh.2013.6924331212
    [Google Scholar]
  109. YeungS. SocheatD. MoorthyV.S. MillsA.J. Artemisinin resistance on the Thai-Cambodian border.Lancet200937496991418141910.1016/S0140‑6736(09)61856‑019854365
    [Google Scholar]
  110. MuregiF.W. IshihA. Next‐generation antimalarial drugs: Hybrid molecules as a new strategy in drug design.Drug Dev. Res.2010711203210.1002/ddr.2034521399701
    [Google Scholar]
  111. SharmaB. SinghP. SinghA.K. AwasthiS.K. Advancement of chimeric hybrid drugs to cure malaria infection: An overview with special emphasis on endoperoxide pharmacophores.Eur. J. Med. Chem.202121911340810.1016/j.ejmech.2021.11340833989911
    [Google Scholar]
  112. FengT.S. GuantaiE.M. NellM. van RensburgC.E.J. NcokaziK. EganT.J. HoppeH.C. ChibaleK. Effects of highly active novel artemisinin-chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum.Biochem. Pharmacol.201182323624710.1016/j.bcp.2011.04.01821596024
    [Google Scholar]
  113. ÇapcıA. LorionM.M. WangH. SimonN. LeidenbergerM. Borges SilvaM.C. MoreiraD.R.M. ZhuY. MengY. ChenJ.Y. LeeY.M. FriedrichO. KappesB. WangJ. AckermannL. TsogoevaS.B. Artemisinin-(Iso)quinoline hybrids by C-H activation and click chemistry: Combating multidrug‐resistant malaria.Angew. Chem. Int. Ed.20195837130661307910.1002/anie.20190722431290221
    [Google Scholar]
  114. OpsenicaI. OpsenicaD. SmithK.S. MilhousW.K. ŠolajaB.A. Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials.J. Med. Chem.20085172261226610.1021/jm701417a18330976
    [Google Scholar]
  115. HeW. DuY. LiC. WangJ. WangY. DogovskiC. HuR. TaoZ. YaoC. LiX. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate.Int. J. Pharm.202160912113810.1016/j.ijpharm.2021.12113834592395
    [Google Scholar]
  116. RajablouK. AttarH. SadjadyS.K. HeydarinasabA. The in-vitro study of novel phospholipid micelles loaded with amphotericin B on plasmodium falciparum protozoan.Chem. Phys. Lipids202224510518010.1016/j.chemphyslip.2022.10518035247432
    [Google Scholar]
  117. Hassan ShahS.M. Mukarram ShahS.M. KhanS. UllahF. Ali ShahS.W. GhiasM. ShahidM. SmythH.D.C. HussainZ. SohailM. ElhissiA. IsrebM. Efficient design to fabricate smart Lumefantrine nanocrystals using DENA® particle engineering technology: Characterisation, in vitro and in vivo antimalarial evaluation and assessment of acute and sub-acute toxicity.J. Drug Deliv. Sci. Technol.20216110222810.1016/j.jddst.2020.102228
    [Google Scholar]
  118. HirlekarR. PatelP. DandN. KadamV. Drug loaded erythrocytes: As novel drug delivery system.Curr. Pharm. Des.2008141637010.2174/13816120878333077218220819
    [Google Scholar]
  119. AgnihotriJ GajbhiyeV Engineered cellular carrier nanoerythrosomes as potential targeting vectors for anti-malarial drug.Asian J. Pharmaceut.20104116
    [Google Scholar]
  120. AgnihotriJ. SarafS. SinghS. BigoniyaP. Development and evaluation of anti-malarial bio-conjugates: Artesunate-loaded nanoerythrosomes.Drug Deliv. Transl. Res.20155548949710.1007/s13346‑015‑0246‑y26223381
    [Google Scholar]
  121. ZuoH. QiangJ. WangY. WangR. WangG. ChaiL. RenG. ZhaoY. ZhangG. ZhangS. Design of red blood cell membrane-cloaked dihydroartemisinin nanoparticles with enhanced antimalarial efficacy.Int. J. Pharm.202261812166510.1016/j.ijpharm.2022.12166535288223
    [Google Scholar]
  122. MuzykantovV.R. Drug delivery by red blood cells: vascular carriers designed by mother nature.Expert Opin. Drug Deliv.20107440342710.1517/1742524100361063320192900
    [Google Scholar]
  123. MolesE. Fernàndez-BusquetsX. Loading antimalarial drugs into noninfected red blood cells: An undesirable roommate for Plasmodium.Future Med. Chem.20157783383510.4155/fmc.15.3526061102
    [Google Scholar]
  124. Ospina-VillaJ.D. Zamorano-CarrilloA. Castañón-SánchezC.A. Ramírez-MorenoE. MarchatL.A. Aptamers as a promising approach for the control of parasitic diseases.Braz. J. Infect. Dis.201620661061810.1016/j.bjid.2016.08.01127755981
    [Google Scholar]
  125. CaoM. VialA. MinderL. GuédinA. FribourgS. AzémaL. FeuillieC. MolinariM. Di PrimoC. BarthélémyP. Leblond ChainJ. Aptamer-based nanotrains and nanoflowers as quinine delivery systems.Int. J. Pharm. X2023510017210.1016/j.ijpx.2023.10017236861067
    [Google Scholar]
  126. AliyuA.W. ZainuddinB.S. LowJ.H. LeeC.Y. MustaffaK.M.F. Serum stability of 5 ′ cholesterol triethylene glycol-26-OKA and 39 ′ cholesterol triethylene glycol-24-OKA modified protoporphyrin IX DNA-aptamer and their in vitro heme binding characteristics.Chin. J. Anal. Chem.202351310021910.1016/j.cjac.2022.100219
    [Google Scholar]
  127. CheungY.W. DirkzwagerR.M. WongW.C. CardosoJ. D’Arc Neves CostaJ. TannerJ.A. Aptamer-mediated Plasmodium-specific diagnosis of malaria.Biochimie201814513113610.1016/j.biochi.2017.10.01729080831
    [Google Scholar]
  128. EstellerM. Non-coding RNAs in human disease.Nat. Rev. Genet.2011121286187410.1038/nrg307422094949
    [Google Scholar]
  129. AndrewW. MeiziY. DaLiaoX. Therapeutic implication of miRNA in human disease.Antisense Therapy.IntechOpen2018
    [Google Scholar]
  130. TechaarpornkulS. WongkupasertS. OpanasopitP. ApirakaramwongA. NunthanidJ. RuktanonchaiU. Chitosan-mediated siRNA delivery in vitro: Effect of polymer molecular weight, concentration and salt forms.AAPS PharmSciTech2010111647210.1208/s12249‑009‑9355‑620058108
    [Google Scholar]
  131. SahdevP. OchylL.J. MoonJ.J. Biomaterials for nanoparticle vaccine delivery systems.Pharm. Res.201431102563258210.1007/s11095‑014‑1419‑y24848341
    [Google Scholar]
  132. TewariK. FlynnB.J. BoscardinS.B. KastenmuellerK. SalazarA.M. AndersonC.A. SoundarapandianV. AhumadaA. KelerT. HoffmanS.L. NussenzweigM.C. SteinmanR.M. SederR.A. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates.Vaccine201028457256726610.1016/j.vaccine.2010.08.09820846528
    [Google Scholar]
  133. FelnerovaD. ViretJ.F. GlückR. MoserC. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs.Curr. Opin. Biotechnol.200415651852910.1016/j.copbio.2004.10.00515560978
    [Google Scholar]
  134. MuellerM.S. RenardA. BoatoF. VogelD. NaegeliM. ZurbriggenR. RobinsonJ.A. PluschkeG. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1.Infect. Immun.20037184749475810.1128/IAI.71.8.4749‑4758.200312874357
    [Google Scholar]
  135. TariqH. BatoolS. AsifS. AliM. AbbasiB.H. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases.Front. Microbiol.20221279012110.3389/fmicb.2021.79012135046918
    [Google Scholar]
  136. MoonJ.J. SuhH. PolhemusM.E. OckenhouseC.F. YadavaA. IrvineD.J. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.PLoS One201272e3147210.1371/journal.pone.003147222328935
    [Google Scholar]
  137. Doria-RoseN. HaigwoodN.L. DNA vaccine strategies: candidates for immune modulation and immunization regimens.Methods200331320721610.1016/S1046‑2023(03)00135‑X14511953
    [Google Scholar]
  138. TorchilinV. Multifunctional nanocarriers.Adv. Drug Deliv. Rev.200658141532155510.1016/j.addr.2006.09.00917092599
    [Google Scholar]
  139. RichieT.L. SaulA. Progress and challenges for malaria vaccines.Nature2002415687269470110.1038/415694a11832958
    [Google Scholar]
  140. LipsitchM. O’HaganJ.J. Patterns of antigenic diversity and the mechanisms that maintain them.J. R. Soc. Interface200741678780210.1098/rsif.2007.022917426010
    [Google Scholar]
  141. ChoiB. KimH. ChoiH. KangS. Protein cage nanoparticles as delivery nanoplatforms.Adv. Exp. Med. Biol.20181064274310.1007/978‑981‑13‑0445‑3_230471024
    [Google Scholar]
  142. ScariaP.V. ChenB. RoweC.G. JonesD.S. BarnafoE. FischerE.R. AndersonC. MacDonaldN.J. LambertL. RauschK.M. NarumD.L. DuffyP.E. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity.PLoS One20171212e019031210.1371/journal.pone.019031229281708
    [Google Scholar]
  143. CanepaG.E. Molina-CruzA. Yenkoidiok-DoutiL. CalvoE. WilliamsA.E. BurkhardtM. PengF. NarumD. BoulangerM.J. ValenzuelaJ.G. Barillas-MuryC. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission.NPJ Vaccines2018312610.1038/s41541‑018‑0065‑530002917
    [Google Scholar]
  144. JagannathD.K. ValiyaparambilA. ViswanathV.K. HurakadliM.A. KamariahN. JaferA.C. PatoleC. PradhanS. KumarN. LakshminarasimhanA. Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum.Anal. Biochem.202265511483010.1016/j.ab.2022.11483035944694
    [Google Scholar]
  145. NwonumaC.O. AtanuF.O. OkonkwoN.C. EgharevbaG.O. Evaluation of anti-malarial activity and GC–MS finger printing of cannabis: An in-vivo and in silico approach.Sci. Am.202215e01108
    [Google Scholar]
  146. TrinhT.T.T. YunS.Y. BaeG.J. MoonK. HongH. EumT.H. KimY. KimS.A. ParkH. KimH.S. YeoS.J. Anti-malarial activity of HCl salt of SKM13 (SKM13-2HCl).Int. J. Parasitol. Drugs Drug Resist.20222011312010.1016/j.ijpddr.2022.10.00636375338
    [Google Scholar]
  147. EndoT. NakagomiY. KawaguchiE. HayakawaE.S.H. VuH.N. TakemaeH. ShinoharaY. YangD. UsuiT. MizutaniT. NakaoY. FuruyaT. Anti-malarial activity in a Chinese herbal supplement containing Inonotus obliquus and Panax notoginseng.Parasitol. Int.20228710253210.1016/j.parint.2021.10253234933121
    [Google Scholar]
  148. ParikhP.H. TimaniyaJ.B. PatelM.J. PatelK.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities.J. Mol. Struct.2022124913160510.1016/j.molstruc.2021.131605
    [Google Scholar]
  149. KumariJ. KumarV. BehlA. Kumar SahR. KumariG. GargS. GuptaA. ShafiS. PatiS. SambyK. BurrowsJ. MohandasN. SinghS. ‘Erythritol’, a safe natural sweetener exhibits multi-stage anti-malarial activity by permeating into Plasmodium falciparum through aquaglyceroporin channel.Biochem. Pharmacol.202220511528710.1016/j.bcp.2022.11528736209839
    [Google Scholar]
  150. Neves Borgheti-CardosoL. San AnselmoM. LanteroE. LancelotA. SerranoJ.L. Hernández-AinsaS. Fernàndez-BusquetsX. SierraT. Promising nanomaterials in the fight against malaria.J. Mater. Chem. B Mater. Biol. Med.20208419428944810.1039/D0TB01398F32955067
    [Google Scholar]
  151. LiuY. ZhuS. GuZ. ChenC. ZhaoY. Toxicity of manufactured nanomaterials.Particuology202269314810.1016/j.partic.2021.11.007
    [Google Scholar]
  152. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano1303057436770535
    [Google Scholar]
  153. SamuelU. AdaezeE. ChinekwuN. AdaezeO. Combating antimalarial drug resistance: Recent advances and future perspectives.Malaria.IntechOpen2022
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018291253240115012327
Loading
/content/journals/cdd/10.2174/0115672018291253240115012327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test