Skip to content
2000
Volume 4, Issue 4
  • ISSN: 2210-2981
  • E-ISSN: 2210-2914

Abstract

Magnetic small soft-bodied robots are perfect for targeted medication administration, micromanipulation, and minimally invasive surgery because they provide non-invasive access to confined locations. Presently available magnetically operated small soft robots are based on elastomers (silicone) and fluids, such as ferrofluid or liquid metal; however, they have certain drawbacks. Robots built on elastomers have trouble deforming, which makes it challenging for them to maneuver in extremely constrained spaces. Although they may deform more easily, fluid-based robots have unstable forms and limited environmental adaptation. The non-Newtonian fluid-based magnetically actuated slime robots shown in this work combine the notable deformation capabilities of fluid-based robots with the flexibility of elastomer-based robots. These slime robots can move on different surfaces in intricate surroundings and navigate tiny channels as little as 1.5 mm in diameter. They can carry out various tasks, including transporting, ingesting, and gripping solid items, and also adapt to various surfaces. This review discusses the design, preparation, and applications of magnetic slime robots, highlighting their potential in revolutionizing biomedical operations, It also states about the stability among different atmospheric condition making it a new age of targeted drug delivery system and predicting various inovations and concepts about the magentic slime robot.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981349797241125092351
2024-12-02
2025-04-22
Loading full text...

Full text loading...

References

  1. BandariV.K. NanY. KarnaushenkoD. HongY. SunB. StriggowF. KarnaushenkoD.D. BeckerC. FaghihM. Medina-SánchezM. ZhuF. SchmidtO.G. A flexible microsystem capable of controlled motion and actuation by wireless power transfer.Nat. Electron.20203317218010.1038/s41928‑020‑0384‑1
    [Google Scholar]
  2. QinJ. ChuK. HuangY. ZhuX. HofkensJ. HeG. ParkinI.P. LaiF. LiuT. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system.Energy Environ. Sci.20211473931393710.1039/D1EE00587A
    [Google Scholar]
  3. HuW. LumG.Z. MastrangeliM. SittiM. Small-scale soft-bodied robot with multimodal locomotion.Nature20185547690818510.1038/nature25443 29364873
    [Google Scholar]
  4. FanX. DongX. KaracakolA.C. XieH. SittiM. Reconfigurable multifunctional ferrofluid droplet robots.Proc. Natl. Acad. Sci. USA202011745279162792610.1073/pnas.2016388117 33106419
    [Google Scholar]
  5. SerwaneF. MongeraA. RowghanianP. KealhoferD.A. LucioA.A. HockenberyZ.M. CampàsO. In vivo quantification of spatially varying mechanical properties in developing tissues.Nat. Methods201714218118610.1038/nmeth.4101 27918540
    [Google Scholar]
  6. XuT. ZhangJ. SalehizadehM. OnaizahO. DillerE. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions.Sci. Robot.2019429eaav449410.1126/scirobotics.aav4494 33137716
    [Google Scholar]
  7. DuX. CuiH. XuT. HuangC. WangY. ZhaoQ. XuY. WuX. Reconfiguration, camouflage, and color‐shifting for bioinspired adaptive hydrogel‐based millirobots.Adv. Funct. Mater.20203010190920210.1002/adfm.201909202
    [Google Scholar]
  8. HuangH.W. SakarM.S. PetruskaA.J. PanéS. NelsonB.J. Soft micromachines with programmable motility and morphology.Nat. Commun.2016711226310.1038/ncomms12263 27447088
    [Google Scholar]
  9. CarlsonJ.D. JollyM.R. MR fluid, foam and elastomer devices.Mechatronics2000104-555556910.1016/S0957‑4158(99)00064‑1
    [Google Scholar]
  10. ČejkováJ. BannoT. HanczycM.M. ŠtěpánekF. Droplets as liquid robots.Artif. Life201723452854910.1162/ARTL_a_00243 28985113
    [Google Scholar]
  11. WangX. GuoR. LiuJ. Liquid metal based soft robotics: Materials, designs, and applications.Adv. Mater. Technol.201942180054910.1002/admt.201800549
    [Google Scholar]
  12. ZhouM. WuZ. ZhaoY. YangQ. LingW. LiY. XuH. WangC. HuangX. Droplets as carriers for flexible electronic devices.Adv. Sci.2019624190186210.1002/advs.201901862 31871863
    [Google Scholar]
  13. XiaoY.Y. JiangZ.C. ZhaoY. Liquid crystal polymer‐based soft robots.Adv. Intell. Syst.2020212200014810.1002/aisy.202000148
    [Google Scholar]
  14. KoettingM.C. PetersJ.T. SteichenS.D. PeppasN.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications.Mater. Sci. Eng. Rep.20159314910.1016/j.mser.2015.04.001 27134415
    [Google Scholar]
  15. LimK.S. AbinzanoF. BernalP.N. Albillos SanchezA. Atienza-RocaP. OttoI.A. PeifferQ.C. MatsusakiM. WoodfieldT.B.F. MaldaJ. LevatoR. One‐step photoactivation of a dual‐functionalized bioink as cell carrier and cartilage‐binding glue for chondral regeneration.Adv. Healthc. Mater.2020915190179210.1002/adhm.201901792 32324342
    [Google Scholar]
  16. XuC. ChenY. ZhaoS. LiD. TangX. ZhangH. HuangJ. GuoZ. LiuW. Mechanical regulation of polymer gels.Chem. Rev.202412418104351050810.1021/acs.chemrev.3c00498 39284130
    [Google Scholar]
  17. López-DíazA. VázquezA.S. VázquezE. Hydrogels in soft robotics: Past, present, and future.ACS Nano20241832208172082610.1021/acsnano.3c12200 39099317
    [Google Scholar]
  18. ChenJ. LuoY. Disodium cromoglycate templates anisotropic short-chain PEG hydrogels.ACS Appl. Mater. Interfaces20241626332233323410.1021/acsami.4c07181 38885610
    [Google Scholar]
  19. KhanM. ShahL.A. Hifsa; Yoo, H-M.; Kwon, D-J. Bimetallic-MOF tunable conductive hydrogels to unleash high stretchability and sensitivity for highly responsive flexible sensors and artificial skin applications.ACS Appl. Polym. Mater.20246127288730010.1021/acsapm.4c01283
    [Google Scholar]
  20. LiuJ. ZhangB. LuZ. ShenJ. ZhangP. YuY. Interfacial engineering of high-performance upconversion hydrogels with orthogonal NIR photochemistry in vivo for synergistic noninvasive biofilm elimination and tissue repair.Chem. Mater.202436126276628710.1021/acs.chemmater.4c01150
    [Google Scholar]
  21. KongX. DongM. DuM. QianJ. YinJ. ZhengQ. WuZ.L. Recent progress in 3D printing of polymer materials as soft actuators and robots.Chem. Bio. Eng.20241431232910.1021/cbe.4c00028
    [Google Scholar]
  22. OkadaR. TamesueS. Indirect adhesion of hydrogels via the radical polymerization mediated by N, N, N ′, N ′-tetramethylethylenediamine and ammonium persulfate.ACS Appl. Polym. Mater.2024621268127510.1021/acsapm.3c02279
    [Google Scholar]
  23. KumarV. SirajS.A. SatapathyD.K. Multivapor-responsive controlled actuation of starch-based soft actuators.ACS Appl. Mater. Interfaces20241633966397710.1021/acsami.3c15065 38224457
    [Google Scholar]
  24. LiuX. LiuS. YaoY. YeZ. WangH. ChaiZ. SongY. XuX. LiuJ. ShiJ. ZhongH. YeL. From super jelly to hydrogel: Delivering hydrogel chemistry into middle school classrooms by undergraduates as the bridge between professors and students.J. Chem. Educ.2023100124909491610.1021/acs.jchemed.3c00490
    [Google Scholar]
  25. Vazquez-PerezF.J. Gila-VilchezC. Leon-CecillaA. Álvarez de CienfuegosL. BorinD. OdenbachS. MartinJ.E. Lopez-LopezM.T. Fabrication and actuation of magnetic shape-memory materials.ACS Appl. Mater. Interfaces20231545acsami.3c1409110.1021/acsami.3c1409137924281
    [Google Scholar]
  26. YuX. WangX. HeW. Leveraging microgels prepared from poly(ethylene glycol) bisepoxide and polyetheramine for versatile surface structuring of agarose hydrogels.ACS Appl. Bio Mater.20236104430443810.1021/acsabm.3c00660 37788183
    [Google Scholar]
  27. JiangC. ZengW. DingX. WuD. Regulating boronic ester bonds in bilayer hydrogels toward fabricating multistimuli-triggered actuators.ACS Sustain. Chem.& Eng.20231138140941410210.1021/acssuschemeng.3c03518
    [Google Scholar]
  28. PowerM. ThompsonA.J. AnastasovaS. YangG.Z. A monolithic force‐sensitive 3D microgripper fabricated on the tip of an optical fiber using 2‐photon polymerization.Small20181416170396410.1002/smll.201703964 29479810
    [Google Scholar]
  29. PaekJ. ChoI. KimJ. Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes.Sci. Rep.2015511076810.1038/srep10768 26066664
    [Google Scholar]
  30. KangJ. HwangS. KimJ.H. KimM.H. RyuJ. SeoS.J. HongB.H. KimM.K. ChoiJ.B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.ACS Nano2012665360536510.1021/nn301207d 22631604
    [Google Scholar]
  31. BaeS. KimH. LeeY. XuX. ParkJ.S. ZhengY. BalakrishnanJ. LeiT. Ri KimH. SongY.I. KimY.J. KimK.S. ÖzyilmazB. AhnJ.H. HongB.H. IijimaS. Roll-to-roll production of 30-inch graphene films for transparent electrodes.Nat. Nanotechnol.20105857457810.1038/nnano.2010.132 20562870
    [Google Scholar]
  32. Castellanos-GomezA. BuscemaM. MolenaarR. SinghV. JanssenL. Van DerzantH.S. SteeleG.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping.2D Mater201411011002
    [Google Scholar]
  33. WangL. One-dimensional electrical contact to a two-dimensional material.Science20133426158614617
    [Google Scholar]
  34. ReinaA. JiaX. HoJ. NezichD. SonH. BulovicV. DresselhausM.S. KongJ. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano Lett.200991303510.1021/nl801827v 19046078
    [Google Scholar]
  35. LiX. ZhuY. CaiW. BorysiakM. HanB. ChenD. PinerR.D. ColomboL. RuoffR.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes.Nano Lett.20099124359436310.1021/nl902623y 19845330
    [Google Scholar]
  36. SukJ.W. KittA. MagnusonC.W. HaoY. AhmedS. AnJ. SwanA.K. GoldbergB.B. RuoffR.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.ACS Nano2011596916692410.1021/nn201207c 21894965
    [Google Scholar]
  37. SchneiderG.F. CaladoV.E. ZandbergenH. VandersypenL.M.K. DekkerC. Wedging transfer of nanostructures.Nano Lett.20101051912191610.1021/nl1008037 20402493
    [Google Scholar]
  38. FanY. HeK. TanH. SpellerS. WarnerJ.H. Crack-free growth and transfer of continuous monolayer graphene grown on melted copper.Chem. Mater.201426174984499110.1021/cm501911g
    [Google Scholar]
  39. SalvatoreG.A. MünzenriederN. KinkeldeiT. PettiL. ZyssetC. StrebelI. BütheL. TrösterG. Wafer-scale design of lightweight and transparent electronics that wraps around hairs.Nat. Commun.201451298210.1038/ncomms3982 24399363
    [Google Scholar]
  40. FuscoS. HuangH.W. PeyerK.E. PetersC. HäberliM. UlbersA. SpyrogianniA. PellicerE. SortJ. PratsinisS.E. NelsonB.J. SakarM.S. PanéS. Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion.ACS Appl. Mater. Interfaces20157126803681110.1021/acsami.5b00181 25751020
    [Google Scholar]
  41. PawasheC. FloydS. SittiM. Modeling and experimental characterization of an untethered magnetic micro-robot.Int. J. Robot. Res.20092881077109410.1177/0278364909341413
    [Google Scholar]
  42. PiantanidaL. LiddleJ.A. HughesW.L. MajikesJ.M. DNA nanostructure decoration: A how-to tutorial.Nanotechnology2024352727300110.1088/1361‑6528/ad2ac5 38373400
    [Google Scholar]
  43. SunP. GouH. CheX. ChenG. FengC. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy.Chem. Commun.20246078108051082110.1039/D4CC03774J
    [Google Scholar]
  44. BondeS. OsmaniR.A.M. TrivediR. PatravaleV. AngolkarM. PrasadA.G. RavikumarA.A. Harnessing DNA origami’s therapeutic potential for revolutionizing cardiovascular disease treatment: A comprehensive review.Int. J. Biol. Macromol.2024270Pt 113224610.1016/j.ijbiomac.2024.132246 38735608
    [Google Scholar]
  45. HasanzadehA. EbadatiA. SaeediS. KamaliB. NooriH. JameiB. HamblinM.R. LiuY. KarimiM. Nucleic acid-responsive smart systems for controlled cargo delivery.Biotechnol. Adv.20247410839310.1016/j.biotechadv.2024.108393 38825215
    [Google Scholar]
  46. ZhaoY. XinH. WangC. Biomarker multiplexing with rational design of nucleic acid probe complex.Anal. Sens.202445e20240000910.1002/anse.202400009
    [Google Scholar]
  47. LiR. MadhvacharyulaA.S. DuY. AdepuH.K. ChoiJ.H. Mechanics of dynamic and deformable DNA nanostructures.Chem. Sci.202314308018804610.1039/D3SC01793A 37538812
    [Google Scholar]
  48. BednarzA. SønderskovS.M. DongM. BirkedalV. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures.Nanoscale20231531317132610.1039/D2NR05780H 36545884
    [Google Scholar]
  49. ZhengM. ShengT. YuJ. GuZ. XuC. Microneedle biomedical devices.Nat. Rev. Bioeng.20232432434210.1038/s44222‑023‑00141‑6
    [Google Scholar]
  50. YeZ. DillerE. SittiM. Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators.J. Appl. Phys.2012112606491210.1063/1.4754521
    [Google Scholar]
  51. AroraP. SindhuA. DilbaghiN. ChaudhuryA. Biosensors as innovative tools for the detection of food borne pathogens.Biosens. Bioelectron.201128111210.1016/j.bios.2011.06.002 21763122
    [Google Scholar]
  52. TorelliE. MariniM. PalmanoS. PiantanidaL. PolanoC. ScarpelliniA. LazzarinoM. FirraoG. A DNA origami nanorobot controlled by nucleic acid hybridization.Small201410142918292610.1002/smll.201400245 24648163
    [Google Scholar]
  53. RothemundP.W.K. Folding DNA to create nanoscale shapes and patterns.Nature2006440708229730210.1038/nature04586 16541064
    [Google Scholar]
  54. EndoM. SugitaT. RajendranA. KatsudaY. EmuraT. HidakaK. SugiyamaH. Two-dimensional DNA origami assemblies using a four-way connector.Chem. Commun.201147113213321510.1039/c0cc05306f 21286635
    [Google Scholar]
  55. AliN. AsgharZ. Anwar BégO. SajidM. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.J. Theor. Biol.2016397223210.1016/j.jtbi.2016.02.011 26903204
    [Google Scholar]
  56. TakahashiM. HayashiI. IwatsukiN. SuzumoriK. OhkiN. The development of an in-pipe microrobot applying the motion of an earthworm.J. Jpn. Soc. Precis. Eng.199561
    [Google Scholar]
  57. KofodG. Sommer-LarsenP. KornbluhR. PelrineR. Actuation response of polyacrylate dielectric elastomers.J. Intell. Mater. Syst. Struct.2003141278779310.1177/104538903039260
    [Google Scholar]
  58. MahomedF.M. HayatT. MomoniatE. AsgharS. Gliding motion of bacterium in a non-Newtonian slime.Nonlinear Anal. Real World Appl.20078385386410.1016/j.nonrwa.2006.03.009
    [Google Scholar]
  59. LiX. ZwanenburgP. LiuX. Magnetic timing valves for fluid control in paper-based microfluidics.Lab Chip201313132609261410.1039/c3lc00006k 23584207
    [Google Scholar]
  60. SunM. TianC. MaoL. MengX. ShenX. HaoB. WangX. XieH. ZhangL. Reconfigurable magnetic slime robot: Deformation, adaptability, and multifunction.Adv. Funct. Mater.20223226211250810.1002/adfm.202112508
    [Google Scholar]
  61. WiyaC. NantaratN. SaenphetK. Antiinflammatory activity of slime extract from giant african snail (Lissachatina fulica).Indian J. Pharm. Sci.2020823
    [Google Scholar]
  62. VallverdúJ. CastroO. MayneR. TalanovM. LevinM. BaluškaF. GunjiY. DussutourA. ZenilH. AdamatzkyA. Slime mould: The fundamental mechanisms of biological cognition.Biosystems2018165577010.1016/j.biosystems.2017.12.011 29326068
    [Google Scholar]
  63. ZintzenV. RobertsC.D. AndersonM.J. StewartA.L. StruthersC.D. HarveyE.S. Hagfish predatory behaviour and slime defence mechanism.Sci. Rep.20111113110.1038/srep00131 22355648
    [Google Scholar]
  64. YangK. ZhangY. ZhaoA. ZhangH. ZhangQ. RuiD. WangX. HuangD. Design of uniform magnetic field coil with off-center target region based on slime mould algorithm for atomic magnetometers. IEEE Trans. Instrum. Meas.2024
    [Google Scholar]
  65. GohariM. TahmasebiM. PakA. FarhadianA. Fabricate a magnetic nano slime and its applications.Mech. Adv. Smart Mater.20233339841210.61186/masm.3.3.398
    [Google Scholar]
  66. ChengW. XuJ. WangY. WuF. XuX. LiJ. Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water.J. Colloid Interface Sci.20154459310110.1016/j.jcis.2014.12.082 25612934
    [Google Scholar]
  67. KoleosoM. FengX. XueY. LiQ. MunshiT. ChenX. Micro/nanoscale magnetic robots for biomedical applications.Mater. Today Bio2020810008510.1016/j.mtbio.2020.100085 33299981
    [Google Scholar]
  68. HagiyaM. KonagayaA. KobayashiS. SaitoH. MurataS. Molecular robots with sensors and intelligence.Acc. Chem. Res.20144761681169010.1021/ar400318d 24905779
    [Google Scholar]
  69. BykovN.V. VlasovaN.S. The problem of adhesion methods and locomotion mechanism development for wall-climbing robots. AIP Conf Proc20232549110.1063/5.0107967
    [Google Scholar]
  70. SatoT. KanoT. IshiguroA. On the applicability of the decentralized control mechanism extracted from the true slime mold: A robotic case study with a serpentine robot.Bioinspir. Biomim.20116202600610.1088/1748‑3182/6/2/026006 21502703
    [Google Scholar]
  71. RajanA. SahuN.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy.J. Nanopart. Res.2020221131910.1007/s11051‑020‑05045‑9
    [Google Scholar]
  72. SinghS. SahooH. RathS.S. SahuA.K. DasB. Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating.Powder Technol.2015269384510.1016/j.powtec.2014.08.065
    [Google Scholar]
  73. SchmicklT. CrailsheimK. A navigation algorithm for swarm robotics inspired by slime mold aggregation.International Workshop on Swarm RoboticsBerlin, Heidelberg: Springer Berlin Heidelberg2006113
    [Google Scholar]
  74. DimonteA. BerzinaT. CifarelliA. ChiesiV. AlbertiniF. ErokhinV. Conductivity patterning with Physarum polycephalum: Natural growth and deflecting.physica status solidi (c)2015121-2197201
    [Google Scholar]
  75. SuH. KwokK.W. ClearyK. IordachitaI. CavusogluM.C. DesaiJ.P. FischerG.S. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions.Proc. IEEE2022110796899210.1109/JPROC.2022.3169146 35756185
    [Google Scholar]
  76. Slime robots created for use in surgery.2022 Available from: https://www.iotworldtoday.com/robotics/slime-robots-created-for-use-in-surgery
  77. Self-healing magnetic slime robot for non-invasive endoluminal intervention in the gastrointestinal system. Available from: https://www.innovationhub.hk/article/self-healing-magnetic-slime-robot-for-non-invasive-endoluminal-intervention-in-the-gastrointestinal-system#:~:text=It%20enables%20non%2Dinvasive%20access,of%20functional%20micro%2D%20or%20nanomaterials
  78. ColinK.L. Noninvasive imaging of congenital heart defects.Congen. Heart Defects Orig. Treat201057106
    [Google Scholar]
  79. FengW. ChenY. JiangY. HuA. WangW. YuD. Low hysteresis, anti-freezing and conductive organohydrogel prepared by thiol-ene click chemistry for human-machine interaction.Polymer202226212546410.1016/j.polymer.2022.125464
    [Google Scholar]
  80. FengY. WuC. ChenM. SunH. VellaisamyA.L. DaoudW.A. YuX. ZhangG. LiW.J. Amoeba‐inspired self‐healing electronic slime for adaptable, durable epidermal wearable electronics.Adv. Funct. Mater.20242402393
    [Google Scholar]
  81. TakamatsuA. FujiiT. EndoI. Control of interaction strength in a network of the true slime mold by a microfabricated structure.Biosystems2000551-3333810.1016/S0303‑2647(99)00080‑5 10745106
    [Google Scholar]
  82. WuX. YueT. DaiL. Magnetic seeding sedimentation (MSS) of coal slimes.IOP Conf. Ser. Earth Environ. Sci.201752101200310.1088/1742‑6596/52/1/012003
    [Google Scholar]
  83. WalterX.A. HorsfieldI. MayneR. IeropoulosI.A. AdamatzkyA. On hybrid circuits exploiting thermistive properties of slime mould.Sci. Rep.2016612392410.1038/srep23924 27048713
    [Google Scholar]
  84. Researchers in Hong Kong create 'soft robot' made of magnetic slime.2022Available from: https://www.bbc.com/news/av/science-environment-60961184
  85. XuZ. ChenY. XuQ. Spreadable magnetic soft robots with on-demand hardening.Research2023 6026210.34133/research.0262
    [Google Scholar]
  86. FudgeD.S. GardnerK.H. ForsythV.T. RiekelC. GoslineJ.M. The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads.Biophys. J.20038532015202710.1016/S0006‑3495(03)74629‑3 12944314
    [Google Scholar]
  87. SinghA.V. ChandrasekarV. JanapareddyP. MathewsD.E. LauxP. LuchA. YangY. Garcia-CanibanoB. BalakrishnanS. AbinahedJ. Al AnsariA. DakuaS.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers.ACS Chem. Neurosci.202112111835185310.1021/acschemneuro.1c00087 34008957
    [Google Scholar]
  88. JonesJ. Applications of multi-agent slime mould computing.Int. J. Parallel Emergent. Distrib. Syst.201631542044910.1080/17445760.2015.1085535
    [Google Scholar]
  89. ChangM. HouZ. WangM. LiC. LinJ. Recent advances in hyperthermia therapy‐based synergistic immunotherapy.Adv. Mater.2021334200478810.1002/adma.202004788 33289219
    [Google Scholar]
  90. GooleJ. AmighiK. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems.Int. J. Pharm.20164991-237639410.1016/j.ijpharm.2015.12.071 26757150
    [Google Scholar]
  91. Di FilippoM.F. DolciL.S. LiccardoL. BigiA. BonviciniF. GentilomiG.A. PasseriniN. PanzavoltaS. AlbertiniB. Cellulose derivatives-snail slime films: New disposable eco-friendly materials for food packaging.Food Hydrocoll.202111110624710.1016/j.foodhyd.2020.106247
    [Google Scholar]
  92. ShanS. LeiY. LinY. ZhangA. Slime-inspired crosslinked polysiloxanes networks based on reversible borate-hydroxyl complexes.Polymer 202018612202610.1016/j.polymer.2019.122026
    [Google Scholar]
  93. BoisseauR.P. VogelD. DussutourA. Habituation in non-neural organisms: Evidence from slime moulds.Proc. R. Soc. B. Biol. Sci.201628318292016044610.1098/rspb.2016.0446
    [Google Scholar]
  94. NingL. LimpabandhuC. TseZ.T.H. Amphibian-inspired locomotion strategy for a slime-based magnetic soft robot.Robotics Reports20242115216510.1089/rorep.2024.0039
    [Google Scholar]
  95. WangC. WangY. SunW. LiuR. DongY. XuR. HuangD. TaoL. New insights into the interaction of sodium hexametaphosphate with coal slime and its application in the purification of kaolin.J. Clean. Prod.202444614095610.1016/j.jclepro.2024.140956
    [Google Scholar]
  96. XianJ. ZhuN. ZhuW. WangJ. WuP. A green and economical process for resource recovery from precious metals enriched residue of copper anode slime.J. Clean. Prod.202236913334110.1016/j.jclepro.2022.133341
    [Google Scholar]
  97. MorevaY.A. NovocelovaY.A. StarkovaL.G. Effect of reactant treatment of rolling slime sewage on slime quality.IOP Conf Ser: Mater Sci Eng2018451101221010.1088/1757‑899X/451/1/012210
    [Google Scholar]
  98. SaikiaP. IslamI. TeronC. Magnetic slime robots: Innovations in drug targeting and foreign object removal.Int. J. Sci. Res.202413714811486
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981349797241125092351
Loading
/content/journals/ccs/10.2174/0122102981349797241125092351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test