Skip to content
2000
image of Enhancing Photocatalytic Hydrogen Production Efficiency with Carbon Fibers: A Mini Review

Abstract

Photocatalytic hydrogen evolution represents a promising route for sustainable and clean energy production. Integrating carbon fiber with various photocatalysts has shown significant enhancements in photocatalytic efficiency. This enhancement is primarily due to carbon fibers’ high conductivity, large surface area, and exceptional mechanical stability, which collectively promote electron transfer, charge separation, light absorption, active site enrichment, and improve catalysts’ robustness and resistance to environmental variation. Despite its potential, the use of carbon fiber in this field has been less explored compared to other conductive supports. Aiming to provide insights for future studies, this paper reviews the current advancements in integrating carbon fibers within photocatalytic systems, exploring the underlying mechanisms and future perspectives to boost hydrogen evolution efficiency and sustainability further.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981337917241008212655
2024-10-23
2025-01-18
Loading full text...

Full text loading...

References

  1. Gupta A. Likozar B. Jana R. Chanu W.C. Singh M.K. A review of hydrogen production processes by photocatalytic water splitting – From atomistic catalysis design to optimal reactor engineering. Int. J. Hydrogen Energy 2022 47 78 33282 33307 10.1016/j.ijhydene.2022.07.210
    [Google Scholar]
  2. Kosco J. Gonzalez-Carrero S. Howells C.T. Fei T. Dong Y. Sougrat R. Harrison G.T. Firdaus Y. Sheelamanthula R. Purushothaman B. Moruzzi F. Xu W. Zhao L. Basu A. De Wolf S. Anthopoulos T.D. Durrant J.R. McCulloch I. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 2022 7 4 340 351 10.1038/s41560‑022‑00990‑2
    [Google Scholar]
  3. Zhang L. Mohamed H.H. Dillert R. Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. Photochem. Rev. 2012 13 4 263 276 10.1016/j.jphotochemrev.2012.07.002
    [Google Scholar]
  4. Yuan H. Qin H. Sun K. Sun X. Lu J. Bian A. Hou J. Lu C. Li C. Guo F. Shi W. Ultrafast hot electron transfer and trap-state mediated charge separation for boosted photothermal-assisted photocatalytic H2 evolution. Chem. Eng. J. 2024 494 153058 10.1016/j.cej.2024.153058
    [Google Scholar]
  5. Saeedmanesh A. Mac Kinnon M.A. Brouwer J. Hydrogen is essential for sustainability. Curr. Opin. Electrochem. 2018 12 166 181 10.1016/j.coelec.2018.11.009
    [Google Scholar]
  6. Pathak P.K. Yadav A.K. Padmanaban S. Transition toward emission-free energy systems by 2050: Potential role of hydrogen. Int. J. Hydrogen Energy 2023 48 26 9921 9927 10.1016/j.ijhydene.2022.12.058
    [Google Scholar]
  7. Shen Y. Du X. Shi Y. Nguetsa Kuate L.J. Chen Z. Zhu C. Tan L. Guo F. Li S. Shi W. Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production. Advanced Powder Materials 2024 3 4 100202 10.1016/j.apmate.2024.100202
    [Google Scholar]
  8. Qiao X.Q. Li C. Wang Z. Hou D. Li D.S. TiO2–@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance. Chin. J. Catal. 2023 51 66 79 [J] 10.1016/S1872‑2067(23)64488‑2
    [Google Scholar]
  9. Qiu F. Han Z. Peterson J.J. Odoi M.Y. Sowers K.L. Krauss T.D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016 16 9 5347 5352 10.1021/acs.nanolett.6b01087 27478995
    [Google Scholar]
  10. Fang M. Yang Z. Guo Y. Xia X. Pan S. Piezoelectric effect achieves efficient carriers’ spatial separation and enhanced photocatalytic H2 evolution of UiO-66-NH2@CdS by transforming charge transfer mechanism. Separ. Purif. Tech. 2024 328 125069 10.1016/j.seppur.2023.125069
    [Google Scholar]
  11. Wang H. Jiang J. Yu L. Peng J. Song Z. Xiong Z. Li N. Xiang K. Zou J. Hsu J.P. Zhai T. Tailoring advanced N‐defective and S‐doped g‐C 3 N 4 for photocatalytic H 2 evolution. Small 2023 19 28 2301116 10.1002/smll.202301116 37191326
    [Google Scholar]
  12. Ge M.Z. Li Q.S. Cao C.Y. Huang J.Y. Li S.H. Zhang S.N. Chen Z. Zhang K.Q. Al-Deyab S.S. Lai Y.K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4 1 1600152 2017 10.1002/advs.201600152
    [Google Scholar]
  13. Zhang Y.C. Afzal N. Pan L. Zhang X. Zou J.J. Structure‐activity relationship of defective metal‐based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv. Sci. (Weinh.) 2019 6 10 1900053 10.1002/advs.201900053 31131201
    [Google Scholar]
  14. Zhou L. Zhang H. Sun H. Liu S. Tade M.O. Wang S. Jin W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol. 2016 6 19 7002 7023 10.1039/C6CY01195K
    [Google Scholar]
  15. Clarizia L. Spasiano D. Di Somma I. Marotta R. Andreozzi R. Dionysiou D.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. Int. J. Hydrogen Energy 2014 39 30 16812 16831 10.1016/j.ijhydene.2014.08.037
    [Google Scholar]
  16. Ahmed S.F. Kumar P.S. Ahmed B. Mehnaz T. Shafiullah G.M. Nguyen V.N. Duong X.Q. Mofijur M. Badruddin I.A. Kamangar S. Carbon-based nanomaterials: Characteristics, dimensions, advances and challenges in enhancing photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024 52 424 442 10.1016/j.ijhydene.2023.03.185
    [Google Scholar]
  17. Li Z. Li K. Du P. Mehmandoust M. Karimi F. Erk N. Carbon-based photocatalysts for hydrogen production: A review. Chemosphere 2022 308 Pt 1 135998 10.1016/j.chemosphere.2022.135998 35973496
    [Google Scholar]
  18. Xiang Q. Yu J. Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012 41 2 782 796 10.1039/C1CS15172J 21853184
    [Google Scholar]
  19. Kumar D. Abraham J.E. Varghese M. George J. Balachandran M. Cherusseri J. Nanocarbon assisted green hydrogen production: Development and recent trends. Int. J. Hydrogen Energy 2024 50 118 141 10.1016/j.ijhydene.2023.07.257
    [Google Scholar]
  20. Fu J. Xu Q. Low J. Jiang C. Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 2019 243 556 565 10.1016/j.apcatb.2018.11.011
    [Google Scholar]
  21. Mishra A. Mehta A. Basu S. Shetti N.P. Reddy K.R. Aminabhavi T.M. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon 2019 149 693 721 10.1016/j.carbon.2019.04.104
    [Google Scholar]
  22. Jose S. Rajeev R. Thadathil D.A. Varghese A. Hegde G. A road map on nanostructured surface tuning strategies of carbon fiber paper electrode: Enhanced electrocatalytic applications. J. Sci. Adv. Mater. Devices 2022 7 3 100460 10.1016/j.jsamd.2022.100460
    [Google Scholar]
  23. Yap F.M. Loh J.Y. Ng S.F. Ong W.J. Self‐supported earth‐abundant carbon‐based substrates in electrocatalysis landscape: Unleashing the potentials toward paving the way for water splitting and alcohol oxidation. Adv. Energy Mater. 2024 14 16 2303614 10.1002/aenm.202303614
    [Google Scholar]
  24. Huang Y. Li M. Liang T. Zhou Y. Guan P. Zhou L. Hu L. Wan T. Chu D. Structural optimization and electrocatalytic hydrogen production performance of carbon-based composites: A mini-review. Carbon Trends 2024 15 100363 10.1016/j.cartre.2024.100363
    [Google Scholar]
  25. Yu P. Ma J. Zhang R. Zhang J.Z. Botte G.G. Novel Pd–Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen. ACS Appl. Energy Mater. 2018 1 2 267 272 10.1021/acsaem.7b00085
    [Google Scholar]
  26. Wu Y. Sun Z. Wang Y. Yin L. He Z. Zhang Z. Hayat M.D. Zang Q. Lian J. Cyclic voltammetric deposition of binder-free Ni-Se film on Ni foams as efficient bifunctional electrocatalyst for boosting overall urea-water electrolysis. J. Alloys Compd. 2023 937 168460 10.1016/j.jallcom.2022.168460
    [Google Scholar]
  27. Wu Y. Zhang Y. Wang Y. He Z. Gu Z. You S. Potentiostatic electrodeposited of Ni–Fe–Sn on Ni foam served as an excellent electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2021 46 53 26930 26939 10.1016/j.ijhydene.2021.05.189
    [Google Scholar]
  28. You S. Wu Y. Wang Y. He Z. Yin L. Zhang Y. Sun Z. Zhang Z. Pulse-electrodeposited Ni–Fe–Sn films supported on Ni foam as an excellent bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2022 47 68 29315 29326 10.1016/j.ijhydene.2022.06.265
    [Google Scholar]
  29. Xu Y. Li S. Chen M. Zhang J. Rosei F. Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. Trends Chem. 2022 4 11 984 1004 10.1016/j.trechm.2022.08.005
    [Google Scholar]
  30. Sun N. Si X. He L. Zhang J. Sun Y. Strategies for enhancing the photocatalytic activity of semiconductors. Int. J. Hydrogen Energy 2024 58 1249 1265 10.1016/j.ijhydene.2024.01.319
    [Google Scholar]
  31. Nguyen T.L. Pham T.H. Myung Y. Jung S.H. Tran M.H. Mapari M.G. Van Le Q. Nguyen M.V. Chu T.T.H. Kim T. Enhanced photocatalytic activity in water splitting for hydrogen generation by using TiO2 coated carbon fiber with high reusability. Int. J. Hydrogen Energy 2022 47 98 41621 41630 10.1016/j.ijhydene.2022.06.025
    [Google Scholar]
  32. Chung K.H. Jeong S. Kim B.J. An K.H. Park Y.K. Jung S.C. Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts. Int. J. Hydrogen Energy 2018 43 24 11422 11429 10.1016/j.ijhydene.2018.03.190
    [Google Scholar]
  33. Gong S. Fan J. Cecen V. Huang C. Min Y. Xu Q. Li H. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions. Chem. Eng. J. 2021 405 126913 10.1016/j.cej.2020.126913
    [Google Scholar]
  34. Zhang X. Chen Y. Xiao Y. Zhou W. Tian G. Fu H. Enhanced charge transfer and separation of hierarchical hydrogenated TiO 2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H 2 production activity. Nanoscale 2018 10 8 4041 4050 10.1039/C7NR09415A 29431829
    [Google Scholar]
  35. Qi X. Zhu Y. Song L. Peng G. Qu W. Xiong J. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts. Appl. Catal. A Gen. 2023 656 119130 10.1016/j.apcata.2023.119130
    [Google Scholar]
  36. Yu Z. Meng J. Li Y. Li Y. Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO2 nanocomposite photocatalyst. Int. J. Hydrogen Energy 2013 38 36 16649 16655 10.1016/j.ijhydene.2013.07.056
    [Google Scholar]
  37. Yousef A. Brooks R.M. El-Halwany M.M. EL-Newehy M.H. Al-Deyab S.S. Barakat N.A.M. Cu 0/S-doped TiO 2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane. Ceram. Int. 2016 42 1 1507 1512 10.1016/j.ceramint.2015.09.097
    [Google Scholar]
  38. Chang C.J. Kao Y.C. Lin K.S. Chen C.Y. Kang C.W. Yang T.H. Carbon fiber cloth@BiOBr/CuO as immobilized membrane-shaped photocatalysts with enhanced photocatalytic H2 production activity. J. Taiwan Inst. Chem. Eng. 2023 149 104998 10.1016/j.jtice.2023.104998
    [Google Scholar]
  39. Qu W. Qi X. Peng G. Wang M. Song L. Du P. Xiong J. An efficient and recyclable Ni 2 P–Co 2 P/ZrO 2/C nanofiber photocatalyst for the conversion of plastic waste into H 2 and valuable chemicals. J. Mater. Chem. C Mater. Opt. Electron. Devices 2023 11 41 14359 14370 10.1039/D3TC02702C
    [Google Scholar]
  40. Zhang J. Yu W. Xiong Y. Zhu J. Zhang Y. Construction of carbon nitride/zeolitic imidazolate framework-67 heterojunctions on carbon fiber cloth as the photocatalyst for various pollutants removal and hydrogen production. J. Colloid Interface Sci. 2024 656 389 398 10.1016/j.jcis.2023.11.070 38000251
    [Google Scholar]
  41. Lei L. Fan H. Jia Y. Wu X. Zhong Q. Wang W. Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 2022 606 154938 10.1016/j.apsusc.2022.154938
    [Google Scholar]
  42. Liu X. Xu S. Chi H. Xu T. Guo Y. Yuan Y. Yang B. Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation. Chem. Eng. J. 2019 359 1352 1359 10.1016/j.cej.2018.11.043
    [Google Scholar]
  43. Yang S. Wang K. Yu H. Huang Y. Guo P. Ye C. Wen H. Zhang G. Luo D. Jiang F. Zhang L. Carbon fibers derived from spent cigarette filters for supporting ZnIn2S4/g-C3N4 heterojunction toward enhanced photocatalytic hydrogen evolution. Mater. Sci. Eng. B 2023 288 116214 10.1016/j.mseb.2022.116214
    [Google Scholar]
  44. He R. Liang H. Li C. Bai J. Enhanced photocatalytic hydrogen production over Co3O4@g-C3N4 p-n junction adhering on one-dimensional carbon fiber. Colloids Surf. A Physicochem. Eng. Asp. 2020 586 124200 10.1016/j.colsurfa.2019.124200
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981337917241008212655
Loading
/content/journals/ccs/10.2174/0122102981337917241008212655
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Photocatalytic hydrogen evolution ; carbon fiber
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test