Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

In recent years, a notable advancement has occurred in the domain of drug delivery systems the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018283792240115053302
2024-01-26
2025-05-02
Loading full text...

Full text loading...

References

  1. KesharwaniP. KumariK. GururaniR. JainS. SharmaS. Approaches to address PK-PD challenges of conventional liposome formulation with special reference to cancer, alzheimer’s, diabetes, and glaucoma: An update on modified liposomal drug delivery system.Curr. Drug Metab.202223967869210.2174/138920022366622060914145935692131
    [Google Scholar]
  2. HashimL.E. SabriA.H. MohamadM.A. AnjaniQ.K. MustaffaM.F. HamidK.A. Circumventing the gastrointestinal barrier for oral delivery of therapeutic proteins and peptides (PPTS): Current trends and future trajectories.Curr Drug Deliv2023212211235
    [Google Scholar]
  3. ChenW. ZhaoP. YangY. YuD.G. Electrospun beads-on-the-string nanoproducts: Preparation and drug delivery application.Curr. Drug Deliv.20232091224124010.2174/156720181966622052509584435619275
    [Google Scholar]
  4. SetiaA. SahuR.K. RayS. WidyowatiR. EkasariW. SarafS. Advances in hybrid vesicular-based drug delivery systems: Improved biocompatibility, targeting, therapeutic efficacy and pharmacokinetics of anticancer drugs.Curr. Drug Metab.202223975778010.2174/138920022366622062711004935761494
    [Google Scholar]
  5. KadianR. NandaA. A comprehensive insight on recent advancements in self-emulsifying drug delivery systems.Curr. Drug Deliv.20232081095111410.2174/156720181966622091411332436111756
    [Google Scholar]
  6. AbtahiN.A. NaghibS.M. GhalekohnehS.J. MohammadpourZ. NazariH. MosaviS.M. GheibihayatS.M. HaghiralsadatF. RezaJ.Z. DoulabiB.Z. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: in vitro and in vivo studies.Chem. Eng. J.202242913209010.1016/j.cej.2021.132090
    [Google Scholar]
  7. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. A novel and inexpensive method based on modified ionic gelation for ph-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency.Fibers Polym.20202191917192610.1007/s12221‑020‑1095‑y
    [Google Scholar]
  8. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. SeyfooriA. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.Sci. Rep.20211111740410.1038/s41598‑021‑97081‑134465842
    [Google Scholar]
  9. SalehiS. NaghibS.M. GarshasbiH.R. GhorbanzadehS. ZhangW. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review.Front. Bioeng. Biotechnol.202311110412610.3389/fbioe.2023.110412636911200
    [Google Scholar]
  10. YaghoubiF. NaghibS.M. MotlaghN.S.H. HaghiralsadatF. JalianiH.Z. TofighiD. MoradiA. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy.Nanotechnol. Rev.2021101
    [Google Scholar]
  11. NaghibS.M. Localized Micro/Nanocarriers for Programmed and On-Demand Controlled Drug Release.Bentham Science Publishers202210.2174/97898150516361220101
    [Google Scholar]
  12. GohW.X. KokY.Y. WongC.Y. Comparison of cell-based and nanoparticle-based therapeutics in treating atherosclerosis.Curr. Pharm. Des.202329352827284010.2174/011381612827218523102411504637936453
    [Google Scholar]
  13. RenW.W. XuS.H. SunL.P. ZhangK. Ultrasound-based drug delivery system.Curr. Med. Chem.20222981342135110.2174/092986732866621061710390534139971
    [Google Scholar]
  14. HandaM. SinghA. FloraS.J.S. ShuklaR. Stimuli-responsive polymeric nanosystems for therapeutic applications.Curr. Pharm. Des.2022281191092110.2174/138161282766621120815021034879797
    [Google Scholar]
  15. SinghR. JadhavK. VaghasiyaK. RayE. ShuklaR. VermaR.K. New generation smart drug delivery systems for rheumatoid arthritis.Curr. Pharm. Des.20232913984100110.2174/138161282966623040610293537038685
    [Google Scholar]
  16. GharatS.K. GodiyalS.C. MalusareP.P. JadhavK.R. KadamV.J. Microbubbles contrast agents: General overview as diagnostics and therapeutic agent.Curr. Drug Targets2022231096097710.2174/157339981866622042112314235593356
    [Google Scholar]
  17. MalviyaR. SinghA.K. Graft copolymers of polysaccharide: Synthesis methodology and biomedical applications in tissue engineering.Curr. Pharm. Biotechnol.202324451053110.2174/138920102366622081509180636043716
    [Google Scholar]
  18. AzaguryA. KhouryL. EndenG. KostJ. Ultrasound mediated transdermal drug delivery.Adv. Drug Deliv. Rev.20147212714310.1016/j.addr.2014.01.00724463344
    [Google Scholar]
  19. KhakpourE. SalehiS. NaghibS.M. GhorbanzadehS. ZhangW. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules.Front. Bioeng. Biotechnol.202311112976810.3389/fbioe.2023.112976836845181
    [Google Scholar]
  20. ZhuL. WangQ. SuiG. TengD. LiH. WangY. DongP. RanH. WangZ. WangH. Low-intensity focused ultrasound-assisted dox-piperine amplified therapy on anaplastic thyroid carcinoma by hybird tumor-targeting nanoparticles.J. Drug Deliv. Sci. Technol.20238110420210.1016/j.jddst.2023.104202
    [Google Scholar]
  21. BesfordQ.A. CavalieriF. Special issue on “Ultrasound-assisted engineering of materials for biomedical uses”.Ultrason. Sonochem.20229010621610.1016/j.ultsonch.2022.10621636371392
    [Google Scholar]
  22. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat377624150417
    [Google Scholar]
  23. ChaiwaritT. SommanoS.R. RachtanapunP. KantrongN. RuksiriwanichW. Kumpugdee-VollrathM. JantrawutP. Development of carboxymethyl chitosan nanoparticles prepared by ultrasound-assisted technique for a clindamycin HCl carrier.Polymers2022149173610.3390/polym1409173635566905
    [Google Scholar]
  24. JacobS. NairA.B. ShahJ. Emerging role of nanosuspensions in drug delivery systems.Biomater Res202024310.1186/s40824‑020‑0184‑8
    [Google Scholar]
  25. WeiP. CornelE.J. DuJ. Ultrasound-responsive polymer-based drug delivery systems.Drug Deliv. Transl. Res.20211141323133910.1007/s13346‑021‑00963‑033761101
    [Google Scholar]
  26. SaleemZ. RehmanK. HamidA.M.S. Role of drug delivery system in improving the bioavailability of resveratrol.Curr Pharm Des20222816321642
    [Google Scholar]
  27. CatalanoA. Diarylurea: A privileged scaffold in drug discovery and therapeutic development.Curr. Med. Chem.202229254302430610.2174/092986732966622011112125135021967
    [Google Scholar]
  28. MujtabaM.A. AkhterM.H. AlamM.S. AliM.D. HussainA. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect.Curr. Pharm. Biotechnol.2022231607110.2174/138920102266621020815211333557735
    [Google Scholar]
  29. LinC. ChenY.Z. WuB. YangM.T. LiuC.Q. ZhaoY. Advances and prospects of ultrasound targeted drug delivery systems using biomaterial-modified micro/nanobubbles for tumor therapy.Curr. Med. Chem.202229305062507510.2174/092986732966622033111031535362371
    [Google Scholar]
  30. MirhadiE. MajeedM. KesharwaniP. SahebkarA. Reactive oxygen species-responsive drug delivery systems: A new approach in nanomedicine.Curr. Med. Chem.202229254320432310.2174/092986732966622012711065435086442
    [Google Scholar]
  31. UpadhyayT.K. AliM.I. KhanF. GoelH. MathurM. GoyalK. MoinS. PandeyP. TanwarP. SharangiA.B. GautamS.D.C. KapdiJ.K. PatelK.I. PatelM.V. ParmarA.M. KamalM.A. Nanoparticles mediated target-specific drug delivery in prostate cancer: An in-depth review.Curr. Med. Chem.202229244170418410.2174/092986732966621122111231234939536
    [Google Scholar]
  32. ZengZ. LiuJ.B. PengC.Z. Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation.Curr. Med. Chem.20222981369137810.2174/092986732866621070808511034238143
    [Google Scholar]
  33. PandyaM. ChatterjeeB. GantiS. Self-emulsifying drug delivery system for oral anticancer therapy: Constraints and recent development.Curr. Pharm. Des.202228312538255310.2174/0366622060614344335670356
    [Google Scholar]
  34. BiancheraA. AlomariE. BrunoS. Augmentation Therapy with alpha-1 antitrypsin: Present and future of production, formulation, and delivery.Curr. Med. Chem.202229338541010.2174/092986732866621052516194234036902
    [Google Scholar]
  35. AvaglianoA. ArcucciA. Insights into melanoma fibroblast populations and therapeutic strategy perspectives: Friends or foes?Curr. Med. Chem.202229406159616810.2174/092986732966622062012413835726413
    [Google Scholar]
  36. ZhangY. FowlkesB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision.Curr. Med. Chem.20222981331134110.2174/092986732866621080409262434348609
    [Google Scholar]
  37. OzkanE. Bakar-AtesF. Ferroptosis: A trusted ally in combating drug resistance in cancer.Curr. Med. Chem.2022291415510.2174/092986732866621081011581234375173
    [Google Scholar]
  38. PinaC.D. FallettaE. Advances in polyaniline for biomedical applications.Curr. Med. Chem.202229232935710.2174/092986732866621041913551933874868
    [Google Scholar]
  39. ChenL. HanL. LianG. Recent advances in predicting skin permeability of hydrophilic solutes.Adv. Drug Deliv. Rev.201365229530510.1016/j.addr.2012.05.00122580335
    [Google Scholar]
  40. AsharH. RanjanA. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms.Pharmacol. Ther.202324410839310.1016/j.pharmthera.2023.10839336965581
    [Google Scholar]
  41. KostJ. Ultrasound for controlled delivery of therapeutics.Clin. Mater.1993131-415516110.1016/0267‑6605(93)90103‑E10146249
    [Google Scholar]
  42. MoonenC. LentackerI. Ultrasound assisted drug delivery.Adv. Drug Deliv. Rev.2014721210.1016/j.addr.2014.04.00224709442
    [Google Scholar]
  43. ParkE.J. WernerJ. SmithN.B. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer.Pharm. Res.20072471396140110.1007/s11095‑007‑9306‑417443398
    [Google Scholar]
  44. PrausnitzM.R. MitragotriS. LangerR. Current status and future potential of transdermal drug delivery.Nat. Rev. Drug Discov.20043211512410.1038/nrd130415040576
    [Google Scholar]
  45. RychakJ.J. KlibanovA.L. Nucleic acid delivery with microbubbles and ultrasound.Adv. Drug Deliv. Rev.201472829310.1016/j.addr.2014.01.00924486388
    [Google Scholar]
  46. SchoellhammerC.M. LangerR. TraversoG. Traverso, Of microneedles and ultrasound: Physical modes of gastrointestinal macromolecule delivery.Tissu. Barr.201641910.1080/21688370.2016.1150235
    [Google Scholar]
  47. VenkatramanS. GaleR. Skin adhesives and skin adhesion.Biomaterials199819131119113610.1016/S0142‑9612(98)00020‑99720896
    [Google Scholar]
  48. ZardadA.Z. ChoonaraY. du ToitL. KumarP. MabroukM. KondiahP. PillayV. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents.Polymers201681035910.3390/polym810035930974645
    [Google Scholar]
  49. Frutos Díaz-AlejoJ. González GómezI. EarlJ. Ultrasounds in cancer therapy: A summary of their use and unexplored potential.Oncol. Rev.202216153110.4081/oncol.2022.53135340884
    [Google Scholar]
  50. SasakiN. IkenakaY. AoshimaK. AoyagiT. KudoN. NakamuraK. TakiguchiM. Safety assessment of ultrasound-assisted intravesical chemotherapy in normal dogs: A pilot study.Front. Pharmacol.20221383775410.3389/fphar.2022.83775435370726
    [Google Scholar]
  51. PoudelI. AnnajiM. ArnoldR.D. GajbhiyeV. TiwariA.K. BabuR.J. Vesicular nanocarrier based stimuli-responsive drug delivery systems.Stimuli-Responsive NanocarriersAcademic Press20226186
    [Google Scholar]
  52. LynnJ.G. ZwemerR.L. ChickA.J. MillerA.E. A new method for the generation and use of focused ultrasound in experimental biology.J. Gen. Physiol.19422617919310.1085/jgp.26.2.17919873337
    [Google Scholar]
  53. HasnainM.S. NayakA.K. Natural polymers for pharmaceutical applications.Volume 1: Plant-Derived Polymers Apple Academic PressNew York2019
    [Google Scholar]
  54. HuangD. WangJ. SongC. ZhaoY. Ultrasound-responsive matters for biomedical applications.Innovation20234310042110.1016/j.xinn.2023.10042137192908
    [Google Scholar]
  55. RaoR. NandaS. Sonophoresis: Recent advancements and future trends.J. Pharm. Pharmacol.201061668970510.1211/jpp.61.06.000119505359
    [Google Scholar]
  56. SchneiderM. Molecular imaging and ultrasound-assisted drug delivery.J. Endourol.200822479580210.1089/end.2007.982118366315
    [Google Scholar]
  57. SuriS.S. FenniriH. SinghB. Nanotechnology-based drug delivery systems.J. Occup. Med. Toxicol.2007211610.1186/1745‑6673‑2‑1618053152
    [Google Scholar]
  58. FarokhzadO.C. LangerR. Impact of nanotechnology on hair attributes.ACS Nano2009317
    [Google Scholar]
  59. OchekpeN.A. OlorunfemiP.O. NgwulukaN.C. Nanotechnology and drug delivery. Part 1: Background and applications.Trop. J. Pharm. Res.20098326527410.4314/tjpr.v8i3.44546
    [Google Scholar]
  60. ParkK. Facing the truth about nanotechnology in drug delivery.ACS Nano2013797442744710.1021/nn404501g24490875
    [Google Scholar]
  61. MengY. HynynenK. LipsmanN. Applications of focused ultrasound in the brain: From thermoablation to drug delivery.Nat. Rev. Neurol.202117172210.1038/s41582‑020‑00418‑z33106619
    [Google Scholar]
  62. BunkerA. MagarkarA. ViitalaT. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.Biochim. Biophys. Acta Biomembr.20161858102334235210.1016/j.bbamem.2016.02.02526915693
    [Google Scholar]
  63. LeightonT.G. What is ultrasound?Prog. Biophys. Mol. Biol.2007931-338310.1016/j.pbiomolbio.2006.07.02617045633
    [Google Scholar]
  64. RapoportN. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery.Adv. Exp. Med. Biol.201688022124110.1007/978‑3‑319‑22536‑4_1326486341
    [Google Scholar]
  65. SchoellhammerC.M. PolatB.E. MendenhallJ. MaaR. JonesB. HartD.P. LangerR. BlankschteinD. Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound.J. Control. Release2012163215416010.1016/j.jconrel.2012.08.01922940128
    [Google Scholar]
  66. ZhouQ.L. ChenZ.Y. WangY.X. YangF. LinY. LiaoY.Y. Ultrasound-mediated local drug and gene delivery using nanocarriers.BioMed Res. Int.2014201411310.1155/2014/96389125202710
    [Google Scholar]
  67. FowlkesB. GhanouniP. SanghviN. CoussiosC. LyonP.C. GrayM. MannarisC. VictorM.S. StrideE. ClevelandR. CarlisleR. WuF. MiddletonM. GleesonF. AubryJ.F. PaulyK.B. MoonenC. VortmanJ. GhanouniP. SharabiS. DanielsD. LastD. GuezD. LevyY. VolovickA. GrinfeldJ. RachmilevichI. AmarT. ZiblyZ. MardorY. HarnofS. PlaksinM. WeisslerY. ShohamS. KimmelE. NaorO. FarahN. ShohamS. PaengD.G. XuZ. SnellJ. QuiggA.H. EamesM. JinC. EverstineA.C. SheehanJ.P. LopesB.S. KassellN. LooiT. KhokhlovaV. MougenotC. HynynenK. DrakeJ. SlaytonM. AmodeiR.C. ComptonK. McNellyA. LattD. SlaytonM. AmodeiR.C. ComptonK. KearneyJ. MelodelimaD. DupreA. ChenY. PerolD. VincenotJ. ChapelonJ.Y. RivoireM. GuoW. RenG. ShenG. NeidrauerM. ZubkovL. WeingartenM.S. MargolisD.J. LewinP.A. McDannoldN. SuttonJ. VykhodtsevaN. LivingstoneM. KobusT. ZhangY.Z. VykhodtsevaN. McDannoldN. SchwartzM. HuangY. LipsmanN. JainJ. ChapmanM. SankarT. LozanoA. HynynenK. SchwartzM. YeungR. HuangY. LipsmanN. JainJ. ChapmanM. LozanoA. HynynenK. DamianouC. PapadopoulosN. VolovickA. GrinfeldJ. LevyY. BrokmanO. ZadicarioE. BrennerO. CastelD. WuS.Y. GrondinJ. ZhengW. HeidmannM. KarakatsaniM.E. SánchezC.J.S. FerreraV. KonofagouE.E. DamianouC. YiannakouM. ChoH. LeeH. HanM. ChoiJ.R. LeeT. AhnS. ChangY. ParkJ. EllensN. PartanenA. FarahaniK. AiranR. CarpentierA. CanneyM. VignotA. LafonC. ChapelonJ.Y. DelattreJ. IdbaihA. OdéenH. BolsterB. JeongE.K. ParkerD.L. GaurP. FengX. FieldenS. MeyerC. WernerB. GrissomW. MarxM. GhanouniP. PaulyK.B. WeberH. TavianiV. PaulyK.B. GhanouniP. HargreavesB. TanakaJ. KikuchiK. IshijimaA. AzumaT. MinamihataK. YamaguchiS. NagamuneT. SakumaI. TakagiS. SantinM.D. MarsacL. MaimbourgG. MonfortM. LarratB. FrançoisC. LehéricyS. TanterM. AubryJ.F. KarakatsaniM.E. SamiotakiG. WangS. AcostaC. FeinbergE.R. KonofagouE.E. KovacsZ.I. TuT.W. PapadakisG.Z. ReidW.C. HammoudD.A. FrankJ.A. KovacsZ. KimS. JikariaN. BreslerM. QureshiF. FrankJ.A. XiaJ. TsuiP.S. LiuH.L. PlataJ.C. FieldenS. SveinssonB. HargreavesB. MeyerC. PaulyK.B. PlataJ.C. SalgaonkarV.A. AdamsM. DiederichC. OzhinskyE. BucknorM.D. RiekeV. PartanenA. MikhailA. SeveranceL. NegussieA.H. WoodB. de GreefM. SchubertG. MoonenC. RiesM. PoormanM.E. DockeryM. ChaplinV. DudzinskiS.O. SpearsR. CaskeyC. GiorgioT. GrissomW. CostaM.M. PapaevangelouE. ShahA. RivensI. BoxC. BamberJ. ter HaarG. BurksS.R. NagleM. NguyenB. BreslerM. FrankJ.A. BurksS.R. NagleM. NguyenB. BreslerM. KimS. MiloB. FrankJ.A. LeN.M. SongS. ZhouK. NabiG. HuangZ. Ben-EzraS. RosenS. MihcinS. StrehlowJ. KarakitsiosI. LeN. SchwenkeM. DemedtsD. PrenticeP. HaaseS. PreusserT. MelzerA. MestasJ.L. ChettabK. GomezG.S. DumontetC. WerleB. LafonC. MarquetF. BourP. VaillantF. AmraouiS. DuboisR. RitterP. HaïssaguerreM. HociniM. BernusO. QuessonB. LivnehA. KimmelE. AdamD. RobinJ. ArnalB. FinkM. TanterM. PernotM. KhokhlovaT.D. SchadeG.R. WangY.N. KreiderW. SimonJ. StarrF. KarzovaM. MaxwellA. BaileyM.R. KhokhlovaV. LundtJ.E. AllenS.P. SukovichJ.R. HallT. XuZ. SchadeG.R. WangY.N. KhokhlovaT.D. MayP. LinD.W. BaileyM.R. KhokhlovaV. ConstansC. DeffieuxT. TanterM. AubryJ.F. ParkE.J. AhnY.D. KangS.Y. ParkD.H. LeeJ.Y. Vidal-JoveJ. PerichE. RuizA. JaenA. EresN. del CastilloM.A. MyersR. KwanJ. CovielloC. RoweC. CrakeC. FinnS. JacksonE. CarlisleR. CoussiosC. PouliopoulosA. LiC. TinguelyM. TangM.X. GarbinV. ChoiJ.J. LyonP.C. MannarisC. GrayM. FolkesL. StratfordM. CarlisleR. WuF. MiddletonM. GleesonF. CoussiosC. NwokeohaS. CarlisleR. ClevelandR. WangY.N. KhokhlovaT.D. LiT. FarrN. D’AndreaS. StarrF. GravelleK. ChenH. PartanenA. LeeD. HwangJ.H. TardoskiS. NgoJ. GineytsE. RouxJ.P. ClézardinP. MelodelimaD. ContiA. MagninR. GerstenmayerM. LuxF. TillementO. MériauxS. PennaS.D. RomaniG.L. DumontE. LarratB. SunT. PowerC. ZhangY.Z. SuttonJ. MillerE. McDannoldN. SapozhnikovO. TsysarS. YuldashevP.V. KhokhlovaV. SvetV. KreiderW. LiD. PellegrinoA. PetrinicN. SiviourC. JerusalemA. ClevelandR. YuldashevP.V. KarzovaM. CunitzB.W. DunmireB. KreiderW. SapozhnikovO. BaileyM.R. KhokhlovaV. InserraC. GuedraM. MaugerC. GillesB. SolovchukM. SheuT.W.H. ThirietM. ZhouY. NeufeldE. BaumgartnerC. PayneD. KyriakouA. KusterN. XiaoX. McLeodH. MelzerA. DillonC. RiekeV. GhanouniP. ParkerD.L. PayneA. KhokhovaV.A. YuldashevP.V. SinilshchikovI. AndriyakhinaY. KhokhlovaT.D. KreiderW. MaxwellA. SapozhnikovO. PartanenA. RybyanetsA. ShvetsovaN. BerkovichA. ShvetsovI. SapozhnikovO. KhokhlovaV. ShawC.J. RivensI. CivaleJ. GiussaniD. ter HaarG. LeesC. BourP. MarquetF. OzenneV. ToupinS. QuessonB. DumontE. OzhinskyE. SalgaonkarV. DiederichC. RiekeV. KayeE. MonetteS. MaybodyM. SrimathveeravalliG. SolomonS. GulatiA. PreusserT. HaaseS. BezziM. JenneJ.W. LangoT. LevyY. MüllerM. SatG. TannerC. ZangosS. GüntherM. MelzerA. LafonC. DinhA.H. NiafE. BratanF. GuillenN. SouchonR. LartizienC. CrouzetS. RouviereO. ChapelonJ.Y. HanY. WangS. KonofagouE.E. PayenT. PalermoC. SastraS. ChenH. HanY. OliveK. KonofagouE.E. van BreugelJ.M. de GreefM. MougenotC. van den BoschM.A. MoonenC. RiesM. GerstenmayerM. MagninR. FellahB. Le BihanD. LarratB. GerstenmayerM. MagninR. MériauxS. Le BihanD. LarratB. AllenS.P. Hernandez-GarciaL. CainC.A. HallT. LykaE. ElbesD. CovielloC. ClevelandR. CoussiosC. ZhouK. LeN.M. LiC. HuangZ. TamanoS. JimboH. AzumaT. YoshizawaS. FujiwaraK. ItaniK. UmemuraS. DamianouC. YiannakouM. EllensN. PartanenA. StoianoviciD. FarahaniK. ZainiZ. TakagiR. YoshizawaS. UmemuraS. ZongS. ShenG. WatkinsR. Pascal-TenorioA. AdamsM. PlataJ.C. SalgaonkarV. JonesP. Butts-PaulyK. DiederichC. BouleyD. RybyanetsA. RenG. GuoW. ShenG. ChenY. LinC.Y. HsiehH.Y. WeiK.C. LiuH.L. GarnierC. RenaultG. FarrN. PartanenA. NegussieA.H. MikhailA. SeifabadiR. WilsonE. ErankiA. KimP. WoodB. LübkeD. JenneJ.W. HuberP. GüntherM. LübkeD. GeorgiiJ. SchwenkeM. DreskyC.V. HallerJ. GüntherM. PreusserT. JenneJ.W. ErankiA. FarrN. PartanenA. YarmolenkoP. NegussieA.H. SharmaK. CelikH. WoodB. KimP. LiG. QiuW. ZhengH. TsaiM.Y. ChuP.C. LiuH.L. WebbT. VyasU. PaulyK.B. WalkerM. ZhongJ. LooiT. WaspeA.C. DrakeJ. HodaieM. YangF.Y. HuangS.L. ZurY. VolovickA. AssifB. AurupC. KamimuraH. WangS. ChenH. AcostaC. CarneiroA.A. KonofagouE.E. VolovickA. GrinfeldJ. CastelD. RothlübbersS. SchwaabJ. TannerC. MihcinS. HoustonG. GüntherM. JenneJ.W. OzhinskyE. BucknorM.D. RiekeV. AzhariH. WeissN. SosnaJ. GoldbergS.N. BarrereV. MelodelimaD. JangK.W. BurksS.R. KovacsZ.I. TuT.W. LewisB. KimS. NagleM. JikariaN. FrankJ.A. ZhouY. WangX. AhnY.D. ParkE.J. ParkD.H. KangS.Y. LeeJ.Y. SuomiV. KonofagouE.E. EdwardsD. ClevelandR. LarrabeeZ. EamesM. HananelA. AubryJ.F. RafaelyB. VolovickA. GrinfeldJ. KimmelE. DebbinyR.E. DekelC.Z. AssaM. KimmelE. MenikouG. DamianouC. MouratidisP. RivensI. ter HaarG. Pineda-PardoJ.A. de PedroM.D.Á. MartinezR. HernandezF. CasasS. OliverC. PastorP. VelaL. ObesoJ. GreillierP. ZorganiA. SouchonR. MelodelimaD. CathelineS. LafonC. SolovovV. VozdvizhenskiyM.O. OrlovA.E. WuC.H. SunM.K. ShihT.T. ChenW.S. PrieurF. PillonA. MestasJ.L. CartronV. CebeP. ChansardN. LafondM. LafonC. InserraC. SeyaP.M. ChenW.S. BeraJ.C. BoissenotT. LarratB. FattalE. BordatA. ChacunH. GuetinC. TsapisN. MaruyamaK. UngaJ. SuzukiR. FantC. LafondM. RogezB. NgoJ. LafonC. MestasJ.L. AfadziM. MyhreO.F. VeaS. BjørkøyA. YemaneP.T. van WamelA. BergS. HansenR. AngelsenB. DaviesC. International society for therapeutic ultrasound conference 2016.J. Ther. Ultrasound20175S11510.1186/s40349‑016‑0079‑2
    [Google Scholar]
  68. NewmanC.M. LawrieA. BriskenA.F. CumberlandD.C. Ultrasound gene therapy: On the road from concept to reality.Echocardiography200118433934710.1046/j.1540‑8175.2001.00339.x11415507
    [Google Scholar]
  69. NgK. LiuY. Therapeutic ultrasound: Its application in drug delivery.Med. Res. Rev.200222220422310.1002/med.1000411857639
    [Google Scholar]
  70. QiaoY. WanJ. ZhouL. MaW. YangY. LuoW. YuZ. WangH. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019111e152710.1002/wnan.152729726115
    [Google Scholar]
  71. SennogaC.A. KanbarE. AuboireL. DujardinP.A. FouanD. EscoffreJ.M. BouakazA. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring.Expert Opin. Drug Deliv.20171491031104310.1080/17425247.2017.126632827892760
    [Google Scholar]
  72. XiaH. ZhaoY. TongR. Ultrasound-mediated polymeric micelle drug delivery.Adv. Exp. Med. Biol.201688036538410.1007/978‑3‑319‑22536‑4_2026486348
    [Google Scholar]
  73. ParisJ.L. MannarisC. CabañasM.V. CarlisleR. ManzanoM. Vallet-RegíM. CoussiosC.C. Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery.Chem. Eng. J.20183402810.1016/j.cej.2017.12.051
    [Google Scholar]
  74. EntzianK. AignerA. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment.Pharmaceutics2021138113510.3390/pharmaceutics1308113534452096
    [Google Scholar]
  75. HooD.Y. LowZ.L. LowD.Y.S. TangS.Y. ManickamS. TanK.W. BanZ.H. Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose.Ultrason. Sonochem.20229010617610.1016/j.ultsonch.2022.10617636174272
    [Google Scholar]
  76. ManickamS. Camilla BoffitoD. FloresE.M.M. LevequeJ.M. PfliegerR. PolletB.G. AshokkumarM. Ultrasonics and sonochemistry: Editors’ perspective.Ultrason. Sonochem.20239910654010.1016/j.ultsonch.2023.10654037542752
    [Google Scholar]
  77. ZupancM. PandurŽ. Stepišnik PerdihT. StoparD. PetkovšekM. DularM. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research.Ultrason. Sonochem.20195714716510.1016/j.ultsonch.2019.05.00931208610
    [Google Scholar]
  78. OwenJ. PankhurstQ. StrideE. Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination.Int. J. Hyperthermia201228436237310.3109/02656736.2012.66863922621737
    [Google Scholar]
  79. Shin LowS. Nong LimC. YewM. Siong ChaiW. LowL.E. ManickamS. Ti TeyB. ShowP.L. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery.Ultrason. Sonochem.20218010580510.1016/j.ultsonch.2021.10580534706321
    [Google Scholar]
  80. AhmadiA. Hosseini-NamiS. AbedZ. BeikJ. Aranda-LaraL. SamadianH. Morales-AvilaE. JaymandM. Shakeri-ZadehA. Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials.Drug Discov. Today202025122182220010.1016/j.drudis.2020.09.02633010479
    [Google Scholar]
  81. AwadN.S. PaulV. AlSawaftahN.M. ter HaarG. AllenT.M. PittW.G. HusseiniG.A. Ultrasound-responsive nanocarriers in cancer treatment: A review.ACS Pharmacol. Transl. Sci.20214258961210.1021/acsptsci.0c0021233860189
    [Google Scholar]
  82. Vega-VásquezP. MosierN.S. IrudayarajJ. Nanoscale drug delivery systems: From medicine to agriculture.Front. Bioeng. Biotechnol.202087910.3389/fbioe.2020.0007932133353
    [Google Scholar]
  83. CanaparoR. FogliettaF. GiuntiniF. Della PepaC. DosioF. SerpeL. Recent developments in antibacterial therapy : And therapeutic nanoparticles.Molecules20192411510.3390/molecules2410199131137622
    [Google Scholar]
  84. NovoselovaM.V. GermanS.V. AbakumovaT.O. PerevoschikovS.V. SergeevaO.V. NesterchukM.V. EfimovaO.I. PetrovK.S. ChernyshevV.S. ZatsepinT.S. GorinD.A. Multifunctional nanostructured drug delivery carriers for cancer therapy: Multimodal imaging and ultrasound-induced drug release.Colloids Surf. B Biointerfaces202120011157610.1016/j.colsurfb.2021.11157633508660
    [Google Scholar]
  85. DasS.S. BharadwajP. BilalM. BaraniM. RahdarA. TaboadaP. BungauS. KyzasG.Z. Stimuli-responsive polymeric nanocarriers for drug.Polymers2020126139710.3390/polym1206139732580366
    [Google Scholar]
  86. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  87. SharmaA. SharmaU.S. Liposomes in drug delivery: Progress and limitations.Int. J. Pharm.1997154212314010.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  88. KhafoorA.A. KarimA.S. SajadiS.M. Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications.Results in Surfaces and Interfaces20231110012410.1016/j.rsurfi.2023.100124
    [Google Scholar]
  89. KumarM. HillesA.R. AlmurisiS.H. BhatiaA. MahmoodS. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review.JCIS Open20231210009510.1016/j.jciso.2023.100095
    [Google Scholar]
  90. Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artificial Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.2247036
    [Google Scholar]
  91. EvjenT.J. HagtvetE. MoussatovA. RøgnvaldssonS. MestasJ.L. FowlerR.A. LafonC. NilssenE.A. In vivo monitoring of liposomal release in tumours following ultrasound stimulation.Eur. J. Pharm. Biopharm.201384352653110.1016/j.ejpb.2012.12.00723274944
    [Google Scholar]
  92. HuangS.L. Liposomes in ultrasonic drug and gene delivery.Adv. Drug Deliv. Rev.200860101167117610.1016/j.addr.2008.03.00318479776
    [Google Scholar]
  93. FerraraK. PollardR. BordenM. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery.Annu. Rev. Biomed. Eng.20079141544710.1146/annurev.bioeng.8.061505.09585217651012
    [Google Scholar]
  94. SittaJ. HowardC.M. Applications of ultrasound-mediated drug delivery and gene therapy.Int. J. Mol. Sci.202122211149110.3390/ijms22211149134768922
    [Google Scholar]
  95. FeliceB. PrabhakaranM.P. RodríguezA.P. RamakrishnaS. Drug delivery vehicles on a nano-engineering perspective.Mater. Sci. Eng. C20144117819510.1016/j.msec.2014.04.04924907751
    [Google Scholar]
  96. Al SawaftahN.M. HusseiniG.A. Ultrasound-mediated drug delivery in cancer therapy: A review.J. Nanosci. Nanotechnol.202020127211723010.1166/jnn.2020.1887732711586
    [Google Scholar]
  97. JoshiB. JoshiA. Ultrasound-based drug delivery systems.Elsevier Ltd201910.1016/B978‑0‑08‑102420‑1.00014‑5
    [Google Scholar]
  98. MozafariM.R. AlaviM. Main distinctions between tocosome and nano-liposome as drug delivery systems: A scientific and technical point of view.Micro Nano Bio Asp2023212629
    [Google Scholar]
  99. MemmottR.M. WolfeA.R. CarboneD.P. WilliamsT.M. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors.J. Thorac. Oncol.202116710861098
    [Google Scholar]
  100. WeiD. HuangY. LiangM. RenP. TaoY. XuL. ZhangT. JiZ. ZhangQ. Polypropylene composite hernia mesh with anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system.Colloids Surf. B Biointerfaces202322311315910.1016/j.colsurfb.2023.11315936736174
    [Google Scholar]
  101. ZengY. ShenM. SinghalA. SevinkG.J.A. CroneN. BoyleA.L. KrosA. Enhanced liposomal drug delivery via membrane fusion triggered by dimeric coiled‐coil peptides.Small20231937230113310.1002/smll.20230113337199140
    [Google Scholar]
  102. AwadN.S. PaulV. MahmoudM.S. Al SawaftahN.M. KawakP.S. Al SayahM.H. HusseiniG.A. Effect of pegylation and targeting moieties on the ultrasound-mediated drug release from liposomes.ACS Biomater. Sci. Eng.202061485710.1021/acsbiomaterials.8b0130133463192
    [Google Scholar]
  103. OerlemansC. DeckersR. StormG. HenninkW.E. NijsenJ.F.W. Evidence for a new mechanism behind HIFU-triggered release from liposomes.J. Control. Release2013168332733310.1016/j.jconrel.2013.03.01923567041
    [Google Scholar]
  104. GrayM.D. LyonP.C. MannarisC. FolkesL.K. StratfordM. CampoL. ChungD.Y.F. ScottS. AndersonM. GoldinR. CarlisleR. WuF. MiddletonM.R. GleesonF.V. CoussiosC.C. Focused ultrasound hyperthermia for targeted drug release from thermosensitive liposomes: Results from a phase i trial.Radiology2019291123223810.1148/radiol.201818144530644817
    [Google Scholar]
  105. ZhuL. AltmanM.B. LaszloA. StraubeW. ZoberiI. HallahanD.E. ChenH. Ultrasound hyperthermia technology for radiosensitization.Ultrasound Med. Biol.20194551025104310.1016/j.ultrasmedbio.2018.12.00730773377
    [Google Scholar]
  106. DavidH.C. AmaniM.N-J. NancyE.A. 乳鼠心肌提取 HHS public access.Physiol. Behav.201717613914810.1038/am.2015.114.Biological
    [Google Scholar]
  107. XiongX. ZhaoF. ShiM. YangH. LiuY. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics.J. Biomater. Sci. Polym. Ed.2011224-641742810.1163/092050610X54044021144258
    [Google Scholar]
  108. WuS.K. TsaiC.L. HuangY. HynynenK. Focused ultrasound and microbubbles-mediated drug delivery to brain tumor.Pharmaceutics20201311510.3390/pharmaceutics1301001533374205
    [Google Scholar]
  109. SabbaghF. KimB.S. Recent advances in polymeric transdermal drug delivery systems.J. Control. Release202234113214610.1016/j.jconrel.2021.11.02534813879
    [Google Scholar]
  110. CorreasJ.M. BridalL. LesavreA. MéjeanA. ClaudonM. HélénonO. Ultrasound contrast agents: Properties, principles of action, tolerance, and artifacts.Eur. Radiol.20011181316132810.1007/s00330010094011519538
    [Google Scholar]
  111. ter HaarG. Ultrasound mediated drug delivery: A 21st century phoenix?Int. J. Hyperthermia201228427928110.3109/02656736.2012.67802922621729
    [Google Scholar]
  112. LentackerI. De CockI. DeckersR. De SmedtS.C. MoonenC.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms.Adv. Drug Deliv. Rev.201472496410.1016/j.addr.2013.11.00824270006
    [Google Scholar]
  113. BouakazA. DaytonP. Introduction to the special issue on ultrasound contrast agents and targeted drug delivery.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20136015610.1109/2013.2532
    [Google Scholar]
  114. EckM. AronovichR. IlovitshT. Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells.Int. J. Pharm. X2022410013210.1016/j.ijpx.2022.10013236189459
    [Google Scholar]
  115. SchoenS.Jr KilincM.S. LeeH. GuoY. DegertekinF.L. WoodworthG.F. ArvanitisC. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound.Adv. Drug Deliv. Rev.202218011404310.1016/j.addr.2021.11404334801617
    [Google Scholar]
  116. ShaoS. WangS. RenL. WangJ. ChenX. PiH. SunY. DongC. WengL. GaoY. WangL. Layer-by-layer assembly of lipid nanobubbles on microneedles for ultrasound-assisted transdermal drug delivery.ACS Appl. Bio Mater.20225256256910.1021/acsabm.1c0104935021618
    [Google Scholar]
  117. LandiniL. SantarelliM. LandiniL. PositanoV. Ultrasound techniques for drug delivery in cardiovascular medicine.Curr. Drug Discov. Technol.20085432833210.2174/15701630878673357319075613
    [Google Scholar]
  118. DeprezJ. LajoinieG. EngelenY. De SmedtS.C. LentackerI. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery.Adv. Drug Deliv. Rev.202117293610.1016/j.addr.2021.02.01533705877
    [Google Scholar]
  119. Al-JawadiS. ThakurS.S. Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading.Int. J. Pharm.202058511955910.1016/j.ijpharm.2020.11955932574685
    [Google Scholar]
  120. ZhangJ. WangS. DengZ. LiL. TanG. LiuX. ZhengH. YanF. Ultrasound-triggered drug delivery for breast tumor therapy through iRGD-targeted paclitaxel-loaded liposome-microbubble complexes.J. Biomed. Nanotechnol.20181481384139510.1166/jbn.2018.259429903054
    [Google Scholar]
  121. YanF. LiL. DengZ. JinQ. ChenJ. YangW. YehC.K. WuJ. ShandasR. LiuX. ZhengH. Paclitaxel-liposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers.J. Control. Release2013166324625510.1016/j.jconrel.2012.12.02523306023
    [Google Scholar]
  122. YuF.T.H. ChenX. WangJ. QinB. VillanuevaF.S. Low intensity ultrasound mediated liposomal doxorubicin delivery using polymer microbubbles.Mol. Pharm.2016131556410.1021/acs.molpharmaceut.5b0042126567985
    [Google Scholar]
  123. ZhangX. ZhaoK. WangJ. BaiS. JiaoS. ZhangJ. YuL. Design of simvastatin-loaded polymeric microbubbles as targeted ultrasound contrast agents for vascular imaging and drug delivery in the identification of atherosclerotic plaque.New J. Chem.20164021256126210.1039/C5NJ02292D
    [Google Scholar]
  124. MahmudA. XiongX.B. AliabadiH.M. LavasanifarA. Polymeric micelles for drug targeting.J. Drug Target.200715955358410.1080/1061186070153858617968711
    [Google Scholar]
  125. ZhouQ. ZhangL. YangT. WuH. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.Int. J. Nanomedicine2018132921294210.2147/IJN.S15869629849457
    [Google Scholar]
  126. BoraL. BurkardT. JuanM.H.S. RadekeH.H. MuțA.M. VlaiaL.L. Magyari-PavelI.Z. DiaconeasaZ. SocaciS. BorcanF. KisB. MunteanD. DeheleanC.A. DanciuC. Phytochemical characterization and biological evaluation of origanum vulgare L. essential oil formulated as polymeric micelles drug delivery systems.Pharmaceutics20221411241310.3390/pharmaceutics1411241336365231
    [Google Scholar]
  127. SalkhoN.M. AwadN.S. PittW.G. HusseiniG.A. Photo-induced drug release from polymeric micelles and liposomes: Phototriggering mechanisms in drug delivery systems.Polymers2022147128610.3390/polym1407128635406160
    [Google Scholar]
  128. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym1412251035746086
    [Google Scholar]
  129. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers20221421470210.3390/polym1421470236365696
    [Google Scholar]
  130. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics1408163636015262
    [Google Scholar]
  131. HusseiniG.A. VellutoD. KherbeckL. PittW.G. HubbellJ.A. ChristensenD.A. Investigating the acoustic release of doxorubicin from targeted micelles.Colloids Surf. B Biointerfaces201310115315510.1016/j.colsurfb.2012.05.02522796785
    [Google Scholar]
  132. HusseiniG.A. MyrupG.D. PittW.G. ChristensenD.A. RapoportN.Y. Factors affecting acoustically triggered release of drugs from polymeric micelles.J. Control. Release2000691435210.1016/S0168‑3659(00)00278‑911018545
    [Google Scholar]
  133. SalgarellaA.R. ZahoranováA. ŠrámkováP. MajerčíkováM. PavlovaE. LuxenhoferR. KronekJ. LacíkI. RicottiL. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound.Sci. Rep.201881989310.1038/s41598‑018‑28140‑329967422
    [Google Scholar]
  134. WuP. JiaY. QuF. SunY. WangP. ZhangK. XuC. LiuQ. WangX. Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action.ACS Appl. Mater. Interfaces2017931257062571610.1021/acsami.7b0546928741924
    [Google Scholar]
  135. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  136. TayebH.H. SainsburyF. Nanoemulsions in drug delivery: Formulation to medical application.Nanomedicine201813192507252510.2217/nnm‑2018‑008830265218
    [Google Scholar]
  137. CoutureO. FoleyJ. KassellN.F. LarratB. AubryJ.F. Review of ultrasound mediated drug delivery for cancer treatment: Updates from pre-clinical studies.Transl. Cancer Res.2014349451110.3978/j.issn.2218‑676X.2014.10.01
    [Google Scholar]
  138. SutradharK.B. AminM.L. Nanoemulsions: increasing possibilities in drug delivery.Eur. J. Nanomed.2013529711010.1515/ejnm‑2013‑0001
    [Google Scholar]
  139. KauscherU. HolmeM.N. BjörnmalmM. StevensM.M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes.Adv. Drug Deliv. Rev.201913825927510.1016/j.addr.2018.10.01230947810
    [Google Scholar]
  140. DuJ. O’ReillyR.K. Advances and challenges in smart and functional polymer vesicles.Soft Matter20095193544356110.1039/b905635a
    [Google Scholar]
  141. ZhuY. YangB. ChenS. DuJ. Polymer vesicles: Mechanism, preparation, application, and responsive behavior.Prog. Polym. Sci.20176412210.1016/j.progpolymsci.2015.05.001
    [Google Scholar]
  142. PittW.G. HusseiniG.A. StaplesB.J. Ultrasonic drug delivery – a general review.Expert Opin. Drug Deliv.200411375610.1517/17425247.1.1.3716296719
    [Google Scholar]
  143. PanguG.D. DavisK.P. BatesF.S. HammerD.A. Ultrasonically induced release from nanosized polymer vesicles.Macromol. Biosci.201010554655410.1002/mabi.20100008120491132
    [Google Scholar]
  144. TuL. LiaoZ. LuoZ. WuY.L. HerrmannA. HuoS. Ultrasound‐controlled drug release and drug activation for cancer therapy.Exploration2021132021002310.1002/EXP.2021002337323693
    [Google Scholar]
  145. ChenW. DuJ. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery.Sci. Rep.201331216210.1038/srep0216223831819
    [Google Scholar]
  146. NayakA. BablaH. HanT. DasD.B. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound.Drug Deliv.201623265866910.3109/10717544.2014.93598525034877
    [Google Scholar]
  147. SershenS. WestJ. Implantable, polymeric systems for modulated drug delivery.Adv. Drug Deliv. Rev.20025491225123510.1016/S0169‑409X(02)00090‑X12393303
    [Google Scholar]
  148. YamaguchiS. HigashiK. AzumaT. OkamotoA. Supramolecular polymeric hydrogels for ultrasound‐guided protein release.Biotechnol. J.2019145180053010.1002/biot.20180053030810275
    [Google Scholar]
  149. JahanbekamS. MozafariN. Bagheri-AlamootiA. Mohammadi-SamaniS. DaneshamouzS. HeidariR. AzarpiraN. AshrafiH. AzadiA. Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis.Int. J. Biol. Macromol.202324012444910.1016/j.ijbiomac.2023.12444937072059
    [Google Scholar]
  150. GarshasbiH. SalehiS. NaghibS.M. GhorbanzadehS. ZhangW. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems.Front. Bioeng. Biotechnol.202310112677410.3389/fbioe.2022.112677436698640
    [Google Scholar]
  151. WangZ. ChenR. YangS. LiS. GaoZ. Design and application of stimuli-responsive DNA hydrogels: A review.Mater. Today Bio20221610043010.1016/j.mtbio.2022.10043036157049
    [Google Scholar]
  152. ZhouY. LiuG. GuoS. Advances in ultrasound-responsive hydrogels for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.202210213947395810.1039/D2TB00541G35593215
    [Google Scholar]
  153. HasnainM.S. AhmadS.A. HodaM.N. RishishwarS. RishishwarP. NayakA.K. 12 - Stimuli-responsive carbon nanotubes for targeted drug delivery.Stimuli Responsive Polymeric Nanocarriers for Drug Delivery ApplicationsWoodhead Publishing Series in Biomaterials2018Vol. 232134410.1016/B978‑0‑08‑101995‑5.00015‑5
    [Google Scholar]
  154. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  155. TianB. LiuJ. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review.Int. J. Biol. Macromol.202323512390210.1016/j.ijbiomac.2023.12390236871689
    [Google Scholar]
  156. HuebschN. KearneyC.J. ZhaoX. KimJ. CezarC.A. SuoZ. MooneyD.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy.Proc. Natl. Acad. Sci.2014111279762976710.1073/pnas.140546911124961369
    [Google Scholar]
  157. CavalliR. SosterM. ArgenzianoM. Nanobubbles: A promising efficienft tool for therapeutic delivery.Ther. Deliv.20167211713810.4155/tde.15.9226769397
    [Google Scholar]
  158. JinJ. YangL. ChenF. GuN. Drug delivery system based on nanobubbles.Interdiscip. Mater.20221447149410.1002/idm2.12050
    [Google Scholar]
  159. ApelgrenP. AmorosoM. SäljöK. MonteliusM. LindahlA. Stridh OrrhultL. GatenholmP. KölbyL. ArulkumarS. ParthibanS. GoswamiA. VarmaR.S. Ac ce pte d M us pt.Mater Today Proc201927131
    [Google Scholar]
  160. BatchelorD.V.B. ArmisteadF.J. IngramN. PeymanS.A. MclaughlanJ.R. ColettaP.L. EvansS.D. Nanobubbles for therapeutic delivery: Production, stability and current prospects.Curr. Opin. Colloid Interface Sci.20215410145610.1016/j.cocis.2021.101456
    [Google Scholar]
  161. ChenC.C. SheeranP.S. WuS.Y. OlumoladeO.O. DaytonP.A. KonofagouE.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.J. Control. Release2013172379580410.1016/j.jconrel.2013.09.02524096019
    [Google Scholar]
  162. BatchelorD.V.B. Abou-SalehR.H. ColettaP.L. McLaughlanJ.R. PeymanS.A. EvansS.D. Nested nanobubbles for ultrasound-triggered drug release.ACS Appl. Mater. Interfaces20201226acsami.0c0702210.1021/acsami.0c0702232501014
    [Google Scholar]
  163. BrotchieA. ZhangX.H. Response of interfacial nanobubbles to ultrasound irradiation.Soft Matter20117126526910.1039/C0SM00731E
    [Google Scholar]
  164. DuL. JinY. ZhouW. ZhaoJ. Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets.Ultrasound Med. Biol.20113781252125810.1016/j.ultrasmedbio.2011.05.01221683513
    [Google Scholar]
  165. BaghbaniF. MoztarzadehF. MohandesiJ.A. YazdianF. Mokhtari-DizajiM. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer.Int. J. Biol. Macromol.201693Pt A51251910.1016/j.ijbiomac.2016.09.00827601134
    [Google Scholar]
  166. ZhuF. JiangY. LuoF. LiP. Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model.J. Drug Target.201523432333410.3109/1061186X.2014.99675925609362
    [Google Scholar]
  167. ManzanoM. Vallet-RegíM. Mesoporous silica nanoparticles for drug delivery.Adv. Funct. Mater.2020302190263410.1002/adfm.201902634
    [Google Scholar]
  168. SongY. LiY. XuQ. LiuZ. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: Advances, challenges, and outlook.Int. J. Nanomedicine2016128711010.2147/IJN.S11749528053526
    [Google Scholar]
  169. OuyangJ. TangZ. FarokhzadN. KongN. KimN.Y. FengC. BlakeS. XiaoY. LiuC. XieT. TaoW. Ultrasound mediated therapy: Recent progress and challenges in nanoscience.Nano Today20203510094910.1016/j.nantod.2020.100949
    [Google Scholar]
  170. MuruganB. SagadevanS. JA.L. FatimahI. FatemaK.N. OhW.C. MohammadF. JohanM.R. Role of mesoporous silica nanoparticles for the drug delivery applications.Mater. Res. Express202071010200210.1088/2053‑1591/abbf7e
    [Google Scholar]
  171. BaezaA. Vallet-RegíM. Mesoporous silica nanoparticles as theranostic antitumoral nanomedicines.Pharmaceutics2020121095710.3390/pharmaceutics1210095733050613
    [Google Scholar]
  172. GuoY. WanZ. ZhaoP. WeiM. LiuY. BuT. SunW. LiZ. YuanL. Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes.J. Nanobiotechnology202119140210.1186/s12951‑021‑01145‑334863187
    [Google Scholar]
  173. Vallet-RegíM. Our contributions to applications of mesoporous silica nanoparticles.Acta Biomater.2022137445210.1016/j.actbio.2021.10.01134653693
    [Google Scholar]
  174. SreeharshaN. PhilipM. KrishnaS.S. ViswanadV. SahuR.K. ShiroorkarP.N. AasifA.H. FattepurS. AsdaqS.M.B. NairA.B. AttimaradM. VenugopalaK.N. Multifunctional mesoporous silica nanoparticles for oral drug delivery.Coatings202212335810.3390/coatings12030358
    [Google Scholar]
  175. Vallet-RegíM. SchüthF. LozanoD. ColillaM. ManzanoM. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades?Chem. Soc. Rev.202251135365545110.1039/D1CS00659B35642539
    [Google Scholar]
  176. FangL. ZhouH. ChengL. WangY. LiuF. WangS. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment.Front. Cell. Infect. Microbiol.202313112441110.3389/fcimb.2023.112441136864881
    [Google Scholar]
  177. KolimiP. NaralaS. YoussefA.A.A. NyavanandiD. DudhipalaN. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery.Nanotheranostics202371708910.7150/ntno.7739536593800
    [Google Scholar]
  178. WangJ. JiaoY. ShaoY. Mesoporous silica nanoparticles for dual-mode chemo-sonodynamic therapy by low-energy ultrasound.Materials20181110204110.3390/ma1110204130347751
    [Google Scholar]
  179. LiX. WangZ. XiaH. Ultrasound reversible response nanocarrier based on sodium alginate modified mesoporous silica nanoparticles.Front Chem.201975910.3389/fchem.2019.0005930805332
    [Google Scholar]
  180. ParisJ.L. CabañasM.V. ManzanoM. Vallet-RegíM. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers.ACS Nano2015911110231103310.1021/acsnano.5b0437826456489
    [Google Scholar]
  181. ParisJ.L. ManzanoM. CabañasM.V. Vallet-RegíM. Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells.Nanoscale201810146402640810.1039/C8NR00693H29561558
    [Google Scholar]
  182. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  183. JiangX.C. GaoJ.Q. Exosomes as novel bio-carriers for gene and drug delivery.Int. J. Pharm.20175211-216717510.1016/j.ijpharm.2017.02.03828216464
    [Google Scholar]
  184. LiaoW. DuY. ZhangC. PanF. YaoY. ZhangT. PengQ. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy.Acta Biomater.20198611410.1016/j.actbio.2018.12.04530597259
    [Google Scholar]
  185. BaiL. LiuY. GuoK. ZhangK. LiuQ. WangP. WangX. Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment.ACS Appl Mater Interfaces201911145761458710.1021/acsami.9b00893
    [Google Scholar]
  186. ZhangY. YuJ. KahkoskaA.R. WangJ. BuseJ.B. GuZ. Advances in transdermal insulin delivery.Adv. Drug Deliv. Rev.2019139517010.1016/j.addr.2018.12.00630528729
    [Google Scholar]
  187. TachibanaK. TachibanaS. Transdermal delivery of insulin by ultrasonic vibration.J. Pharm. Pharmacol.201143427027110.1111/j.2042‑7158.1991.tb06681.x1676740
    [Google Scholar]
  188. Domingo-LopezD.A. LattanziG. H J SchreiberL. WallaceE.J. WylieR. O’SullivanJ. DolanE.B. DuffyG.P. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus.Adv. Drug Deliv. Rev.202218511428010.1016/j.addr.2022.11428035405298
    [Google Scholar]
  189. WangJ. SunX. WangW. ZhaoX. ZhouF. LiuH. LiL. Ultrasound technique based on liposome nanovesicles in the evaluation of abnormal pregnancy outcomes in diabetic women.Cell Mol Biol20226838338910.14715/cmb/2022.68.3.42
    [Google Scholar]
  190. BaoH. ChenJ. WangX. ChenC. GongJ. LiuJ. XiaD. Ultrasound-triggered on-demand insulin release for diabetes mellitus treatment.Ann Biomed Eng2022501826183610.1007/s10439‑022‑02994‑1
    [Google Scholar]
  191. DengM. WuY. RenY. SongH. ZhengL. LinG. WenX. TaoY. KongQ. WangY. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds.J. Control. Release202235061362910.1016/j.jconrel.2022.08.05336058354
    [Google Scholar]
  192. WuZ. HouQ. ChenT. JiangX. WangL. XuJ. WangL. ROS-reactive PMS/PC drug delivery system improves new bone formation under diabetic conditions by promoting angiogenesis-osteogenesis coupling via down-regulating NOX2-ROS signalling axis.Biomaterials202229112190010.1016/j.biomaterials.2022.12190036379163
    [Google Scholar]
  193. SmithN.B. Perspectives on transdermal ultrasound mediated drug delivery.Int. J. Nanomedicine20072458559410.2147/IJN.S2.4.58518203426
    [Google Scholar]
  194. KostJ. JOSEPH KOST.Ph.D.200212, 4489497
    [Google Scholar]
  195. MerinoG. KaliaY.N. GuyR.H. Ultrasound-enhanced transdermal transport.J. Pharm. Sci.20039261125113710.1002/jps.1036912761802
    [Google Scholar]
  196. LavoriniF. ButtiniF. UsmaniO.S. 100 years of drug delivery to the lungs.Handb. Exp. Pharmacol.201926014315910.1007/164_2019_33531792683
    [Google Scholar]
  197. van RijtS.H. BeinT. MeinersS. Medical nanoparticles for next generation drug delivery to the lungs.Eur. Respir. J.201444376577410.1183/09031936.0021281324791828
    [Google Scholar]
  198. MishraB. SinghJ. Novel drug delivery systems and significance in respiratory diseases.Elsevier Inc.202010.1016/B978‑0‑12‑820658‑4.00004‑2
    [Google Scholar]
  199. DuaK. ShuklaS.D. TekadeR.K. HansbroP.M. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?Drug Deliv. Transl. Res.20177117918710.1007/s13346‑016‑0349‑027924468
    [Google Scholar]
  200. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: A comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  201. YeoL.Y. FriendJ.R. McIntoshM.P. MeeusenE.N.T. MortonD.A.V. Ultrasonic nebulization platforms for pulmonary drug delivery.Expert Opin. Drug Deliv.20107666367910.1517/17425247.2010.48560820459360
    [Google Scholar]
  202. MayerC.R. BekeredjianR. Ultrasonic gene and drug delivery to the cardiovascular system.Adv. Drug Deliv. Rev.200860101177119210.1016/j.addr.2008.03.00418474407
    [Google Scholar]
  203. CastleJ. FeinsteinS.B. Drug and gene delivery using sonoporation for cardiovascular disease.Adv. Exp. Med. Biol.201688033133810.1007/978‑3‑319‑22536‑4_1826486346
    [Google Scholar]
  204. TachibanaK. TachibanaS. Application of ultrasound energy as a new drug delivery system.Nippon Yakurigaku Zasshi1999114Suppl.13814110.1254/fpj.114.supplement_13810629870
    [Google Scholar]
  205. QianB. ZhaoQ. YeX. Ultrasound and magnetic responsive drug delivery systems for cardiovascular application.J. Cardiovasc. Pharmacol.202076441442610.1097/FJC.000000000000088532732493
    [Google Scholar]
  206. SuttonJ.T. HaworthK.J. Pyne-GeithmanG. HollandC.K. Ultrasound-mediated drug delivery for cardiovascular disease.Expert Opin. Drug Deliv.201310557359210.1517/17425247.2013.77257823448121
    [Google Scholar]
  207. StewartF. CoxB. VorstiusJ. VerbeniA. QiuY. CochranS. Capsule-based ultrasound-mediated targeted gastrointestinal drug delivery.2015 IEEE International Ultrasonics Symposium, IUS 2015201510.1109/ULTSYM.2015.0189
    [Google Scholar]
  208. SchoellhammerC.M. ChenY. ClevelandC. MinahanD. BenselT. ParkJ.Y. SaxtonS. LeeY.A.L. BoothL. LangerR. TraversoG. Defining optimal permeant characteristics for ultrasound-mediated gastrointestinal delivery.J. Control. Release201726811311910.1016/j.jconrel.2017.10.02329051063
    [Google Scholar]
  209. SchoellhammerC.M. SchroederA. MaaR. LauwersG.Y. SwistonA. ZervasM. BarmanR. DiCiccioA.M. BruggeW.R. AndersonD.G. BlankschteinD. LangerR. TraversoG. Ultrasound-mediated gastrointestinal drug delivery.Sci. Transl. Med.20157310310ra16810.1126/scitranslmed.aaa593726491078
    [Google Scholar]
  210. ByrneJ. HuangH.W. McRaeJ.C. BabaeeS. SoltaniA. BeckerS.L. TraversoG. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery.Adv. Drug Deliv. Rev.202117711392610.1016/j.addr.2021.11392634403749
    [Google Scholar]
  211. SchoellhammerC.M. TraversoG. Low-frequency ultrasound for drug delivery in the gastrointestinal tract.Expert Opin. Drug Deliv.20161381045104810.1517/17425247.2016.117184127049815
    [Google Scholar]
  212. AlsehliM. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.Saudi Pharm. J.202028325526510.1016/j.jsps.2020.01.00432194326
    [Google Scholar]
  213. RapoportN.Y. ChristensenD.A. FainH.D. BarrowsL. GaoZ. Ultrasound-triggered drug targeting of tumors in vitro and in vivo.Ultrasonics2004421-994395010.1016/j.ultras.2004.01.08715047411
    [Google Scholar]
  214. Moradi KashkooliF. JakhmolaA. HornsbyT.K. TavakkoliJ.J. KoliosM.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions.J. Control. Release202335555257810.1016/j.jconrel.2023.02.00936773959
    [Google Scholar]
  215. HynynenK. Ultrasound for drug and gene delivery to the brain.Adv. Drug Deliv. Rev.200860101209121710.1016/j.addr.2008.03.01018486271
    [Google Scholar]
  216. MethachanB. ThanapprapasrK. Polymer-based materials in cancer treatment: From therapeutic carrier and ultrasound contrast agent to theranostic applications.Ultrasound Med. Biol.2017431698210.1016/j.ultrasmedbio.2016.09.00927751594
    [Google Scholar]
  217. PsimadasD. GeorgouliasP. ValotassiouV. LoudosG. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles.J. Pharm. Sci.201210172271228010.1002/jps.2314622488174
    [Google Scholar]
  218. BoissenotT. BordatA. FattalE. TsapisN. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications.J. Control. Release201624114416310.1016/j.jconrel.2016.09.02627667179
    [Google Scholar]
  219. AlphandéryE. Ultrasound and nanomaterial: An efficient pair to fight cancer.J. Nanobiotechnology202220113910.1186/s12951‑022‑01243‑w35300712
    [Google Scholar]
  220. ElkhodiryM.A. MomahC.C. SuwaidiS.R. GadallaD. MartinsA.M. VitorR.F. HusseiniG.A. Synergistic nanomedicine: Passive, active, and ultrasound-triggered drug delivery in cancer treatment.J. Nanosci. Nanotechnol.201616111810.1166/jnn.2016.1112427398430
    [Google Scholar]
  221. MoS. CoussiosC.C. SeymourL. CarlisleR. Ultrasound-enhanced drug delivery for cancer.Expert Opin. Drug Deliv.20129121525153810.1517/17425247.2012.73960323121385
    [Google Scholar]
  222. Mullick ChowdhuryS. LeeT. WillmannJ.K. Ultrasound-guided drug delivery in cancer.Ultrasonography201736317118410.14366/usg.1702128607323
    [Google Scholar]
  223. KosekiY. IkutaY. TaemaitreeF. SaitoN. SuzukiR. DaoA.T.N. OnoderaT. OikawaH. KasaiH. KasaiH. Fabrication of size-controlled SN-38 pure drug nanocrystals through an ultrasound-assisted reprecipitation method toward efficient drug delivery for cancer treatment.J. Cryst. Growth202157212626510.1016/j.jcrysgro.2021.126265
    [Google Scholar]
  224. ZhangS. ZhangS. LuoS. TangP. WanM. WuD. GaoW. Ultrasound-assisted brain delivery of nanomedicines for brain tumor therapy: Advance and prospect.J. Nanobiotechnology202220128710.1186/s12951‑022‑01464‑z35710426
    [Google Scholar]
  225. CharthadJ. BaltsaviasS. SamantaD. ChangT.C. WeberM.J. Hosseini-NassabN. ZareR.N. ArbabianA. An ultrasonically powered implantable device for targeted drug delivery.Engineering in Medicine and Biology Society (EMBC), 2016 38th Annual International Conference of the IEEEOrlandoAugust 16-20201610.1109/EMBC.2016.7590759
    [Google Scholar]
  226. JainK.K. An overview of drug delivery systems.Methods Mol Biol2020205915410.1007/978‑1‑4939‑9798‑5_1
    [Google Scholar]
  227. WangM.L. ChamberlayneC.F. XuH. MofidfarM. BaltsaviasS. AnnesJ.P. ZareR.N. ArbabianA. On-demand electrochemically controlled compound release from an ultrasonically powered implant.RSC Advances20221236233372334510.1039/D2RA03422K36090393
    [Google Scholar]
  228. TharkarP. VaranasiR. WongW.S.F. JinC.T. ChrzanowskiW. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond.Front. Bioeng. Biotechnol.2019732410.3389/fbioe.2019.0032431824930
    [Google Scholar]
  229. TuJ. YuA.C.H. Ultrasound-mediated drug delivery: Sonoporation mechanisms, biophysics, and critical factors.BME Front20232022980734710.34133/2022/9807347
    [Google Scholar]
  230. BahutairW.N. AbuwatfaW.H. HusseiniG.A. Ultrasound triggering of liposomal nanodrugs for cancer therapy: A review.Nanomaterials20221217305110.3390/nano1217305136080088
    [Google Scholar]
  231. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  232. LiuS. ZhangY. LiuY. WangW. GaoS. YuanW. SunZ. LiuL. WangC. Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect.Br. J. Cancer2023128571572510.1038/s41416‑022‑02076‑y36463323
    [Google Scholar]
  233. XuanJ. BoissièreO. ZhaoY. YanB. TremblayL. LacelleS. XiaH. ZhaoY. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism.Langmuir20122847164631646810.1021/la303946b23145990
    [Google Scholar]
  234. WangJ. PelletierM. ZhangH. XiaH. ZhaoY. High-frequency ultrasound-responsive block copolymer micelle.Langmuir20092522132011320510.1021/la901879419572509
    [Google Scholar]
  235. LuisJ. ParkE.J. MeyerR.J.Jr SmithN.B. Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery.J. Acoust. Soc. Am.200712242022203010.1121/1.276998017902839
    [Google Scholar]
  236. KimA. LeeS.K. ParupudiT. RahimiR. SongS.H. ParkM.C. IslamS. ZhouJ. MajumdarA.K. ParkJ.S. YooJ.M. ZiaieB. An ultrasonically powered implantable microprobe for electrolytic ablation.Sci. Rep.2020101151010.1038/s41598‑020‑58090‑832001732
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018283792240115053302
Loading
/content/journals/cdd/10.2174/0115672018283792240115053302
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test