Skip to content
2000
Volume 4, Issue 4
  • ISSN: 2210-2981
  • E-ISSN: 2210-2914

Abstract

Photocatalytic hydrogen evolution represents a promising route for sustainable and clean energy production. Integrating carbon fiber with various photocatalysts has shown significant enhancements in photocatalytic efficiency. This enhancement is primarily due to carbon fibers’ high conductivity, large surface area, and exceptional mechanical stability, which collectively promote electron transfer, charge separation, light absorption, active site enrichment, and improve catalysts’ robustness and resistance to environmental variation. Despite its potential, the use of carbon fiber in this field has been less explored compared to other conductive supports. Aiming to provide insights for future studies, this paper reviews the current advancements in integrating carbon fibers within photocatalytic systems, exploring the underlying mechanisms and future perspectives to boost hydrogen evolution efficiency and sustainability further.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981337917241008212655
2024-10-23
2025-04-19
Loading full text...

Full text loading...

References

  1. GuptaA. LikozarB. JanaR. ChanuW.C. SinghM.K. A review of hydrogen production processes by photocatalytic water splitting – From atomistic catalysis design to optimal reactor engineering.Int. J. Hydrogen Energy20224778332823330710.1016/j.ijhydene.2022.07.210
    [Google Scholar]
  2. KoscoJ. Gonzalez-CarreroS. HowellsC.T. FeiT. DongY. SougratR. HarrisonG.T. FirdausY. SheelamanthulaR. PurushothamanB. MoruzziF. XuW. ZhaoL. BasuA. De WolfS. AnthopoulosT.D. DurrantJ.R. McCullochI. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution.Nat. Energy20227434035110.1038/s41560‑022‑00990‑2
    [Google Scholar]
  3. ZhangL. MohamedH.H. DillertR. BahnemannD. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review.J. Photochem. Photobiol. Photochem. Rev.201213426327610.1016/j.jphotochemrev.2012.07.002
    [Google Scholar]
  4. YuanH. QinH. SunK. SunX. LuJ. BianA. HouJ. LuC. LiC. GuoF. ShiW. Ultrafast hot electron transfer and trap-state mediated charge separation for boosted photothermal-assisted photocatalytic H2 evolution.Chem. Eng. J.202449415305810.1016/j.cej.2024.153058
    [Google Scholar]
  5. SaeedmaneshA. Mac KinnonM.A. BrouwerJ. Hydrogen is essential for sustainability.Curr. Opin. Electrochem.20181216618110.1016/j.coelec.2018.11.009
    [Google Scholar]
  6. PathakP.K. YadavA.K. PadmanabanS. Transition toward emission-free energy systems by 2050: Potential role of hydrogen.Int. J. Hydrogen Energy202348269921992710.1016/j.ijhydene.2022.12.058
    [Google Scholar]
  7. ShenY. DuX. ShiY. Nguetsa KuateL.J. ChenZ. ZhuC. TanL. GuoF. LiS. ShiW. Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production.Adv. Powder Matenr.20243410020210.1016/j.apmate.2024.100202
    [Google Scholar]
  8. QiaoX.Q. LiC. WangZ. HouD. LiD.S. TiO2–@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance.Chin. J. Catal.202351667910.1016/S1872‑2067(23)64488‑2
    [Google Scholar]
  9. QiuF. HanZ. PetersonJ.J. OdoiM.Y. SowersK.L. KraussT.D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles.Nano Lett.20161695347535210.1021/acs.nanolett.6b01087 27478995
    [Google Scholar]
  10. FangM. YangZ. GuoY. XiaX. PanS. Piezoelectric effect achieves efficient carriers’ spatial separation and enhanced photocatalytic H2 evolution of UiO-66-NH2@CdS by transforming charge transfer mechanism.Separ. Purif. Tech.202432812506910.1016/j.seppur.2023.125069
    [Google Scholar]
  11. WangH. JiangJ. YuL. PengJ. SongZ. XiongZ. LiN. XiangK. ZouJ. HsuJ.P. ZhaiT. Tailoring advanced N‐defective and S‐doped g‐C3N4 for photocatalytic H2 evolution.Small20231928230111610.1002/smll.202301116 37191326
    [Google Scholar]
  12. GeM.Z. LiQ.S. CaoC.Y. HuangJ.Y. LiS.H. ZhangS.N. ChenZ. ZhangK.Q. Al-DeyabS.S. LaiY.K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting.Adv. Sci.201741160015210.1002/advs.201600152
    [Google Scholar]
  13. ZhangY.C. AfzalN. PanL. ZhangX. ZouJ.J. Structure‐activity relationship of defective metal‐based photocatalysts for water splitting: Experimental and theoretical perspectives.Adv. Sci. (Weinh.)2019610190005310.1002/advs.201900053 31131201
    [Google Scholar]
  14. ZhouL. ZhangH. SunH. LiuS. TadeM.O. WangS. JinW. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review.Catal. Sci. Technol.20166197002702310.1039/C6CY01195K
    [Google Scholar]
  15. ClariziaL. SpasianoD. Di SommaI. MarottaR. AndreozziR. DionysiouD.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review.Int. J. Hydrogen Energy20143930168121683110.1016/j.ijhydene.2014.08.037
    [Google Scholar]
  16. AhmedS.F. KumarP.S. AhmedB. MehnazT. ShafiullahG.M. NguyenV.N. DuongX.Q. MofijurM. BadruddinI.A. KamangarS. Carbon-based nanomaterials: Characteristics, dimensions, advances and challenges in enhancing photocatalytic hydrogen production.Int. J. Hydrogen Energy20245242444210.1016/j.ijhydene.2023.03.185
    [Google Scholar]
  17. LiZ. LiK. DuP. MehmandoustM. KarimiF. ErkN. Carbon-based photocatalysts for hydrogen production: A review.Chemosphere2022308Pt 113599810.1016/j.chemosphere.2022.135998 35973496
    [Google Scholar]
  18. XiangQ. YuJ. JaroniecM. Graphene-based semiconductor photocatalysts.Chem. Soc. Rev.201241278279610.1039/C1CS15172J 21853184
    [Google Scholar]
  19. KumarD. AbrahamJ.E. VargheseM. GeorgeJ. BalachandranM. CherusseriJ. Nanocarbon assisted green hydrogen production: Development and recent trends.Int. J. Hydrogen Energy20245011814110.1016/j.ijhydene.2023.07.257
    [Google Scholar]
  20. FuJ. XuQ. LowJ. JiangC. YuJ. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst.Appl. Catal. B201924355656510.1016/j.apcatb.2018.11.011
    [Google Scholar]
  21. MishraA. MehtaA. BasuS. ShettiN.P. ReddyK.R. AminabhaviT.M. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review.Carbon201914969372110.1016/j.carbon.2019.04.104
    [Google Scholar]
  22. JoseS. RajeevR. ThadathilD.A. VargheseA. HegdeG. A road map on nanostructured surface tuning strategies of carbon fiber paper electrode: Enhanced electrocatalytic applications.J. Sci. Adv. Mater. Devices20227310046010.1016/j.jsamd.2022.100460
    [Google Scholar]
  23. YapF.M. LohJ.Y. NgS.F. OngW.J. Self‐supported earth‐abundant carbon‐based substrates in electrocatalysis landscape: Unleashing the potentials toward paving the way for water splitting and alcohol oxidation.Adv. Energy Mater.20241416230361410.1002/aenm.202303614
    [Google Scholar]
  24. HuangY. LiM. LiangT. ZhouY. GuanP. ZhouL. HuL. WanT. ChuD. Structural optimization and electrocatalytic hydrogen production performance of carbon-based composites: A mini-review.Carbon Trends20241510036310.1016/j.cartre.2024.100363
    [Google Scholar]
  25. YuP. MaJ. ZhangR. ZhangJ.Z. BotteG.G. Novel Pd–Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen.ACS Appl. Energy Mater.20181226727210.1021/acsaem.7b00085
    [Google Scholar]
  26. WuY. SunZ. WangY. YinL. HeZ. ZhangZ. HayatM.D. ZangQ. LianJ. Cyclic voltammetric deposition of binder-free Ni-Se film on Ni foams as efficient bifunctional electrocatalyst for boosting overall urea-water electrolysis.J. Alloys Compd.202393716846010.1016/j.jallcom.2022.168460
    [Google Scholar]
  27. WuY. ZhangY. WangY. HeZ. GuZ. YouS. Potentiostatic electrodeposited of Ni–Fe–Sn on Ni foam served as an excellent electrocatalyst for hydrogen evolution reaction.Int. J. Hydrogen Energy20214653269302693910.1016/j.ijhydene.2021.05.189
    [Google Scholar]
  28. YouS. WuY. WangY. HeZ. YinL. ZhangY. SunZ. ZhangZ. Pulse-electrodeposited Ni–Fe–Sn films supported on Ni foam as an excellent bifunctional electrocatalyst for overall water splitting.Int. J. Hydrogen Energy20224768293152932610.1016/j.ijhydene.2022.06.265
    [Google Scholar]
  29. XuY. LiS. ChenM. ZhangJ. RoseiF. Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion.Trends Chem.2022411984100410.1016/j.trechm.2022.08.005
    [Google Scholar]
  30. SunN. SiX. HeL. ZhangJ. SunY. Strategies for enhancing the photocatalytic activity of semiconductors.Int. J. Hydrogen Energy2024581249126510.1016/j.ijhydene.2024.01.319
    [Google Scholar]
  31. NguyenT.L. PhamT.H. MyungY. JungS.H. TranM.H. MapariM.G. Van LeQ. NguyenM.V. ChuT.T.H. KimT. Enhanced photocatalytic activity in water splitting for hydrogen generation by using TiO2 coated carbon fiber with high reusability.Int. J. Hydrogen Energy20224798416214163010.1016/j.ijhydene.2022.06.025
    [Google Scholar]
  32. ChungK.H. JeongS. KimB.J. AnK.H. ParkY.K. JungS.C. Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts.Int. J. Hydrogen Energy20184324114221142910.1016/j.ijhydene.2018.03.190
    [Google Scholar]
  33. GongS. FanJ. CecenV. HuangC. MinY. XuQ. LiH. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions.Chem. Eng. J.202140512691310.1016/j.cej.2020.126913
    [Google Scholar]
  34. ZhangX. ChenY. XiaoY. ZhouW. TianG. FuH. Enhanced charge transfer and separation of hierarchical hydrogenated TiO2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H2 production activity.Nanoscale20181084041405010.1039/C7NR09415A 29431829
    [Google Scholar]
  35. QiX. ZhuY. SongL. PengG. QuW. XiongJ. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts.Appl. Catal. A Gen.202365611913010.1016/j.apcata.2023.119130
    [Google Scholar]
  36. YuZ. MengJ. LiY. LiY. Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO2 nanocomposite photocatalyst.Int. J. Hydrogen Energy20133836166491665510.1016/j.ijhydene.2013.07.056
    [Google Scholar]
  37. YousefA. BrooksR.M. El-HalwanyM.M. EL-Newehy, M.H.; Al-Deyab, S.S.; Barakat, N.A.M. Cu0/S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane.Ceram. Int.20164211507151210.1016/j.ceramint.2015.09.097
    [Google Scholar]
  38. ChangC.J. KaoY.C. LinK.S. ChenC.Y. KangC.W. YangT.H. Carbon fiber cloth@BiOBr/CuO as immobilized membrane-shaped photocatalysts with enhanced photocatalytic H2 production activity.J. Taiwan Inst. Chem. Eng.202314910499810.1016/j.jtice.2023.104998
    [Google Scholar]
  39. QuW. QiX. PengG. WangM. SongL. DuP. XiongJ. An efficient and recyclable Ni2 P–Co2 P/ZrO2/C nanofiber photocatalyst for the conversion of plastic waste into H2 and valuable chemicals.J. Mater. Chem. C Mater. Opt. Electron. Devices20231141143591437010.1039/D3TC02702C
    [Google Scholar]
  40. ZhangJ. YuW. XiongY. ZhuJ. ZhangY. Construction of carbon nitride/zeolitic imidazolate framework-67 heterojunctions on carbon fiber cloth as the photocatalyst for various pollutants removal and hydrogen production.J. Colloid Interface Sci.202465638939810.1016/j.jcis.2023.11.070 38000251
    [Google Scholar]
  41. LeiL. FanH. JiaY. WuX. ZhongQ. WangW. Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution.Appl. Surf. Sci.202260615493810.1016/j.apsusc.2022.154938
    [Google Scholar]
  42. LiuX. XuS. ChiH. XuT. GuoY. YuanY. YangB. Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation.Chem. Eng. J.20193591352135910.1016/j.cej.2018.11.043
    [Google Scholar]
  43. YangS. WangK. YuH. HuangY. GuoP. YeC. WenH. ZhangG. LuoD. JiangF. ZhangL. Carbon fibers derived from spent cigarette filters for supporting ZnIn2S4/g-C3N4 heterojunction toward enhanced photocatalytic hydrogen evolution.Mater. Sci. Eng. B202328811621410.1016/j.mseb.2022.116214
    [Google Scholar]
  44. HeR. LiangH. LiC. BaiJ. Enhanced photocatalytic hydrogen production over Co3O4@g-C3N4 p-n junction adhering on one-dimensional carbon fiber.Colloids Surf. A Physicochem. Eng. Asp.202058612420010.1016/j.colsurfa.2019.124200
    [Google Scholar]
/content/journals/ccs/10.2174/0122102981337917241008212655
Loading
/content/journals/ccs/10.2174/0122102981337917241008212655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test