Skip to content
2000
Volume 4, Issue 4
  • ISSN: 2210-2981
  • E-ISSN: 2210-2914

Abstract

Introduction

In this study, a novel composite was prepared using a combination of nanotechnology and biotechnology.

Methods

This composite involved loading FeO NPs and immobilizing caffeine on the surface of activated carbon (CAF-MAC NCs), which was prepared from palm kernel source material. The adsorbent properties were characterized using FTIR, TEM, VSM, and TGA techniques.

Results

The adsorbent CAF-MAC NCs were investigated under ultrasound-assisted conditions for the removal of the pesticide diazinon from aqueous solutions. The Langmuir adsorption isotherm model indicated that the maximum adsorption of diazinon was 147.05 mg g-1.

Conclusion

The new bio-adsorbent offers several significant advantages, including high adsorption capacity, cost-effectiveness, green synthesis, recyclability, and easy separation.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981343947241125051855
2024-12-02
2025-03-07
Loading full text...

Full text loading...

References

  1. FadaeiA. DehghaniM.H. NasseriS. MahviA.H. RastkariN. ShayeghiM. Organophosphorous pesticides in surface water of Iran.Bull. Environ. Contam. Toxicol.201288686786910.1007/s00128‑012‑0568‑0 22349309
    [Google Scholar]
  2. SaeidiM. NaeimiA. KomeiliM. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water.Adv. Environ. Technol.201622531
    [Google Scholar]
  3. CarsonR. Silent Spring.Greenwich, Conn.Fawcett Publications2002
    [Google Scholar]
  4. BumpusJ.A. TienM. WrightD. AustS.D. Oxidation of persistent environmental pollutants by a white rot fungus.Science198522847061434143610.1126/science.3925550 3925550
    [Google Scholar]
  5. HidayahN. LubisR. WiryawanK.G. SuhartiS. RitaW. ZurinaR. The effect of native grass substitution using jengkol (Archidendron Jiringa) peel and leaves powder on in vitro rumen fermentation.Iran. J. Appl. Anim. Sci.202010421427
    [Google Scholar]
  6. WuX. LiJ. ZhouZ. LinZ. PangS. BhattP. MishraS. ChenS. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation.Front. Microbiol.2021202112
    [Google Scholar]
  7. DehghaniM.H. KamalianS. ShayeghiM. YousefiM. HeidarinejadZ. AgarwalS. GuptaV.K. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes.Microchem. J.201914548649110.1016/j.microc.2018.10.053
    [Google Scholar]
  8. FarkhondehT. AschnerM. SadeghiM. MehrpourO. NaseriK. AmirabadizadehA. RoshanravanB. AramjooH. SamarghandianS. The effect of diazinon on blood glucose homeostasis: A systematic and meta-analysis study.Environ. Sci. Pollut. Res. Int.20212844007401810.1007/s11356‑020‑11364‑0 33175357
    [Google Scholar]
  9. LiuG. LiL. HuangX. ZhengS. XuX. LiuZ. ZhangY. WangJ. LinH. XuD. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8.J. Mater. Sci.20185315107721078310.1007/s10853‑018‑2352‑y
    [Google Scholar]
  10. Assessing soil contamination: A reference manual.2000Available from: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Obsolete/Assessing_contamination_-_A_reference_manual.pdf
  11. JatoiA.S. HashmiZ. AdriyaniR. YuniartoA. MazariS.A. AkhterF. MubarakN.M. Recent trends and future challenges of pesticide removal techniques - A comprehensive review.J. Environ. Chem. Eng.20219410557110557910.1016/j.jece.2021.105571
    [Google Scholar]
  12. PonnuchamyM. KapoorA. Senthil KumarP. VoD.V.N. BalakrishnanA. Mariam JacobM. SivaramanP. Sustainable adsorbents for the removal of pesticides from water: A review.Environ. Chem. Lett.20211932425246310.1007/s10311‑021‑01183‑1
    [Google Scholar]
  13. KınaytürkN.K. TunalıB. Türköz AltuğD. Eggshell as a biomaterial can have a sorption capability on its surface: A spectroscopic research.R. Soc. Open Sci.20218621010021010910.1098/rsos.210100 34150316
    [Google Scholar]
  14. Gebremedhin-HaileT. OlguínM.T. Solache-RíosM. Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals.Water Air Soil Pollut.20031481/417920010.1023/A:1025474001939
    [Google Scholar]
  15. WangS. SheY. HongS. DuX. YanM. WangY. QiY. WangM. JiangW. WangJ. Dual-template imprinted polymers for class-selective solid-phase extraction of seventeen triazine herbicides and metabolites in agro-products.J. Hazard. Mater.201936768669310.1016/j.jhazmat.2018.12.089 30654286
    [Google Scholar]
  16. MattigodS.V. FryxellG.E. FengX. ParkerK.E. PiersE.M. Removal of mercury from aqueous streams of fossil fuel power plants using novel functionalized nanoporous sorbents.Coal Combustion Byproducts and Environmental Issues. SajwanK.S. TwardowskaI. PunshonT. AlvaA.K. New York, NYSpringer20069910410.1007/0‑387‑32177‑2_10
    [Google Scholar]
  17. PradeepT. Anshup, Noble metal nanoparticles for water purification: A critical review.Thin Solid Films2009517246441647810.1016/j.tsf.2009.03.195
    [Google Scholar]
  18. CyrP.J. SuriR.P.S. HelmigE.D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon.Water Res.200236194725473410.1016/S0043‑1354(02)00214‑2 12448514
    [Google Scholar]
  19. WahbyA. Abdelouahab-ReddamZ. El MailR. StitouM. Silvestre-AlberoJ. Sepúlveda-EscribanoA. Rodríguez-ReinosoF. Mercury removal from aqueous solution by adsorption on activated carbons prepared from olive stones.Adsorption201117360360910.1007/s10450‑011‑9334‑6
    [Google Scholar]
  20. KhaderE.H. MohammedT.J. AlbayatiT.M. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution.Desalination Water Treat.202122937238310.5004/dwt.2021.27374
    [Google Scholar]
  21. DawoodS. SenT.K. PhanC. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic.Bioresour. Technol.2017246768110.1016/j.biortech.2017.07.019 28711298
    [Google Scholar]
  22. Herrera-GonzálezA.M. Caldera-VillalobosM. Peláez-CidA.A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite.J. Environ. Manage.201923423724410.1016/j.jenvman.2019.01.012 30634116
    [Google Scholar]
  23. IslamM.A. AhmedM.J. KhandayW.A. AsifM. HameedB.H. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal.Ecotoxicol. Environ. Saf.201713827928510.1016/j.ecoenv.2017.01.010 28081490
    [Google Scholar]
  24. KoshelevaR.I. MitropoulosA.C. KyzasG.Z. Synthesis of activated carbon from food waste.Environ. Chem. Lett.201917142943810.1007/s10311‑018‑0817‑5
    [Google Scholar]
  25. AbioyeA.M. AniF.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review.Renew. Sustain. Energy Rev.2015521282129310.1016/j.rser.2015.07.129
    [Google Scholar]
  26. DilE.A. GhaediM. AsfaramA. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling.Ultrason. Sonochem.20173479280210.1016/j.ultsonch.2016.07.015 27773307
    [Google Scholar]
  27. FayaziM. Ghanei-MotlaghM. TaherM.A. The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibrium studies.Mater. Sci. Semicond. Process.201540354310.1016/j.mssp.2015.06.044
    [Google Scholar]
  28. ShokryH. ElkadyM. HamadH. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study.J. Mater. Res. Technol.2019854477448810.1016/j.jmrt.2019.07.061
    [Google Scholar]
  29. KittappaS. JaisF.M. RamalingamM. MohdN.S. IbrahimS. Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes.J. Environ. Chem. Eng.20208510408110408910.1016/j.jece.2020.104081
    [Google Scholar]
  30. NejadshafieeV. IslamiM.R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent.Mater. Sci. Eng. C2019101101425210.1016/j.msec.2019.03.081 31029336
    [Google Scholar]
  31. NejadshafieeV. IslamiM.R. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine.Environ. Sci. Pollut. Res. Int.20202721625163910.1007/s11356‑019‑06732‑4 31755054
    [Google Scholar]
  32. Maghsoodi GoushkiF. Reza IslamiM. NejadshafieeV. Preparation of eco-friendly nanocomposites based on immobilization of magnetic activated carbon with tartaric acid: Application for adsorption of heavy metals and evaluation of their catalytic activity in C-C coupling reaction.Mater. Sci. Eng. B202227711559111560110.1016/j.mseb.2021.115591
    [Google Scholar]
  33. NejadshafieeV. IslamiM.R. Bioadsorbent from magnetic activated carbon hybrid for removal of dye and pesticide.ChemistrySelect20205288814882210.1002/slct.202001801
    [Google Scholar]
  34. NajdanovićS.M. PetrovićM.M. KostićM.M. VelinovN.D. Radović VučićM.D. MatovićB.Ž. BojićA.L. New way of synthesis of basic bismuth nitrate by electrodeposition from ethanol solution: Characterization and application for removal of RB19 from water.Arab. J. Sci. Eng.201944129939995010.1007/s13369‑019‑04177‑y
    [Google Scholar]
  35. PetrovićM. JovanovićT. RančevS. KovačJ. VelinovN. NajdanovićS. KostićM. BojićA. Plasma modified electrosynthesized cerium oxide catalyst for plasma and photocatalytic degradation of RB 19 dye.J. Environ. Chem. Eng.202210310793110.1016/j.jece.2022.107931
    [Google Scholar]
  36. SohrabiN. MohammadiR. GhassemzadehH.R. HerisS.S.S. Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network.J. Mol. Liq.202132811538410.1016/j.molliq.2021.115384
    [Google Scholar]
  37. FarmanyA. MortazaviS.S. MahdaviH. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal.J. Magn. Magn. Mater.2016416758010.1016/j.jmmm.2016.04.007
    [Google Scholar]
  38. RyooK.S. JungS.Y. SimH. ChoiJ.H. Comparative study on adsorptive characteristics of diazinon in water by various adsorbents.Bull. Korean Chem. Soc.20133492753275910.5012/bkcs.2013.34.9.2753
    [Google Scholar]
  39. BaharumN.A. NasirH.M. IshakM.Y. IsaN.M. HassanM.A. ArisA.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar.Arab. J. Chem.20201376106612110.1016/j.arabjc.2020.05.011
    [Google Scholar]
  40. MoussaviG. HosseiniH. AlahabadiA. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon.Chem. Eng. J.201321417217910.1016/j.cej.2012.10.034
    [Google Scholar]
  41. AkbarlouZ. AlipourV. HeidariM. DindarlooK. Adsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran.Environmen. Health Eng. Manag.201742939910.15171/EHEM.2017.13
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981343947241125051855
Loading
/content/journals/ccs/10.2174/0122102981343947241125051855
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adsorption capacity; caffeine; diazinon; Fe3O4 NPs; Magnetic activated carbon; pesticides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test