Skip to content
2000
image of Identification of Mitochondrial-related Characteristic Biomarkers in Osteosarcoma using Bioinformatics and Machine Learning

Abstract

Background/Aims

Osteosarcoma (OS), a malignant tumor originating in bone or cartilage, primarily affects children and adolescents. Notably, substantial alterations in mitochondrial energy metabolism have been observed in OS; however, the specific contribution of mitochondrial-related genes (MRGs) to OS pathogenesis and prognosis remains unclear. Herein, we identified novel diagnostic biomarkers associated with mitochondrial-related processes in OS comprehensive bioinformatics analysis.

Methods

OS mRNA expression profiles were retrieved from GSE16088 and GSE19276 databases. Mitochondrial-related differentially expressed genes (MitoDEGs) were identified by integrating differentially expressed analysis with mitochondrial-localized genes. A protein-protein interaction network was constructed, and machine learning algorithms (LASSO regression analysis and SVM-RFE) identified characteristic MitoDEGs. Subsequently, immune cell infiltration, microenvironment analysis, and single-cell RNA sequencing (scRNA-seq) analyzed differences in characteristic MitoDEGs, and RT-PCR was used for verification of characteristic MitoDEGs.

Results

MitoDEGs in OS were significantly enriched in the pathways associated with mitochondrial function and immune regulation. Two MitoDEGs, UCP2 and PRDX4, were identified LASSO and SVM-RFE. Correlation analysis demonstrated a close association between UCP2 and PRDX4 expression levels and immune cell infiltration, particularly in CD8+ T and native CD4+ T cells, as observed in both immune cell and scRNA-seq analyses. Furthermore, RT-PCR confirmed the expression levels of UCP and PRDX4 at the cellular level, which was consistent with the bioinformatics results.

Conclusion

This study identified UCP2 and PRDX4 as characteristic MitoDEGs and potential diagnostic biomarkers for OS using machine learning algorithms. These findings provide novel insights into the clinical applications of these biomarkers for OS diagnosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073350964241203080017
2025-02-25
2025-04-24
Loading full text...

Full text loading...

References

  1. Zhu N. Hou J. Ma G. Guo S. Zhao C. Chen B. Co-expression network analysis identifies a gene signature as a predictive biomarker for energy metabolism in osteosarcoma. Cancer Cell Int. 2020 20 1 259 10.1186/s12935‑020‑01352‑2 32581649
    [Google Scholar]
  2. Ritter J. Bielack S.S. Osteosarcoma. Ann. Oncol. 2010 21 Suppl. 7 vii320 vii325 10.1093/annonc/mdq276 20943636
    [Google Scholar]
  3. Chen C. Xie L. Ren T. Huang Y. Xu J. Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021 500 1 10 10.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  4. Lindsey B.A. Markel J.E. Kleinerman E.S. Osteosarcoma overview. Rheumatol. Ther. 2017 4 1 25 43 10.1007/s40744‑016‑0050‑2 27933467
    [Google Scholar]
  5. Kansara M. Teng M.W. Smyth M.J. Thomas D.M. Translational biology of osteosarcoma. Nat. Rev. Cancer 2014 14 11 722 735 10.1038/nrc3838 25319867
    [Google Scholar]
  6. Cersosimo F. Lonardi S. Bernardini G. Telfer B. Mandelli G.E. Santucci A. Vermi W. Giurisato E. Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy. Int. J. Mol. Sci. 2020 21 15 5207 10.3390/ijms21155207 32717819
    [Google Scholar]
  7. Zhang L. Wu S. Huang J. Shi Y. Yin Y. Cao X. A mitochondria-related signature for predicting immune microenvironment and therapeutic response in osteosarcoma. Front. Oncol. 2022 12 1085065 10.3389/fonc.2022.1085065 36531021
    [Google Scholar]
  8. Al Amir Dache Z. Thierry A.R. Mitochondria-derived cell-to-cell communication. Cell Rep. 2023 42 7 112728 10.1016/j.celrep.2023.112728 37440408
    [Google Scholar]
  9. Ji W. Tang X. Du W. Lu Y. Wang N. Wu Q. Wei W. Liu J. Yu H. Ma B. Li L. Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem. Soc. Rev. 2022 51 1 71 127 10.1039/D0CS01610A 34792041
    [Google Scholar]
  10. Fizíková I. Dragašek J. Račay P. Mitochondrial dysfunction, altered mitochondrial oxygen, and energy metabolism associated with the pathogenesis of schizophrenia. Int. J. Mol. Sci. 2023 24 9 7991 10.3390/ijms24097991 37175697
    [Google Scholar]
  11. Ma X. Zhao J. Feng H. Targeting iron metabolism in osteosarcoma. Discov. Oncol. 2023 14 1 31 10.1007/s12672‑023‑00637‑y 36897430
    [Google Scholar]
  12. Ying H. Li Z.Q. Li M.P. Liu W.C. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front. Endocrinol. 2023 14 1217669 10.3389/fendo.2023.1217669 37497349
    [Google Scholar]
  13. Li B. Zhou P. Xu K. Chen T. Jiao J. Wei H. Yang X. Xu W. Wan W. Xiao J. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int. J. Biol. Sci. 2020 16 1 74 84 10.7150/ijbs.33787 31892847
    [Google Scholar]
  14. Zhu N. Hou J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int. 2020 20 1 577 10.1186/s12935‑020‑01672‑3 33292275
    [Google Scholar]
  15. Paoloni M. Davis S. Lana S. Withrow S. Sangiorgi L. Picci P. Hewitt S. Triche T. Meltzer P. Khanna C. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 2009 10 1 625 10.1186/1471‑2164‑10‑625 20028558
    [Google Scholar]
  16. Endo-Munoz L. Cumming A. Sommerville S. Dickinson I. Saunders N.A. Osteosarcoma is characterised by reduced expression of markers of osteoclastogenesis and antigen presentation compared with normal bone. Br. J. Cancer 2010 103 1 73 81 10.1038/sj.bjc.6605723 20551950
    [Google Scholar]
  17. Liu Y. Feng W. Dai Y. Bao M. Yuan Z. He M. Qin Z. Liao S. He J. Huang Q. Yu Z. Zeng Y. Guo B. Huang R. Yang R. Jiang Y. Liao J. Xiao Z. Zhan X. Lin C. Xu J. Ye Y. Ma J. Wei Q. Mo Z. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front. Oncol. 2021 11 709210 10.3389/fonc.2021.709210 34367994
    [Google Scholar]
  18. Rath S. Sharma R. Gupta R. Ast T. Chan C. Durham T.J. Goodman R.P. Grabarek Z. Haas M.E. Hung W.H.W. Joshi P.R. Jourdain A.A. Kim S.H. Kotrys A.V. Lam S.S. McCoy J.G. Meisel J.D. Miranda M. Panda A. Patgiri A. Rogers R. Sadre S. Shah H. Skinner O.S. To T.L. Walker M.A. Wang H. Ward P.S. Wengrod J. Yuan C.C. Calvo S.E. Mootha V.K. MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021 49 D1 D1541 D1547 10.1093/nar/gkaa1011 33174596
    [Google Scholar]
  19. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  20. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  21. Hou J.Y. Xu H. Cao G.Z. Tian L.L. Wang L.H. Zhu N.Q. Zhang J.J. Yang H.J. Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Front. Pharmacol. 2023 14 1175970 10.3389/fphar.2023.1175970 37101548
    [Google Scholar]
  22. Han M. Wang Y. Huang X. Li P. Shan W. Gu H. Wang H. Zhang Q. Bao K. Prediction of biomarkers associated with membranous nephropathy: Bioinformatic analysis and experimental validation. Int. Immunopharmacol. 2024 126 111266 10.1016/j.intimp.2023.111266 38029552
    [Google Scholar]
  23. Sun D. Wang J. Han Y. Dong X. Ge J. Zheng R. Shi X. Wang B. Li Z. Ren P. Sun L. Yan Y. Zhang P. Zhang F. Li T. Wang C. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021 49 D1 D1420 D1430 10.1093/nar/gkaa1020 33179754
    [Google Scholar]
  24. Corre I. Verrecchia F. Crenn V. Redini F. Trichet V. The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells 2020 9 4 976 10.3390/cells9040976 32326444
    [Google Scholar]
  25. Annesley S.J. Fisher P.R. Mitochondria in health and disease. Cells 2019 8 7 680 10.3390/cells8070680 31284394
    [Google Scholar]
  26. Liu Z. Wang H. Hu C. Wu C. Wang J. Hu F. Fu Y. Wen J. Zhang W. Targeting autophagy enhances atezolizumab-induced mitochondria-related apoptosis in osteosarcoma. Cell Death Dis. 2021 12 2 164 10.1038/s41419‑021‑03449‑6 33558476
    [Google Scholar]
  27. Vallejo F.A. Vanni S. Graham R.M. UCP2 as a potential biomarker for adjunctive metabolic therapies in tumor management. Front. Oncol. 2021 11 640720 10.3389/fonc.2021.640720 33763373
    [Google Scholar]
  28. Hu C. Zhang X. Wei W. Zhang N. Wu H. Ma Z. Li L. Deng W. Tang Q. Matrine attenuates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPK α/UCP2 pathway. Acta. Pharm. Sin. B. 2019 9 4 690 701 10.1016/j.apsb.2019.03.003 31384530
    [Google Scholar]
  29. Caggiano E.G. Taniguchi C.M. UCP2 and pancreatic cancer: Conscious uncoupling for therapeutic effect. Cancer Metastasis Rev. 2024 43 2 777 794 10.1007/s10555‑023‑10157‑4 38194152
    [Google Scholar]
  30. Forte M. Bianchi F. Cotugno M. Marchitti S. Stanzione R. Maglione V. Sciarretta S. Valenti V. Carnevale R. Versaci F. Frati G. Volpe M. Rubattu S. An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation. Cell Death Dis. 2021 12 10 919 10.1038/s41419‑021‑04188‑4 34625529
    [Google Scholar]
  31. Emre Y. Nübel T. Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Lett. 2010 584 8 1437 1442 10.1016/j.febslet.2010.03.014 20227410
    [Google Scholar]
  32. Cheng W.C. Tsui Y.C. Ragusa S. Koelzer V.H. Mina M. Franco F. Läubli H. Tschumi B. Speiser D. Romero P. Zippelius A. Petrova T.V. Mertz K. Ciriello G. Ho P.C. Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nat. Immunol. 2019 20 2 206 217 10.1038/s41590‑018‑0290‑0 30664764
    [Google Scholar]
  33. Rupprecht A. Moldzio R. Mödl B. Pohl E.E. Glutamine regulates mitochondrial uncoupling protein 2 to promote glutaminolysis in neuroblastoma cells. Biochim. Biophys. Acta Bioenerg. 2019 1860 5 391 401 10.1016/j.bbabio.2019.03.006 30885735
    [Google Scholar]
  34. Krauss S. Zhang C.Y. Lowell B.B. A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2. Proc. Natl. Acad. Sci. USA 2002 99 1 118 122 10.1073/pnas.012410699 11756659
    [Google Scholar]
  35. Jia W. Chen P. Cheng Y. PRDX4 and its roles in various cancers. Technol. Cancer Res. Treat. 2019 18 1533033819864313 10.1177/1533033819864313 31311441
    [Google Scholar]
  36. Jain P. Dvorkin-Gheva A. Mollen E. Malbeteau L. Xie M. Jessa F. Dhavarasa P. Chung S. Brown K.R. Jang G.H. Vora P. Notta F. Moffat J. Hedley D. Boutros P.C. Wouters B.G. Koritzinsky M. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. Sci. Adv. 2021 7 19 eabf7114 10.1126/sciadv.abf7114 33962950
    [Google Scholar]
  37. Rafiei S. Tiedemann K. Tabariès S. Siegel P.M. Komarova S.V. Peroxiredoxin 4: A novel secreted mediator of cancer induced osteoclastogenesis. Cancer Lett. 2015 361 2 262 270 10.1016/j.canlet.2015.03.012 25779674
    [Google Scholar]
  38. Hansen S.N. Ehlers N.S. Zhu S. Thomsen M.B.H. Nielsen R.L. Liu D. Wang G. Hou Y. Zhang X. Xu X. Bolund L. Yang H. Wang J. Moreira J. Ditzel H.J. Brünner N. Schrohl A.S. Stenvang J. Gupta R. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells. BMC Genomics 2016 17 1 442 10.1186/s12864‑016‑2749‑4 27277198
    [Google Scholar]
  39. Liu X. Zeng B. Ma J. Wan C. Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Invest. 2009 27 3 345 352 10.1080/07357900802438577 19212829
    [Google Scholar]
  40. Ito R. Takahashi M. Ihara H. Tsukamoto H. Fujii J. Ikeda Y. Measurement of peroxiredoxin-4 serum levels in rat tissue and its use as a potential marker for hepatic disease. Mol. Med. Rep. 2012 6 2 379 384 10.3892/mmr.2012.935 22684688
    [Google Scholar]
  41. Zhang L. Wu K. Hou Y. Li X. Validation of the interaction between PRDX4 and TXNDC5 in gastric cancer and the significance of the PRDX4 gene in gastric cancer based on a data mining analysis. Transl. Cancer Res. 2024 13 1 81 101 10.21037/tcr‑23‑904 38410208
    [Google Scholar]
  42. Wang L. Shao C. Xu W. Zhou Q. Wang N. Chen S. Proteome profiling reveals immune responses in Japanese flounder (Paralichthys olivaceus) infected with Edwardsiella tarda by iTRAQ analysis. Fish Shellfish Immunol. 2017 66 325 333 10.1016/j.fsi.2017.05.022 28511951
    [Google Scholar]
  43. Mulita F. Verras G. Anagnostopoulous C. Kotis K. A smart heatly through the internet of surgical things Sensors 2022 22 4577 10.3390/s22124577
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073350964241203080017
Loading
/content/journals/cchts/10.2174/0113862073350964241203080017
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test