Skip to content
2000
image of UPLC-Q-TOF-MS, Network Pharmacology and Molecular Docking to Reveal the Antidepressant Mechanism of the Different Components of Medicinal and Edible Lilies (Lilium sp. pl)

Abstract

Background and Objectives

To explore the mechanism of action of the differential components of medicinal and edible lilies in treating depression by network pharmacology using UPLC-Q-TOF-MS technology.

Methods

The chemical composition of medicinal and edible lilies was analyzed, screening for unique medicinal compounds. Searched for depression-related targets. Constructed PPI networks. Performed GO and KEGG analyses. Built a network of differential components, and conducted molecular docking. In addition, the contents of regaloside before and after lily processing were compared

Results

Medicinal lilies and edible lilies have 17 main differences, including regaloside B and regaloside E. There are 179 targets for actives, 2690 for antidepressants, and 98 intersected. Core targets (7) led to 238 GO processes and 107 KEGG pathways. The molecular docking results showed that 17 components, including regaloside B, regaloside E, (25R)-3β,17α-Dihydroxy-5α- spirostan-6-one 3-O-α-L- rhamnopyranosyl-(1→2)-β- D-glucopyranoside (Named: saponin), etc. could act on 7 potential targets such as EGFR, HSP90AA1, STAT3, TNF, etc. to exert antidepressant effects.

Conclusion

This study employed a network pharmacology combined with a molecular docking approach to compare the active constituents of medicinal and edible lilies in antidepressants, and their pharmacological mechanisms, both theoretically and technically. The phytoconstituents were found to act mainly by inhibiting the inflammatory response in depression. Especially saponin may have a close relationship with antidepressants. These results provide some justification for lilies in the treatment of depression.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073368704250131085339
2025-02-24
2025-06-22
Loading full text...

Full text loading...

References

  1. Du F. Origin, classification and resource diversity of the genus lilium. Zhongguo Nongye Daxue Xuebao 2023 28 04 68 79 10.11841/j.issn.1007‑4333.2023.04.06
    [Google Scholar]
  2. Efficacy and role of lily of the valley Jilin Vegetable. 2015 10 33
    [Google Scholar]
  3. Liang Z.X. Zhang J.Z. Xin C. Li D. Sun M.Y. Shi L. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in lilium bulbs native to China. Food Res. Int. 2022 151 110854 10.1016/j.foodres.2021.110854 34980390
    [Google Scholar]
  4. Liang Z.X. Zhang J.Z. Xin C. Dong L. Sun M.Y. Shi L. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in lilium bulbs native to china. Zhejiang J. Integrat. Chin. West. Medic. 2022 32 11 1046 1050 10.3969/j.issn.1005‑4561.2022.11.017
    [Google Scholar]
  5. Zhu H.T. Dong A.X. Su B.T. Chen T.E.X.J. , J.Y. Research progress of traditional Chinese medicine treatment of depression. Xinjiang Tradit. Chin. Medic. 2024 42 04 103 105
    [Google Scholar]
  6. Expert recommendations on the treatment and management of major depressive disorder (2022). Chin. J. Behavi. Medic. Brain Sci. 2023 32 3 193 202 10.3760/cma.j.cn371468‑20220921‑00563
    [Google Scholar]
  7. Xu M.L. Zhu Y. Li L.Y. Research progress of traditional chinese medicine on depression in recent 3 years Clinical J. Traditional Chinese Medicine. 2024 4 8 1608 1613 10.16448/j.cjtcm.2024.0841
    [Google Scholar]
  8. Three Problems Faced by People with Depression High Stigma, Lack of Illness Education, and Difficulty in Accessing Medical Care Science Spectator. 2023 14 14 17
    [Google Scholar]
  9. National Institute of Mental Health 2022 Blue Book of National Depression. Beijing Science Press 2022
    [Google Scholar]
  10. Yang L. An age-period-cohort analysis of the incidence of depression in Chinese residents,1990-2019. Mod. Prev. Med. 2023 50 14 2509 2513, 2554 10.16448/j.cjtcm.2024.0841
    [Google Scholar]
  11. Tsuboi H Sakakibara H Minamida-Urata Y Tsujiguchi H Hara A Suzuki K Miyagi S Nakamura M Takazawa C Kannon T Zhao J Shimizu Y Shibata A Ogawa A Suzuki F Kambayashi Y Konoshita T Tajima A Nakamura H. Serum TNFα and IL-17A levels may predict increased depressive symptoms: findings from the shika study cohort project in japan 2024 18 1 20 10.1186/s13030‑024‑00317‑5 39358787
    [Google Scholar]
  12. Zhao J Dai Y Tian J Lei L Zhou X Impact of mechanical barrier damage and interleukin-17 on symptoms in patients with post-infectious irritable bowel syndrome. Br. J. Hosp. Med. (Lond). 2024 10.12968/hmed.2024.0114 39078895
    [Google Scholar]
  13. Yang X Feng Z Cai M. Elevated specific pro-inflammatory cytokines in peripheral circulation indicate an increased risk of anxiety and depression in rosacea 2024 17 4443 4452 10.2147/JIR.S468773 39006492
    [Google Scholar]
  14. Mao L Ren X Wang X Tian F. Associations between autoimmunity and depression: serum IL-6 and IL-17 have directly impact on the hamd scores in patients with first-episode depressive disorder J. Immunol. Res. 2022 2022 6724881 10.1155/2022/6724881 35615531
    [Google Scholar]
  15. Yao H Liu Y Wang Y Xue Y Jiang S Sun X Ji M Xu Z Ding J Hu G Lu M. Dural tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons Cell. Death. Differ. 2024 10.1038/s41418‑024‑01421‑3 39592709
    [Google Scholar]
  16. Kang J Yang L Jia T Zhang W Wang LB Zhao YJ You J Deng YT Ge YJ Liu WS Zhang Y Chen YL He XY Sahakian BJ Yang YT Zhao XM Yu JT Feng J Cheng W Plasma proteomics identifies proteins and pathways associated with incident depression in 46,165 adults Sci Bull (Beijing). 2024 10.1016/j.scib.2024.09.041
    [Google Scholar]
  17. Nothdurfter C. Milenkovic V.M. Sarubin N. Hilbert S. Manook A. Weigl J. Almeqbaali K. Wetzel C.H. Rupprecht R. Baghai T.C. The cytokine IL-17A as a marker of treatment resistance in major depressive disorder? Eur J Neurosci. 2021 53 1 172 182 10.1111/ejn.14636 31793127
    [Google Scholar]
  18. Zhang D.F. Hu C.J. Hu K.F. Application and prospect of network pharmacology in the field of traditional chinese medicine. J. Medical Intelligence. 2024 45 6 30 36
    [Google Scholar]
  19. Du H.T. Wang L. Ding J. Du Y.X. Wang P. [Application status and challenges of molecular docking in development of traditional Chinese medicine]. Zhongguo Zhongyao Zazhi 2024 49 3 671 680 10.19540/j.cnki.cjcmm.20231013.703 38621871
    [Google Scholar]
  20. Qiu X.Y. Shi R.Y. Yuan Z.Y. Zhao H.Q. Exploring the mechanism of action of lily’s liver-sparing and tranquilizing soup in the treatment of anxiety depression based on UPLC-Q-TOF-MS/MS and network pharmacology. J. Hunan University of Traditional Chinese Medicine. 2022 42 10 1741 1748 10.3969/j.issn.1674‑070X.2022.10.025
    [Google Scholar]
  21. He D. Huang J.H. Zeng H.L. Huang X.L. Shu J. Zou D.Z. Zhao H. Zhang S.H. Study on the mechanism of antidepressant action of lilium vulgare based on network pharmacology. Zhongguo Xiandai Zhongyao 2020 22 12 1996 2005 10.13313/j.issn.1673‑4890.20200305008
    [Google Scholar]
  22. Deng Y.L. Ye X.W. Liu M.M. Liu Y. Wan Q. Huang M. Xie Y.T. Zhang T. Liu H.P. Zhang Z.W. Zhang J.L. Study on the mechanism of action of medicinal food with platycodon grandiflorum and lily of the valley in the treatment of pneumonia. Chinese J. Traditional Chinese Medicine. 2021 46 10 2403 2412 10.19540/j.cnki.cjcmm.20201214.401 34047084
    [Google Scholar]
  23. Qiu Y.P. Shen Q.L. Exploring the antidepressant mechanism of lily of the valley based on network pharmacology. J. Anhui University 2021 45 03 103 108 [Natural Science Edition].
    [Google Scholar]
  24. Liu X.Y. Zhang X.X. Lu X. Dou W.H. Exploring the mechanism of antidepressant action of Free San based on network pharmacology and molecular docking. Hunan J. Tradi. Chin. Medi. 2023 39 03 148 157+190 10.16808/j.cnki.issn1003‑7705.2023.03.034
    [Google Scholar]
  25. McFarland D.C. Jutagir D.R. Rosenfeld B. Pirl W. Miller A.H. Breitbart W. Nelson C. Depression and inflammation among epidermal growth factor receptor (EGFR) mutant nonsmall cell lung cancer patients. Psychooncology 2019 28 7 1461 1469 10.1002/pon.5097 31022775
    [Google Scholar]
  26. Castellanos E.H. Horn L. Generations of epidermal growth factor receptor tyrosine kinase inhibitors: Perils and progress. Curr. Treat. Options Oncol. 2015 16 10 51 10.1007/s11864‑015‑0365‑1 26364032
    [Google Scholar]
  27. Jacobs J.M. Traeger L. Eusebio J. Simon N.M. Sequist L.V. Greer J.A. Temel J.S. Pirl W.F. Depression, inflammation, and epidermal growth factor receptor (EGFR) status in metastatic non-small cell lung cancer: A pilot study. J. Psychosom. Res. 2017 99 28 33 10.1016/j.jpsychores.2017.05.009 28712427
    [Google Scholar]
  28. Picca A. Ferri E. Calvani R. Coelho-Júnior H.J. Marzetti E. Arosio B. Age-associated glia remodeling and mitochondrial dysfunction in neurodegeneration: Antioxidant supplementation as a possible intervention. Nutrients 2022 14 12 2406 10.3390/nu14122406 35745134
    [Google Scholar]
  29. Harsanyi S. Kupcova I. Danisovic L. Klein M. Selected biomarkers of depression: What are the effects of cytokines and inflammation? Int. J. Mol. Sci. 2022 24 1 578 10.3390/ijms24010578 36614020
    [Google Scholar]
  30. Matusevicius D. Kivisäkk P. He B. Kostulas N. Özenci V. Fredrikson S. Link H. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 1999 5 2 101 104 10.1177/135245859900500206 10335518
    [Google Scholar]
  31. Lee Y. Mansur R.B. Brietzke E. Kapogiannis D. Delgado-Peraza F. Boutilier J.J. Chan T.C.Y. Carmona N.E. Rosenblat J.D. Lee J. Maletic V. Vinberg M. Suppes T. Goldstein B.I. Ravindran A.V. Taylor V.H. Chawla S. Nogueras-Ortiz C. Cosgrove V.E. Kramer N.E. Ho R. Raison C.A. McIntyre R.S. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol. Psychiat. 2021 26 7 3395 3406 10.1038/s41380‑021‑01051‑y 33658605
    [Google Scholar]
  32. Del Grande da Silva G. Wiener C.D. Barbosa L.P. Gonçalves Araujo J.M. Molina M.L. San Martin P. Oses J.P. Jansen K. Dias de Mattos Souza L. Azevedo da Silva R. Pro-inflammatory cytokines and psychotherapy in depression: Results from a randomized clinical trial. J. Psychiatr. Res. 2016 75 57 64 10.1016/j.jpsychires.2016.01.008 26802811
    [Google Scholar]
  33. Miguel-Hidalgo J.J. Baucom C. Dilley G. Overholser J.C. Meltzer H.Y. Stockmeier C.A. Rajkowska G. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol. Psychiatry 2000 48 8 861 873 10.1016/S0006‑3223(00)00999‑9 11063981
    [Google Scholar]
  34. Cao X. Li L.P. Wang Q. Wu Q. Hu H.H. Zhang M. Fang Y.Y. Zhang J. Li S.J. Xiong W.C. Yan H.C. Gao Y.B. Liu J.H. Li X.W. Sun L.R. Zeng Y.N. Zhu X.H. Gao T.M. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 2013 19 6 773 777 10.1038/nm.3162 23644515
    [Google Scholar]
  35. Qing H. Desrouleaux R. Israni-Winger K. Mineur Y.S. Fogelman N. Zhang C. Rashed S. Palm N.W. Sinha R. Picciotto M.R. Perry R.J. Wang A. Origin and function of stress-induced IL-6 in murine models. Cell 2020 182 6 1660 10.1016/j.cell.2020.08.044 32946784
    [Google Scholar]
  36. Nothdurfter C. Milenkovic V.M. Sarubin N. Hilbert S. Manook A. Weigl J. Almeqbaali K. Wetzel C.H. Rupprecht R. Baghai T.C. The cytokine IL‐17A as a marker of treatment resistance in major depressive disorder? Eur. J. Neurosci. 2021 53 1 172 182 10.1111/ejn.14636 31793127
    [Google Scholar]
  37. Liu M. Li Z.X. Deng X.R. Huangpu Q.Y. Xu T.T. Ai C.Q. Study on the effect of eight-duanjin on clinical rehabilitation of patients with primary insomnia with anxiety. World J. Integra. Chin. West. Medi. 2018 13 04 563 566+570 10.13935/j.cnki.sjzx.180430
    [Google Scholar]
  38. Liu Y. Song N. Yao H. Jiang S. Wang Y. Zheng Y. Zhou Y. Ding J. Hu G. Lu M. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression. J. Neuroinflamma. 2022 19 1 240 10.1186/s12974‑022‑02597‑6 36183107
    [Google Scholar]
  39. Jego G. Hazoumé A. Seigneuric R. Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013 332 2 275 285 10.1016/j.canlet.2010.10.014 21078542
    [Google Scholar]
  40. Kang G.H. Lee E.J. Jang K.T. Kim K.M. Park C.K. Lee C.S. Kang D.Y. Lee S.H. Sohn T.S. Kim S. Expression of HSP90 in gastrointestinal stromal tumours and mesenchymal tumours. Histopathology 2010 56 6 694 701 10.1111/j.1365‑2559.2010.03550.x 20546334
    [Google Scholar]
  41. Li Y. Zhang T. Schwartz S.J. Sun D. Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr. Cancer 2011 63 7 1151 1159 10.1080/01635581.2011.596645 21875325
    [Google Scholar]
  42. Soroka J. Wandinger S.K. Mäusbacher N. Schreiber T. Richter K. Daub H. Buchner J. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol. Cell 2012 45 4 517 528 10.1016/j.molcel.2011.12.031 22365831
    [Google Scholar]
  43. Xiang X. You X.M. Li L.Q. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression. OncoTargets Ther. 2018 11 3013 3023 10.2147/OTT.S159432 29872313
    [Google Scholar]
  44. Lackie R.E. Maciejewski A. Ostapchenko V.G. Marques-Lopes J. Choy W.Y. Duennwald M.L. Prado V.F. Prado M.A.M. The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front. Neurosci. 2017 11 254 10.3389/fnins.2017.00254 28559789
    [Google Scholar]
  45. Zhang T. Wei W. Chang S. Liu N. Li H. Integrated network pharmacology and comprehensive bioinformatics identifying the mechanisms and molecular targets of yizhiqingxin formula for treatment of comorbidity with alzheimer’s disease and depression. Front. Pharmacol. 2022 13 853375 10.3389/fphar.2022.853375 35548356
    [Google Scholar]
  46. Kim B.K. Park M. Kim J.Y. Lee K.H. Woo S.Y. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation. Int. J. Mol. Med. 2016 38 2 650 658 10.3892/ijmm.2016.2627 27279135
    [Google Scholar]
  47. Yan C. Wu L-L. Zeng N-X. Li H-Z. Wang H-Z. Liu K-G. Gong X-Y. Luo W-L. Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression. Neural Regen. Res. 2022 17 3 632 642 10.4103/1673‑5374.320993 34380904
    [Google Scholar]
  48. Nadeem A. Ahmad S.F. Al-Harbi N.O. Fardan A.S. El-Sherbeeny A.M. Ibrahim K.E. Attia S.M. IL-17A causes depression-like symptoms via NFκB and p38MAPK signaling pathways in mice: Implications for psoriasis associated depression. Cytokine 2017 97 14 24 10.1016/j.cyto.2017.05.018 28570931
    [Google Scholar]
  49. Pezzulo A.A. Tudas R.A. Stewart C.G. Buonfiglio L.G.V. Lindsay B.D. Taft P.J. Gansemer N.D. Zabner J. HSP90 inhibitor geldanamycin reverts IL-13– and IL-17–induced airway goblet cell metaplasia. J. Clin. Invest. 2019 129 2 744 758 10.1172/JCI123524 30640172
    [Google Scholar]
  50. Al-Kuraishy H. M. Alsaidan A. A. Al-Gareeb A. I. Alexiou A. Papadakis M. Batiha G. E. Sildenafil and depression: True or false prophecy CNS Neurosci Ther. 2023 29 10 3108 3109 10.1111/cns.14358 37452476
    [Google Scholar]
  51. Ali N. H. Al-Kuraishy H. M. Al-Gareeb A. I. Albuhadily A. K. Hamad R. S. Alexiou A. Papadakis M. Saad H. M. Batiha G. E. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther. 2024 30 4 e14525 10.1111/cns.14525 39042590
    [Google Scholar]
  52. Lu K. Lin Y.H. Nutrient composition analysis and origin differences of lily of lanzhou. Guizhou Agricult. Sci. 2023 51 11 55 67 10.3969/j.issn.1001‑3601.2023.11.008
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073368704250131085339
Loading
/content/journals/cchts/10.2174/0113862073368704250131085339
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test