Skip to content
2000
image of Computational Study for Preparation of Benzoimidazo[1,2-a]pyrimidines from Reaction of Benzaldehyde, Indanedione and 1H-benzo[d]imidazol-2-amine

Abstract

Background

Benzoimidazo[1,2-]pyrimidines are important compounds that have many useful effects in the body. They can help fight cancer, fungal infections, inflammation, and viruses. They can also help with various other health conditions. They can act as antineoplastic, antitubercular, parasitical activity, benzodiazepine receptor agonists, calcium channel blockers, potent P38 MAP kinase inhibitors, TIE-2 and/or VEGFR2 inhibitory activities, protein kinase inhibitors, and T cell activation. There are different methods to make the benzoimidazo[1,2-]pyrimidines. Some of them dealth with the one-pot threecomponent condensation reactions of β-dicarbonyl compounds, aldehyde and -benzo[]imidazol-2-amine in the presence of catalyst. Although the synthesis of this group of compounds has been done before, and the products have been identified from the spectroscopic point of view, the kinetics and reaction mechanism have not been investigated. The strength of these calculations is that evaluation of the activation energy of various steps suggests possible mechanisms, probable mechanisms, and valuable synthetic intermediates.

Methods

In this report, seven possible mechanisms for synthesizing the benzoimidazo[1,2-a]pyrimidines have been investigated using density functional theory (DFT) at the B3LYP/6-311G** level of theory. Each synthetic route involves condensation of the benzaldehyde, indanedione and 1H-benzo[d]imidazol-2-amine molecules to yield the proposed product. The calculations showed that the suggested method has six steps; its initiation step includes the Knoevenagel reaction between indanedione and aldehyde, and the rate determining state is dehydration in the fifth step.

Result

Six potential pathways for the reaction will occur. Then, we focused on the best pathway and studied it in detail. The ways that three chemicals-indanedione (R1), benzaldehyde (R2), and -benzo[]imidazol-2-amine (R3) react with each other were studied using ab-initio program by ChemBio3D, Gauss View, and Gaussian 09. The Density Functional Theory (DFT) using the B3LYP basis set was used to improve the arrangement of molecules involved in the three-part creation of a specific compound called 12-phenyl--benzo[4,5]imidazo[1,2-]indeno[1,2]pyrimidin-13()-one (P).

Conclusion

During the study of the six mechanisms, the proposed pathway 2 is the best mechanism for this reaction because its rate-determining step has the lowest activation energy value. This route consists of 6 steps, the fifth step of which is related to the conversion of IM4 to IM5 (relative ∆E: 109.80 Kj/mol), during which a dehydration reaction is performed, and this step occurs by passing through transition state TS5 (Total Energy (Hart./particles: -1194.747403).

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073362160250217093210
2025-03-03
2025-04-10
Loading full text...

Full text loading...

References

  1. Cosimelli B. Laneri S. Ostacolo C. Sacchi A. Severi E. Porcù E. Rampazzo E. Moro E. Basso G. Viola G. Synthesis and biological evaluation of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines as new inhibitors of the Wnt/β-catenin signaling. Eur. J. Med. Chem. 2014 83 45 56 10.1016/j.ejmech.2014.05.071 24950489
    [Google Scholar]
  2. Linton A. Kang P. Ornelas M. Kephart S. Hu Q. Pairish M. Jiang Y. Guo C. Systematic structure modifications of imidazo[1,2-a]pyrimidine to reduce metabolism mediated by aldehyde oxidase (AO). J. Med. Chem. 2011 54 21 7705 7712 10.1021/jm2010942 21955208
    [Google Scholar]
  3. Rival Y. Grassy G. Taudou A. Ecalle R. Antifungal activity in vitro of some imidazo[1,2-a]pyrimidine derivatives. Eur. J. Med. Chem. 1991 26 1 13 18 10.1016/0223‑5234(91)90208‑5
    [Google Scholar]
  4. Guo M. Huang X. Li S. Ma W. Liu A. Zhang X. Kuang Q. Cheng L. Song Y. Hu X. Yuan J. Synthesis of substituted of benzo[4,5]imidazo[1,2-a]pyrimidines through (3 + 2+1) cyclization of 2-aminobenzimidazole, acetophenone, and N,N-dimethylformamide as one-carbon synthon. J. Org. Chem. 2024 89 20 14612 14618 10.1021/acs.joc.3c01227 37699595
    [Google Scholar]
  5. Gueiffier A. Lhassani M. Elhakmaoui A. Snoeck R. Andrei G. Chavignon O. Teulade J.C. Kerbal A. Essassi E.M. Debouzy J.C. Witvrouw M. Blache Y. Balzarini J. De Clercq E. Chapat J.P. Synthesis of acyclo-C-nucleosides in the imidazo[1,2-a]pyridine and pyrimidine series as antiviral agents. J. Med. Chem. 1996 39 14 2856 2859 10.1021/jm9507901 8709116
    [Google Scholar]
  6. Rival Y. Grassy G. Michel G. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives. Chem. Pharm. Bull. 1992 40 5 1170 1176 10.1248/cpb.40.1170 1394630
    [Google Scholar]
  7. Abdel-hafez A.A. Benzimidazole condensed ring systems: New synthesis and antineoplastic activity of substituted 3,4-dihydro- and 1,2,3,4-tetrahydro-benzo [4,5]imidazo[1,2-a]pyrinnidine derivatives. Arch. Pharm. Res. 2007 30 6 678 684 10.1007/BF02977627 17679543
    [Google Scholar]
  8. Margiotta N. Ostuni R. Ranaldo R. Denora N. Laquintana V. Trapani G. Liso G. Natile G. Synthesis and characterization of a platinum(II) complex tethered to a ligand of the peripheral benzodiazepine receptor. J. Med. Chem. 2007 50 5 1019 1027 10.1021/jm0612160 17286392
    [Google Scholar]
  9. Jiricek J. Liang F. Mathison C.J.N. Mishra P.K. Molteni V. Nagle A.S. Supek F. Tan L.J. Vidal A. Yeh V. Compounds and compositions for the treatment of parasitic diseases. Patent WO2014151784 A1, 2014
  10. Tully W.R. Gardner C.R. Gillespie R.J. Westwood R. 2-(Oxadiazolyl)- and 2-(thiazolyl)imidazo[1,2-a]pyrimidines as agonists and inverse agonists at benzodiazepine receptors. J. Med. Chem. 1991 34 7 2060 2067 10.1021/jm00111a021 1648620
    [Google Scholar]
  11. Rupert K.C. Henry J.R. Dodd J.H. Wadsworth S.A. Cavender D.E. Olini G.C. Fahmy B. Siekierka J.J. Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett. 2003 13 3 347 350 10.1016/S0960‑894X(02)01020‑X 12565927
    [Google Scholar]
  12. J. J Nunes. X.T Zhu. M Ermann. C Ghiron. D. N Johnston. C. G. P Saluste. Composes heterocycliques substitues et leurs methodes d'utilisation. Patent WO2005021551A1, 2005
  13. Cheung M. Harris P. A. Hasegawa M. Ida S. Kano K. Nishigaki N. Sato H. Veal J.M. Washio Y. West R.I.W.O. Benzimidazole derivatives useful as tie-2 and/or vegfr-2 inhibitors. Patent WO2002044156A2, 2005
  14. Nunes J.J. Zhu X.T. Amouzegh P. Ghiron C. Johnston D.N. Power E.C.W.O. 2-amino-4-hydroxy-5-pyrimidinecarboxamide derivatives and related compounds as inhibitors of t cell activation for the treatment of inflammatory diseases. Patent WO2005009443A1, 2005
  15. Moussa A. Rahmati A. One-pot synthesis of benzo[4,5]imidazo[1,2-a]pyrimidin-2-ones using a hybrid catalyst supported on magnetic nanoparticles in green solvents. ChemistryOpen 2021 10 8 764 774 10.1002/open.202100063 34351084
    [Google Scholar]
  16. Zanatta N. Echevarria A. Amaral S. Esteves-Souza A. Brondani P. Flores D. Bonacorso H. Flores A. Martins M. Synthesis and characterization of some novel 2-(Trifluoromethyl)pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-a]benzimidazol-2H)-ones of biological interest. Synthesis 2006 2006 14 2305 2312 10.1055/s‑2006‑942444
    [Google Scholar]
  17. Wang Y. Shafiq Z. Liu L. Wang D. Chen Y.J. Efficient synthesis of benzimidazo[1,2‐ a ]pyrimidinone derivatives via catalyst‐free reactions of Baylis–Hillman acetates, alcohols, and amines with 2‐aminobenzimidazole. J. Heterocycl. Chem. 2010 47 2 373 378 10.1002/jhet.324
    [Google Scholar]
  18. Shaabani A. Rahmati A. Naderi S. A novel one-pot three-component reaction: Synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems. Bioorg. Med. Chem. Lett. 2005 15 24 5553 5557 10.1016/j.bmcl.2005.08.101 16236502
    [Google Scholar]
  19. Karci F. Demircali A. Sener I. Tilki T. Synthesis of 4-amino-1H-benzo[4,5]imidazo[1,2-a]pyrimidin-2-one and its disperse azo dyes. Part 1: Phenylazo derivatives. Dyes Pigments 2006 71 2 90 96 10.1016/j.dyepig.2005.06.006
    [Google Scholar]
  20. Fekri L.Z. Nikpassand M. Khakshoor S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media. J. Organomet. Chem. 2019 894 18 27 10.1016/j.jorganchem.2019.05.004
    [Google Scholar]
  21. Tran P.H. Thi Bui T.P. Bach Lam X.Q. Thi Nguyen X.T. Synthesis of benzo[4,5]imidazo[1,2- a ]pyrimidines and 2,3-dihydroquinazolin-4(1 H )-ones under metal-free and solvent-free conditions for minimizing waste generation. RSC Advances 2018 8 63 36392 36399 10.1039/C8RA07256F 35558474
    [Google Scholar]
  22. Bayanati M. Novel Benzo[4,5]imidazo[1,2- a]pyrimidine derivatives as selective Cyclooxygenase-2 Inhibitors: Design, synthesis, docking studies, and biological evaluation. Med. Chem. Res. 2023 32 495 505 10.1007/s00044‑023‑03022‑0 36713891
    [Google Scholar]
  23. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Scalmani G. Barone V. Mennucci B. Petersson G.A. Nakatsuji H. Caricato M. Hratchian X. Li H.P. Izmaylov A.F. Bloino J. Zheng G. Sonnenberg J.L. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery J.A. Gaussian 09, Revision A.02. Gaussian, Inc. Wallingford, CT 2009
    [Google Scholar]
  24. Nikpassand M. Solvent-free synthesis and DFT studies on mechanistic pathway of 4-Aryl-4,10-Dihydroindeno[1,2-b]Pyrazolo[4,3-e]Pyridin-5(1H)-one. Polycycl. Aromat. Compd. 2022 42 3166 3176 10.1080/10406638.2020.1855217
    [Google Scholar]
  25. Zare Fekri L. Nikpassand M. Goldoost M. Synthesis, experimental and DFT studies on crystal structure, FT-IR, 1H, and 13C NMR spectra, and evaluation of aromaticity of three derivatives of xanthens. Russ. J. Gen. Chem. 2013 83 12 2352 2360 10.1134/S107036321312027X
    [Google Scholar]
  26. Zare Fekri L. Nikpassand M. Synthesis, experimental, and DFT studies on FT-IR, 1H, and 13C NMR spectra of azo-linked dihydropyridines. Russ. J. Gen. Chem. 2013 83 12 2395 2401 10.1134/S1070363213120347
    [Google Scholar]
  27. Nikpassand M. Fekri L.Z. Rahro P.N. Catalyst-free grinding method: A new avenue for synthesis of 6-amino-3-methyl-4-aryl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile and DFT studies on the mechanistic pathway of this category of compounds. Res. Chem. Intermed. 2019 45 4 1707 1719 10.1007/s11164‑018‑3701‑9
    [Google Scholar]
  28. Nikpassand M. Keyhani A. Fekri L.Z. Varma R.S. Mechanochemical synthesis of azo-linked 2-amino-4H-chromene derivatives using Fe3O4@SiO2@KIT-6-NH2@Schiff-base complex nanoparticles. J. Mol. Struct. 2022 1251 132065 10.1016/j.molstruc.2021.132065
    [Google Scholar]
  29. Nikpassand M. Fekri L.Z. Varma R.S. Hassanzadi L. Pashaki F.S. Green synthesis of novel 5-amino-bispyrazole-4-carbonitriles using a recyclable Fe 3 O 4 @SiO 2 @vanillin@thioglycolic acid nano-catalyst. RSC Advances 2021 12 2 834 844 10.1039/D1RA08001F 35425101
    [Google Scholar]
  30. Nikpassand M. Zibaei Y. Zare Fekri L. Finding the best proposed mechanism for Ugi multi-component reaction by DFT study. Polycycle. Arom. Comp 2023 1 16
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073362160250217093210
Loading
/content/journals/cchts/10.2174/0113862073362160250217093210
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: indanedione ; DFT ; benzaldehyde ; Mechanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test