Skip to content
2000
Volume 4, Issue 4
  • ISSN: 2210-2981
  • E-ISSN: 2210-2914

Abstract

Background

Numerous methods for computer-aided drug design (CAAD) have made it possible to create and synthesize new chemical entities. The utilization of techniques and structure-based drug design (SBDD) facilitate the visualization of the ligand-target binding process, in addition to allowing the prediction of receptor affinities and important binding pocket locations.

Objective

The current research work was carried out to recognize novel quinoline derivatives designed specifically to bind with hepatocyte growth factor (HGF) receptors.

Materials and Methods

For the formation of quinolines derivatives, ChemAxon Marvin Sketch 5.11.5 was utilized. SwissADME and the admetSAR online web tools were exploited to predict the pharmacokinetic properties and the toxicity of compounds. Numerous software, including Autodock 1.5.7, MGL Tools 1.5.7, Biovia Discovery Studio Visualizer v20.1.0.19295, Procheck, Protparam tool, and PyMOL, were also used to determine the ligand-receptor interactions of derivatives of quinoline with the target receptor (PDB -1R0P).

Results

Based on research, it was found that all compounds were less toxic, orally bioavailable, and had the proper pharmacokinetic properties. When compared to the commonly used drug gefitinib, the docking scores of all newly created derivative compounds were higher.

Conclusion

An increased binding energy, the number of H-bonds generated, and interactions with quinoline analogues are significant parameters to be considered while constructing compounds that are most appropriate for additional investigation. The favorable pharmacokinetic profile of quinoline moiety was found to enhance its potential as a novel lung cancer treatment alternative and may help medicinal chemists to carry out more thorough , , chemical, and pharmacological research studies.

Loading

Article metrics loading...

/content/journals/ccs/10.2174/0122102981320470240909113147
2024-09-12
2025-05-03
Loading full text...

Full text loading...

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. ChadhaA.S. GantiA.K. SohiJ.S. SahmounA.E. MehdiS.A. Survival in untreated early stage non-small cell lung cancer.Anticancer Res.200525535173520 16101172
    [Google Scholar]
  4. FurákJ. TrojánI. SzökeT. AgócsL. CsekeöA. KasJ. SvasticsE. EllerJ. TiszlaviczL. Lung cancer and its operable brain metastasis: Survival rate and staging problems.Ann. Thorac. Surg.200579124124710.1016/j.athoracsur.2004.06.051 15620950
    [Google Scholar]
  5. PadinharayilH. VargheseJ. JohnM.C. RajanikantG.K. WilsonC.M. Al-YozbakiM. RenuK. DewanjeeS. SanyalR. DeyA. MukherjeeA.G. WanjariU.R. GopalakrishnanA.V. GeorgeA. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics.Genes Dis.202310396098910.1016/j.gendis.2022.07.023 37396553
    [Google Scholar]
  6. HuangL. YinY. QianD. CaoY. WangD. WuX. MingL. HuangZ. ZhouL. IRF7 and IFIT2 in mediating different hemorrhage outcomes for non-small cell lung cancer after bevacizumab treatment.J. Thorac. Dis.20231542022203610.21037/jtd‑23‑389 37197507
    [Google Scholar]
  7. FarukiH. MayhewG.M. SerodyJ.S. HayesD.N. PerouC.M. Lai-GoldmanM. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape.J. Thorac. Oncol.201712694395310.1016/j.jtho.2017.03.010 28341226
    [Google Scholar]
  8. TravisW.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas.Mod. Pathol.2012251Suppl. 1S18S3010.1038/modpathol.2011.150 22214967
    [Google Scholar]
  9. PeschB. KendziaB. GustavssonP. JöckelK.H. JohnenG. PohlabelnH. OlssonA. AhrensW. GrossI.M. BrüskeI. WichmannH.E. MerlettiF. RichiardiL. SimonatoL. FortesC. SiemiatyckiJ. ParentM.E. ConsonniD. LandiM.T. CaporasoN. ZaridzeD. CassidyA. Szeszenia-DabrowskaN. RudnaiP. LissowskaJ. StückerI. FabianovaE. DumitruR.S. BenckoV. ForetovaL. JanoutV. RudinC.M. BrennanP. BoffettaP. StraifK. BrüningT. Cigarette smoking and lung cancer—relative risk estimates for the major histological types from a pooled analysis of case–control studies.Int. J. Cancer201213151210121910.1002/ijc.27339 22052329
    [Google Scholar]
  10. FraserM. SeetharamuN. DiamondM. LeeC.S. Profile of capmatinib for the treatment of metastatic non-small cell lung Cancer (NSCLC): Patient selection and perspectives.Cancer Manag. Res.2023151233124310.2147/CMAR.S386799 37941971
    [Google Scholar]
  11. YuanT. NiP. ZhangZ. WuD. SunG. ZhangH. ChenB. WangX. ChengZ. Targeting BET proteins inhibited the growth of non‐small cell lung carcinoma through downregulation of Met expression.Cell Biol. Int.202347362263310.1002/cbin.11962 36448366
    [Google Scholar]
  12. GelsominoF. FacchinettiF. HaspingerE.R. GarassinoM.C. TrusolinoL. De BraudF. TiseoM. Targeting the MET gene for the treatment of non-small-cell lung cancer.Crit. Rev. Oncol. Hematol.201489228429910.1016/j.critrevonc.2013.11.006 24355409
    [Google Scholar]
  13. RothschildS. Targeted therapies in non-small cell lung cancer beyond EGFR and ALK.Cancers (Basel)20157293094910.3390/cancers7020816 26018876
    [Google Scholar]
  14. ZhangY. JainR. ZhuM. Recent progress and advances in HGF/MET-targeted therapeutic agents for cancer treatment.Biomedicines20153114918110.3390/biomedicines3010149 28536405
    [Google Scholar]
  15. WeidnerK.M. HartmannG. SachsM. BirchmeierW. Properties and functions of scatter factor/hepatocyte growth factor and its receptor c-Met.Am. J. Respir. Cell Mol. Biol.1993822910.1165/ajrcmb/8.3.229
    [Google Scholar]
  16. RosenE.M. NigamS.K. GoldbergI.D. Scatter factor and the c-met receptor: A paradigm for mesenchymal/epithelial interaction.J. Cell Biol.199412761783178710.1083/jcb.127.6.1783 7806559
    [Google Scholar]
  17. JinL. FuchsA. SchnittS.J. YaoY. JosephA. LamszusK. ParkM. GoldbergI.D. RosenE.M. Expression of scatter factor and c‐ met receptor in benign and malignant breast tissue.Cancer199779474976010.1002/(SICI)1097‑0142(19970215)79:4<749:AID‑CNCR12>3.0.CO;2‑# 9024713
    [Google Scholar]
  18. SattlerM. SalgiaR. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy.Curr. Oncol. Rep.20079210210810.1007/s11912‑007‑0005‑4 17288874
    [Google Scholar]
  19. JungK.H. ParkB.H. HongS.S. Progress in cancer therapy targeting c-Met signaling pathway.Arch. Pharm. Res.201235459560410.1007/s12272‑012‑0402‑6 22553051
    [Google Scholar]
  20. SalgiaR. Role of c-Met in cancer: Emphasis on lung cancer.Seminars in oncology.WB Saunders200910.1053/j.seminoncol.2009.02.008
    [Google Scholar]
  21. ZappaC. MousaS.A. Non-small cell lung cancer: Current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.07 27413711
    [Google Scholar]
  22. AhmedH. SkoutaR. Hepatocyte growth factor receptor (HGFR) as a potential lung cancer target.FASEB J.201832S15312010.1096/fasebj.2018.32.1_supplement.531.20
    [Google Scholar]
  23. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_suppl)(Suppl.S7S1910.1177/175883401142255622128289
    [Google Scholar]
  24. MaulikG. ShrikhandeA. KijimaT. MaP.C. MorrisonP.T. SalgiaR. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition.Cytokine Growth Factor Rev.2002131415910.1016/S1359‑6101(01)00029‑6 11750879
    [Google Scholar]
  25. TamN.N.C. ChungS.S. LeeD.T. WongY.C. Aberrant expression of hepatocyte growth factor and its receptor, c-Met, during sex hormone-induced prostatic carcinogenesis in the Noble rat.Carcinogenesis200021122183219110.1093/carcin/21.12.2183 11133807
    [Google Scholar]
  26. GaoC. Vande WoudeG.F. The MET Receptor Family.Receptor Tyrosine Kinases: Family and Subfamilies.ChamSpringer201510.1007/978‑3‑319‑11888‑8_8
    [Google Scholar]
  27. NakamuraT. Structure and function of hepatocyte growth factor.Prog. Growth Factor Res.199131678510.1016/0955‑2235(91)90014‑U 1838014
    [Google Scholar]
  28. BottaroD.P. RubinJ.S. FalettoD.L. ChanA.M.L. KmiecikT.E. Vande WoudeG.F. AaronsonS.A. Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product.Science1991251499580280410.1126/science.1846706 1846706
    [Google Scholar]
  29. GohdaE. TsubouchiH. NakayamaH. HironoS. SakiyamaO. TakahashiK. MiyazakiH. HashimotoS. DaikuharaY. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure.J. Clin. Invest.198881241441910.1172/JCI113334 3276728
    [Google Scholar]
  30. EderJ.P. Vande WoudeG.F. BoernerS.A. LoRussoP.M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer.Clin. Cancer Res.20091572207221410.1158/1078‑0432.CCR‑08‑1306 19318488
    [Google Scholar]
  31. LongatiP. BardelliA. PonzettoC. NaldiniL. ComoglioP.M. Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor).Oncogene1994914957 8302603
    [Google Scholar]
  32. MirandaO. FarooquiM. SiegfriedJ.M. Status of agents targeting the HGF/c-Met axis in lung cancer.Cancers (Basel)201810928010.3390/cancers10090280 30134579
    [Google Scholar]
  33. MaP.C. JagadeeswaranR. JagadeeshS. TretiakovaM.S. NallasuraV. FoxE.A. HansenM. SchaeferE. NaokiK. LaderA. RichardsW. SugarbakerD. HusainA.N. ChristensenJ.G. SalgiaR. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer.Cancer Res.20056541479148810.1158/0008‑5472.CAN‑04‑2650 15735036
    [Google Scholar]
  34. PasquiniG. GiacconeG. C-MET inhibitors for advanced non-small cell lung cancer.Expert Opin. Investig. Drugs201827436337510.1080/13543784.2018.1462336 29621416
    [Google Scholar]
  35. SattlerM. HasinaR. ReddyM.M. GangadharT. SalgiaR. The role of the c-Met pathway in lung cancer and the potential for targeted therapy.Ther. Adv. Med. Oncol.20113417118410.1177/1758834011408636 21904579
    [Google Scholar]
  36. OzasaH. OguriT. MaenoK. TakakuwaO. KuniiE. YagiY. UemuraT. KasaiD. MiyazakiM. NiimiA. Significance of c‐ MET overexpression in cytotoxic anticancer drug‐resistant small‐cell lung cancer cells.Cancer Sci.201410581032103910.1111/cas.12447 24827412
    [Google Scholar]
  37. TaniguchiH. YamadaT. TakeuchiS. AraiS. FukudaK. SakamotoS. KawadaM. YamaguchiH. MukaeH. YanoS. Impact of MET inhibition on small‐cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway.Cancer Sci.201710871378138510.1111/cas.13268 28474864
    [Google Scholar]
  38. JückerM. GüntherA. GradlG. FonatschC. KruegerG. DiehlV. TeschH. The Met/Hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma.Leuk. Res.199418171610.1016/0145‑2126(94)90003‑5 8289471
    [Google Scholar]
  39. YouW.K. McDonaldD.M. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis.BMB Rep.2008411283383910.5483/BMBRep.2008.41.12.833 19123972
    [Google Scholar]
  40. LiH.J. KeF.Y. LinC.C. LuM.Y. KuoY.H. WangY.P. LiangK.H. LinS.C. ChangY.H. ChenH.Y. YangP.C. WuH.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition.Cancer Res.202181154094410910.1158/0008‑5472.CAN‑20‑3543 34145039
    [Google Scholar]
  41. PeruzziB. BottaroD.P. Targeting the c-Met signaling pathway in cancer.Clin. Cancer Res.200612123657366010.1158/1078‑0432.CCR‑06‑0818 16778093
    [Google Scholar]
  42. MarounC.R. RowlandsT. The Met receptor tyrosine kinase: A key player in oncogenesis and drug resistance.Pharmacol. Ther.2014142331633810.1016/j.pharmthera.2013.12.014 24384534
    [Google Scholar]
  43. ElharafiH. ElhamdaniN. HachimM.E. TebbaaiH. SadikK. El HachadiF. AboulmouhajirA. In silico exploration of bioavailability, druggability, toxicity alerts and biological activity of a large series of fatty acids.Comput. Toxicol.20211710015310.1016/j.comtox.2021.100153
    [Google Scholar]
  44. YuW. MacKerellA.D. Computer-aided drug design methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_5
    [Google Scholar]
  45. SolomonV.R. LeeH. Quinoline as a privileged scaffold in cancer drug discovery.Curr. Med. Chem.201118101488150810.2174/092986711795328382 21428893
    [Google Scholar]
  46. MatadaB.S. PattanashettarR. YernaleN.G. A comprehensive review on the biological interest of quinoline and its derivatives.Bioorg. Med. Chem.20213211597310.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  47. GabrieleB. MancusoR. SalernoG. RuffoloG. PlastinaP. Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols.J. Org. Chem.200772186873687710.1021/jo071094z 17655259
    [Google Scholar]
  48. JainS. ChandraV. Kumar JainP. PathakK. PathakD. VaidyaA. Comprehensive review on current developments of quinoline-based anticancer agents.Arab. J. Chem.20191284920494610.1016/j.arabjc.2016.10.009
    [Google Scholar]
  49. KöprülüT.K. ÖktenS. TekinŞ. ÇakmakO. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents.J. Biochem. Mol. Toxicol.2019333e2226010.1002/jbt.22260 30431695
    [Google Scholar]
  50. NandhakumarR. SureshT. JudeA.L.C. Rajesh kannan, V.; Mohan, P.S. Synthesis, antimicrobial activities and cytogenetic studies of newer diazepino quinoline derivatives via Vilsmeier–Haack reaction.Eur. J. Med. Chem.20074281128113610.1016/j.ejmech.2007.01.004 17331623
    [Google Scholar]
  51. KatariyaK.D. ShahS.R. ReddyD. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking.Bioorg. Chem.20209410340610.1016/j.bioorg.2019.103406 31718889
    [Google Scholar]
  52. González-SánchezI. SolanoJ.D. Loza-MejíaM.A. Olvera-VázquezS. Rodríguez-SotresR. MoránJ. Lira-RochaA. CerbónM.A. Antineoplastic activity of the thiazolo[5,4-b]quinoline derivative D3CLP in K-562 cells is mediated through effector caspases activation.Eur. J. Med. Chem.20114662102210810.1016/j.ejmech.2011.02.063 21420205
    [Google Scholar]
  53. IqbalJ. EjazS.A. KhanI. AusekleE. MiliutinaM. LangerP. Exploration of quinolone and quinoline derivatives as potential anticancer agents.Daru201927261362610.1007/s40199‑019‑00290‑3 31410781
    [Google Scholar]
  54. TsengC.H. ChenY.L. ChungK.Y. ChengC.M. WangC.H. TzengC.C. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives.Bioorg. Med. Chem.200917217465747610.1016/j.bmc.2009.09.021 19796956
    [Google Scholar]
  55. PodeszwaB. NiedbalaH. PolanskiJ. MusiolR. TabakD. FinsterJ. SerafinK. MilczarekM. WietrzykJ. BoryczkaS. MolW. JampilekJ. DohnalJ. KalinowskiD.S. RichardsonD.R. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines.Bioorg. Med. Chem. Lett.200717226138614110.1016/j.bmcl.2007.09.040 17904844
    [Google Scholar]
  56. RadiniI. ElsheikhT. El-TelbaniE. KhidreR. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents.Molecules201621790910.3390/molecules21070909 27428939
    [Google Scholar]
  57. SharmaR. PatilS. MauryaP. Drug discovery studies on quinoline-based derivatives as potential antimalarial agents.SAR QSAR Environ. Res.201425318920310.1080/1062936X.2013.875484 24601770
    [Google Scholar]
  58. GuanL.P. JinQ.H. TianG.R. ChaiK.Y. QuanZ.S. Synthesis of some quinoline-2(1H)-one and 1, 2, 4-triazolo[4,3-a] quinoline derivatives as potent anticonvulsants.J. Pharm. Pharm. Sci.2007103254262 17727789
    [Google Scholar]
  59. XieZ.F. ChaiK.Y. PiaoH.R. KwakK.C. QuanZ.S. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines.Bioorg. Med. Chem. Lett.200515214803480510.1016/j.bmcl.2005.07.051 16139502
    [Google Scholar]
  60. WenX. WangS.B. LiuD.C. GongG.H. QuanZ.S. Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives.Med. Chem. Res.20152462591260310.1007/s00044‑015‑1323‑y
    [Google Scholar]
  61. PinzM.P. ReisA.S. de OliveiraR.L. VossG.T. VogtA.G. SacramentoM. RoehrsJ.A. AlvesD. LucheseC. WilhelmE.A. 7-Chloro-4-phenylsulfonyl quinoline, a new antinociceptive and anti-inflammatory molecule: Structural improvement of a quinoline derivate with pharmacological activity.Regul. Toxicol. Pharmacol.201790727710.1016/j.yrtph.2017.08.014 28842336
    [Google Scholar]
  62. AbadiA.H. HegazyG.H. El-ZaherA.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents.Bioorg. Med. Chem.200513205759576510.1016/j.bmc.2005.05.053 16002298
    [Google Scholar]
  63. CoaJ.C. GarcíaE. CardaM. AgutR. VélezI.D. MuñozJ.A. YepesL.M. RobledoS.M. CardonaW.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids.Med. Chem. Res.20172671405141410.1007/s00044‑017‑1846‑5
    [Google Scholar]
  64. GuanY.F. LiuX.J. YuanX.Y. LiuW.B. LiY.R. YuG.X. TianX.Y. ZhangY.B. SongJ. LiW. ZhangS.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives.Molecules20212616489910.3390/molecules26164899 34443487
    [Google Scholar]
  65. ShettyP.R. ShivarajaG. KrishnaswamyG. PruthvirajK. MohanV.C. SreenivasaS. Synthesis, characterization, biological screening, ADME and molecular docking studies of 2-phenyl quinoline-4-carboxamide derivatives.Asian J. Chem.20203251151115710.14233/ajchem.2020.22583
    [Google Scholar]
  66. MhaskeG.S. SenA.K. ShahA. KhisteR.H. DaleA.V. SenD.B. In silico identification of novel quinoline-3-carboxamide derivatives targeting platelet-derived growth factor receptor.Curr. Cancer Ther. Rev.202218213114210.2174/1573394718666220421111546
    [Google Scholar]
  67. VenugopalaK.N. UpparV. ChandrashekharappaS. AbdallahH.H. PillayM. DebP.K. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. TratratC. Yousef JaberA. VenugopalaR. MailavaramR.P. Al-JaidiB.A. KandeelM. HarounM. PadmashaliB. Cytotoxicity and antimycobacterial properties of pyrrolo[1, 2-a] quinoline derivatives: Molecular target identification and molecular docking studies.Antibiotics (Basel)20209523310.3390/antibiotics9050233 32392709
    [Google Scholar]
  68. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  69. DainaA. ZoeteV. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  70. Cheminformatics software for the next generation of scientists.Available from: http://www.chemaxon.com (accessed on 27-8- 2024)
  71. BankR.P.D. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met in complex with the microbial alkaloid K-252a.Proc. Natl. Acad. Sci.20231001265412659
    [Google Scholar]
  72. Free Download:BIOVIA Discovery Studio Visualizer.2023Available from: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 27-8-2024)
    [Google Scholar]
  73. SWISS ADME.2023Available from: http://www.swissadme.ch/ (accessed on 27-8-2024)
  74. AutoDock Vina. 2021Available from: https://vina.scripps.edu/(accessed on 27-8-2024)
/content/journals/ccs/10.2174/0122102981320470240909113147
Loading
/content/journals/ccs/10.2174/0122102981320470240909113147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test