Skip to content
2000
image of Caffeine-modified Magnetic Activated Carbon as Novel Bio Adsorbent for Removal of the Diazinon Pesticide in Aqueous Media

Abstract

Introduction

In this study, a novel composite was prepared using a combination of nanotechnology and biotechnology.

Method

This composite involved loading FeO NPs and immobilizing caffeine on the surface of activated carbon (CAF-MAC NCs), which was prepared from palm kernel source material. The adsorbent properties were characterized using FTIR, TEM, VSM, and TGA techniques.

Result

The adsorbent CAF-MAC NCs were investigated under ultrasound-assisted conditions for the removal of the pesticide diazinon from aqueous solutions. The Langmuir adsorption isotherm model indicated that the maximum adsorption of diazinon was 147.05 mg g-1.

Conclusion

The new bio-adsorbent offers several significant advantages, including high adsorption capacity, cost-effectiveness, green synthesis, recyclability, and easy separation.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981343947241125051855
2024-12-02
2025-01-09
Loading full text...

Full text loading...

References

  1. Fadaei A. Dehghani M.H. Nasseri S. Mahvi A.H. Rastkari N. Shayeghi M. Organophosphorous pesticides in surface water of Iran. Bull. Environ. Contam. Toxicol. 2012 88 6 867 869 10.1007/s00128‑012‑0568‑0 22349309
    [Google Scholar]
  2. Saeidi M. Naeimi A. Komeili M. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient ad-sorbent of diazinon pesticide from water. Adv. Environ. Technol. 2016 2 25 31
    [Google Scholar]
  3. Carson R. Silent Spring. Greenwich, Conn. Fawcett Publications 2002
    [Google Scholar]
  4. Bumpus J.A. Tien M. Wright D. Aust S.D. Oxidation of persistent environmental pollutants by a white rot fungus. Science 1985 228 4706 1434 1436 10.1126/science.3925550 3925550
    [Google Scholar]
  5. Hidayah N. Lubis R. Wiryawan K.G. Suharti S. Rita W. Zurina R. The effect of native grass substitution using jengkol (Archidendron Jiringa) peel and leaves powder on in vitro rumen fermentation. Iran. J. Appl. Anim. Sci. 2020 10 421 427
    [Google Scholar]
  6. Wu X. Li J. Zhou Z. Lin Z. Pang S. Bhatt P. Mishra S. Chen S. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmen-tal bioremediation. Front. Microbiol. 2021 2021 12
    [Google Scholar]
  7. Dehghani M.H. Kamalian S. Shayeghi M. Yousefi M. Heidarinejad Z. Agarwal S. Gupta V.K. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem. J. 2019 145 486 491 10.1016/j.microc.2018.10.053
    [Google Scholar]
  8. Farkhondeh T. Aschner M. Sadeghi M. Mehrpour O. Naseri K. Amirabadizadeh A. Roshanravan B. Aramjoo H. Samarghandian S. The effect of diazinon on blood glu-cose homeostasis: A systematic and meta-analysis study. Environ. Sci. Pollut. Res. Int. 2021 28 4 4007 4018 10.1007/s11356‑020‑11364‑0 33175357
    [Google Scholar]
  9. Liu G. Li L. Huang X. Zheng S. Xu X. Liu Z. Zhang Y. Wang J. Lin H. Xu D. Adsorption and removal of or-ganophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nano-tubes @ organic framework ZIF-8. J. Mater. Sci. 2018 53 15 10772 10783 10.1007/s10853‑018‑2352‑y
    [Google Scholar]
  10. Assessing soil contamination: A reference manual. 2000 Available from: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Obsolete/Assessing_contamination_-_A_reference_manual.pdf
  11. Jatoi A.S. Hashmi Z. Adriyani R. Yuniarto A. Mazari S.A. Akhter F. Mubarak N.M. Recent trends and future challenges of pesticide removal techniques - A comprehen-sive review. J. Environ. Chem. Eng. 2021 9 4 105571 105579 10.1016/j.jece.2021.105571
    [Google Scholar]
  12. Ponnuchamy M. Kapoor A. Senthil Kumar P. Vo D.V.N. Balakrishnan A. Mariam Jacob M. Sivaraman P. Sustaina-ble adsorbents for the removal of pesticides from water: A review. Environ. Chem. Lett. 2021 19 3 2425 2463 10.1007/s10311‑021‑01183‑1
    [Google Scholar]
  13. Kınaytürk N.K. Tunalı B. Türköz Altuğ D. Eggshell as a biomaterial can have a sorption capability on its surface: A spectroscopic research. R. Soc. Open Sci. 2021 8 6 210100 210109 10.1098/rsos.210100 34150316
    [Google Scholar]
  14. Gebremedhin-Haile T. Olguín M.T. Solache-Ríos M. Re-moval of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Pollut. 2003 148 1/4 179 200 10.1023/A:1025474001939
    [Google Scholar]
  15. Wang S. She Y. Hong S. Du X. Yan M. Wang Y. Qi Y. Wang M. Jiang W. Wang J. Dual-template imprinted polymers for class-selective solid-phase extraction of seven-teen triazine herbicides and metabolites in agro-products. J. Hazard. Mater. 2019 367 686 693 10.1016/j.jhazmat.2018.12.089 30654286
    [Google Scholar]
  16. Mattigod S.V. Fryxell G.E. Feng X. Parker K.E. Piers E.M. Removal of mercury from aqueous streams of fossil fuel power plants using novel functionalized nanoporous sorbents. Coal Combustion Byproducts and Environmental Issues. Sajwan K.S. Twardowska I. Punshon T. Alva A.K. New York, NY Springer 2006 99 104 10.1007/0‑387‑32177‑2_10
    [Google Scholar]
  17. Pradeep T. Anshup, Noble metal nanoparticles for water purification: A critical review. Thin Solid Films 2009 517 24 6441 6478 10.1016/j.tsf.2009.03.195
    [Google Scholar]
  18. Cyr P.J. Suri R.P.S. Helmig E.D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon. Water Res. 2002 36 19 4725 4734 10.1016/S0043‑1354(02)00214‑2 12448514
    [Google Scholar]
  19. Wahby A. Abdelouahab-Reddam Z. El Mail R. Stitou M. Silvestre-Albero J. Sepúlveda-Escribano A. Rodríguez-Reinoso F. Mercury removal from aqueous solution by ad-sorption on activated carbons prepared from olive stones. Adsorption 2011 17 3 603 609 10.1007/s10450‑011‑9334‑6
    [Google Scholar]
  20. Khader E.H. Mohammed T.J. Albayati T.M. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalination Water Treat. 2021 229 372 383 10.5004/dwt.2021.27374
    [Google Scholar]
  21. Dawood S. Sen T.K. Phan C. Synthesis and characteriza-tion of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermody-namic. Bioresour. Technol. 2017 246 76 81 10.1016/j.biortech.2017.07.019 28711298
    [Google Scholar]
  22. Herrera-González A.M. Caldera-Villalobos M. Peláez-Cid A.A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manage. 2019 234 237 244 10.1016/j.jenvman.2019.01.012 30634116
    [Google Scholar]
  23. Islam M.A. Ahmed M.J. Khanday W.A. Asif M. Hameed B.H. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydro-char for methylene blue removal. Ecotoxicol. Environ. Saf. 2017 138 279 285 10.1016/j.ecoenv.2017.01.010 28081490
    [Google Scholar]
  24. Kosheleva R.I. Mitropoulos A.C. Kyzas G.Z. Synthesis of activated carbon from food waste. Environ. Chem. Lett. 2019 17 1 429 438 10.1007/s10311‑018‑0817‑5
    [Google Scholar]
  25. Abioye A.M. Ani F.N. Recent development in the produc-tion of activated carbon electrodes from agricultural waste bi-omass for supercapacitors: A review. Renew. Sustain. Energy Rev. 2015 52 1282 1293 10.1016/j.rser.2015.07.129
    [Google Scholar]
  26. Dil E.A. Ghaedi M. Asfaram A. The performance of nano-rods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason. Sonochem. 2017 34 792 802 10.1016/j.ultsonch.2016.07.015 27773307
    [Google Scholar]
  27. Fayazi M. Ghanei-Motlagh M. Taher M.A. The adsorption of basic dye (Alizarin red S) from aqueous solution onto acti-vated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibri-um studies. Mater. Sci. Semicond. Process. 2015 40 35 43 10.1016/j.mssp.2015.06.044
    [Google Scholar]
  28. Shokry H. Elkady M. Hamad H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J. Mater. Res. Technol. 2019 8 5 4477 4488 10.1016/j.jmrt.2019.07.061
    [Google Scholar]
  29. Kittappa S. Jais F.M. Ramalingam M. Mohd N.S. Ibra-him S. Functionalized magnetic mesoporous palm shell acti-vated carbon for enhanced removal of azo dyes. J. Environ. Chem. Eng. 2020 8 5 104081 104089 10.1016/j.jece.2020.104081
    [Google Scholar]
  30. Nejadshafiee V. Islami M.R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng. C 2019 101 101 42 52 10.1016/j.msec.2019.03.081 31029336
    [Google Scholar]
  31. Nejadshafiee V. Islami M.R. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorp-tion of heavy metals from industrial waste of copper mine. Environ. Sci. Pollut. Res. Int. 2020 27 2 1625 1639 10.1007/s11356‑019‑06732‑4 31755054
    [Google Scholar]
  32. Maghsoodi Goushki F. Reza Islami M. Nejadshafiee V. Preparation of eco-friendly nanocomposites based on immo-bilization of magnetic activated carbon with tartaric acid: Ap-plication for adsorption of heavy metals and evaluation of their catalytic activity in C-C coupling reaction. Mater. Sci. Eng. B 2022 277 115591 115601 10.1016/j.mseb.2021.115591
    [Google Scholar]
  33. Nejadshafiee V. Islami M.R. Bioadsorbent from Magnetic Activated Carbon Hybrid for Removal of Dye and Pesticide. ChemistrySelect 2020 5 28 8814 8822 10.1002/slct.202001801
    [Google Scholar]
  34. Najdanović S.M. Petrović M.M. Kostić M.M. Velinov N.D. Radović Vučić M.D. Matović B.Ž. Bojić A.L. New way of synthesis of basic bismuth nitrate by electrodeposition from ethanol solution: Characterization and application for removal of RB19 from water. Arab. J. Sci. Eng. 2019 44 12 9939 9950 10.1007/s13369‑019‑04177‑y
    [Google Scholar]
  35. Petrović M. Jovanović T. Rančev S. Kovač J. Velinov N. Najdanović S. Kostić M. Bojić A. Plasma modified electrosynthesized cerium oxide catalyst for plasma and pho-tocatalytic degradation of RB 19 dye. J. Environ. Chem. Eng. 2022 10 3 107931 10.1016/j.jece.2022.107931
    [Google Scholar]
  36. Sohrabi N. Mohammadi R. Ghassemzadeh H.R. Heris S.S.S. Equilibrium, kinetic and thermodynamic study of dia-zinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and ar-tificial neural network. J. Mol. Liq. 2021 328 115384 10.1016/j.molliq.2021.115384
    [Google Scholar]
  37. Farmany A. Mortazavi S.S. Mahdavi H. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal. J. Magn. Magn. Mater. 2016 416 75 80 10.1016/j.jmmm.2016.04.007
    [Google Scholar]
  38. Ryoo K.S. Jung S.Y. Sim H. Choi J.H. Comparative study on adsorptive characteristics of diazinon in water by various adsorbents. Bull. Korean Chem. Soc. 2013 34 9 2753 2759 10.5012/bkcs.2013.34.9.2753
    [Google Scholar]
  39. Baharum N.A. Nasir H.M. Ishak M.Y. Isa N.M. Hassan M.A. Aris A.Z. Highly efficient removal of diazinon pesti-cide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem. 2020 13 7 6106 6121 10.1016/j.arabjc.2020.05.011
    [Google Scholar]
  40. Moussavi G. Hosseini H. Alahabadi A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 2013 214 172 179 10.1016/j.cej.2012.10.034
    [Google Scholar]
  41. Akbarlou Z. Alipour V. Heidari M. Dindarloo K. Adsorp-tion of diazinon from aqueous solutions onto an activated carbon sample produced in Iran. Environmen. Health Eng. Manag. 2017 4 2 93 99 10.15171/EHEM.2017.13
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981343947241125051855
Loading
/content/journals/ccs/10.2174/0122102981343947241125051855
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: adsorption capacity ; Fe3O4 NPs ; pesticides ; diazinon ; Magnetic activated carbon ; caffeine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test